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Abstract : Actually, one establishes mathematical model for understanding a natural thing or
matter T by its mathematical property T̂ characterized by model, called mathematical reality. Could
we always conclude the equality T̂ = T in nature? The answer is disappointing by Godel’s incomplete
theorem which claims that any formal mathematical axiom system is incomplete because it always has
one proposition that can neither be proved, nor disproved in this system. Thus, we can not determine
T̂ = T or �= T sometimes by the boundary of mathematics. Generally, a natural thing or matter is
complex, even hybrid with other things. Unlike purely thinking, physics and life science determine
natural things by subdividing them into irreducible but detectable units such as those of quarks,
gluons or cells, i.e., the composition theory of T in the microcosmic level, which concludes the reality
of T is the whole behavior of a complex network induced by local units. However, all mathematical
elements can only determines the character of T locally and usually brings about a contradictory
system in mathematics. Could we establish a mathematics on complex networks avoiding Godel’s
incomplete theorem for science, i.e., mathematical combinatorics? The answer is positive motivated by
the traditional Chinese medicine, in which a living person is completely reflected by 12 meridians with
balance of Yin (Y −) and Yang (Y +) on his body, which alludes that there is a new kind of mathematical

elements, called harmonic flows
−→
G

L2

with edge labeled by L2 : (v, u) ∈ E
(−→
G

)
→ L(v, u) − iL(v, u)),

where i2 = −1, L(v, u) ∈ B and 2 end-operators A+
vu, A−

vu on Banach space B holding with the

continuity equation on vertices v ∈ V
(−→
G

)
. The dynamic behavior of

−→
G

L2

can be characterized by
Euler-Lagrange equations

∂
−→
G

L

∂xi
− d

dt

∂
−→
G

L

∂ẋi
= O, 1 ≤ i ≤ n

in the microscopic level, where O is the zero flow with {0,0} on (v, u), L
[
L2(t, x(t), ẋ(t))

]
is a

differential functional and L2(t, x(t), ẋ(t))(v, u) is a Lagrangian for ∀(v, u) ∈ E
(−→
G

)
. We establish

mathematics on
−→
G

L2

with dynamics and generalized famous theorems in functional analysis, also

discuss the composing matter and antimatter by this kind of mathematical elements.

§1. Introduction. All matters are in colorful, mystery and also with a complex
mechanism to humans even if vegetables or animals, we are embarrassed hardly know
their true face unless images. Usually, we understand things by the reality for promoting
the survival and development of humans ourselves and then, construct a harmonious
system of humans with the nature. Then, what is the reality of a matter? Certainly, the
word reality of a matter T is its state as it actually exist, including everything that is and
has been, no matter it is observable or comprehensible by humans. Could we really hold
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on the reality of matters? Usually, a matter T is multilateral or complex one and so, hold
on its reality is difficult for humans in logic. For the reality of matters, we have learned
a few claims in classical scriptures of China or India. For example, the well-known
sentences Tao that be told is not the eternal Tao, Name that be called is not the eternal
Name; Unnamed is the beginning of things in the universe, but naming is the origin
of all things in the first chapter of Tao Te Ching, a well-known Chinese ancient book,
and also the sentences Form is emptiness, Emptiness is form; emptiness does not differ
from form and form does not differ from emptiness. Whatever is form, it is emptiness,
whatever is emptiness, it is form in Indian ancient book Heart Sutra (Prajnaparamita),
also implied in the Diamond Sutra (Arya Vajracidaka). All of these words claimed that
the reality of matters are our own understanding. For example, Newton’s spacetime is
the union of a Euclidean 3-dimensional space R

3 and a 1-dimensional Euclidean space
R, which is not dependent on the human’s will. Certainly, it can not be verified by
humans but maybe the real nature of spacetime even though the space and time are also
the forms of humans. However, the Einstein’s spacetime is a 4-dimensional Euclidean
space R

×
R, which is dependent on the human’s will, and also be verified by humans

but it maybe not the nature of spacetime, only our own understanding on spacetime,
i.e., the relativity theory is a right theory on the universe only in the eyes of humans.

Fig. 1

Thus, the reality of a matter is its nature known by a special living, and we can
not separate the word reality from that living. Then, how do we hold on the
reality of matters in the universe? We all known that a matter T is consisting
of elements, understand T by its elements, particularly, mathematical elements and
then, get the mathematical reality. Certainly, there are many mathematical elements
for characterizing local or partial behaviors of matters such as those of numbers,
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maps, functions, vectors, matrices, points, lines, opened or closed sets, · · ·, also
with mathematical relations. But, are these mathematical elements enough for us
understanding reality of matters in the universe or is the mathematical reality nothing
else but the universe? For example, let x, y be the populations in a self-system
of cats and rats, such as the Tom and Jerry in the cartoon TV series, then they
were continuously characterized by Lotka-Volterra model (Brauer and Castillo-Chaver,
2012)) with differential equations {

ẋ = x(λ − by)

ẏ = y(−μ + cx)

where, λ − by is the growth rate of rats and −μ + cx is the death rate of cats
with constants b and c. Even in this mathematical model, are these b, c, λ, μ really
constants in the universe? The answer is certainly not because they are only an
assumption of humans ourselves, which results also the next question into beings,
i.e., is the mathematical reality equal to the reality of things T? Why we ask this
question is because of the mathematical universe hypothesis of Max Tegmark (Tegmark,
2003)), which claims that our external physical reality is a mathematical structure,
a duplication of Theory of Everything. Even for the mathematical reality, it has
also questions on the completeness of itself, i.e., is a mathematical system complete
or not in logic? The answer is discouraged by the Godel’s incomplete theorem, i.e.,

Fig. 2
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Any consistent formal system F within which a certain amount of arithmetic can be
carried out, there are statements of the language of F which can neither be proved nor
disproved in F . Then, what is the reality about of matters that can be understanding by
humans? Einstein once complained on mathematics with words that as far as the laws
of mathematics refer to reality, they are not certain, and as far as they are certain,
they do not refer to reality. Until today, we can not conclude that the mathematical
reality is equal to the reality of matters even in our daily life. For example, let

A = {H1, H2, H3, H4} and B = {H ′
1, H

′
2, H

′
3, H

′
4}

be 2 groups of horses constraint with running on respectively 4 straight lines in
Euclidean space R

2 (Mao, 2019), such as those shown in Fig. 2.

Then, how do we characterize the running orbits of these horses? We apply the
equation systems

(
LESN

4

)
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x + y = 2

x + y = −2

x − y = −2

x − y = 2

(
LESS

4

)
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x = y

x + y = 4

x = 2

y = 2

Clearly, the first one is non-solvable but the second has solution (2, 2). Could we
conclude the running behavior of group A is nothing but B is (2, 2)? Certainly not
because the fact is all of the horses are running on straight lines of Euclidean plane
R

2. Certainly, the orbits of the horses can be characterized by the equations but never
be the solution of the system, i.e., the orbits Orb(A), Orb(B) of group A, B should be
respectively the union of point sets

Orb(A) = {(x, y) : x + y = 2}
⋃

{(x, y) : x + y = −2}⋃
{(x, y) : x − y = 2}

⋃
{(x, y) : x − y = −2},

Orb(B) = {(x, y) : x = 2}
⋃

{(x, y) : x + y = 4}⋃
{(x, y) : x = y}

⋃
{(x, y) : x = 2},

which are nothing else but the Smarandache multispaces. This example also implies that
the reality of a matter T maybe characterized by a contradictory system of equations,
i.e., non-mathematics (Mao, 2014) in classical mathematics. We therefore conclude the
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inequality mathematical reality �= reality on matters in general, i.e., the mathematical
reality can be only the local or partial true on matters in the universe. Then, how to
hold on the reality of matters? We have only one way, i.e., summarizing practice to
theory with continuous improving and then guiding the practice of humans. For this
objective, a general thinking patter in science is

Matter
Decompose−→ Microcosmic Particles Abstract−→ Complex Network

For example, physics determines the nature of matters by irreducibly smallest
detectable particles called elementary particles (Ho-Kim and Xuam Yem, 1998), such
as those of fundamental fermions including quarks, antiquarks, leptons, antileptons
and fundamental bosons including gauge bosons, Higgs boson and the fundamental
interactions such as the meson, baryon shown in Fig. 3,

Fig. 3

and biology holds on the life and heredity by cells and genes.

The essence of subdividing on a matter is to determine the nature of irreducibly
smallest detectable units and then, holds on reality of the matter. However, a matter
can be always divided into submatters, then sub-submatters and so on. A natural
question on this notion is whether it has a terminal point or not? Certainly, it can be

Fig. 4
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done infinite times depends on the technology of humans but concludes that a matter
is equal to a complex network, a very large network in general such as the molecular
structure network of brain shown in Fig. 4.

Notice that the cell network of a human consists of 5× 1014 − 6× 1014 cells, a very
large complex network. Are we always need such a large and complex network for the
reality of humans? The answer is certainly Not by the traditional Chinese medicine.
There are 12 meridians which completely reflects the physical condition of human body
in traditional Chinese medicine, i.e., LU, LI, ST, SP, HT, SI, BL, KI, PC, SJ, GB, LR
meridians. For example, the LI and GB meridians are shown in Fig. 5.

Fig. 5

By the traditional Chinese medicine (Zhang, 2007), if there exists an imbalanced
acupoint on one of the 12 meridians, this person must be illness and in turn, there
must be imbalance acupoints on the 12 meridians for a patient. Thus, finding out
which acupoint on which meridian is in imbalance with Yin (Y −) more than Yang
(Y +) or Yang (Y +) more than Yin ()Y − is the main duty of a Chinese doctor. Then,
how to heal the patient? the doctor regulates the meridian by acupuncture or drugs
so that the balance on the imbalance acupoints recovers again, and then the patient
recovers. Thus,

A body = A union of LU, LI, SP, HT, SI, KI, PC, LR, GB, ST, SJ, BL meridians

= A non-connected graph of order 362,

a small one comparing with the complex network of cells such as those shown in Fig. 6
where, all edges are labeled by (Y +, Y −).
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Then, what is the significance of this treatment theory in traditional Chinese
medicine to modern science? It implies that we can introduce mathematical elements
on complex networks globally, i.e., continuity or harmonic flows over topological
graphs because the Yin and Yang in traditional Chinese medicine are flows on the
12 meridians. For holding on the true colors of matters, whether or not classically

Fig. 6. 12 Meridian graph on a human body

mathematical elements enough for understanding complex networks, i.e., matters in the
universe? Certainly not because all of them can be only characterizing matters locally
or partically. And then, could we establish a mathematics over elements underlying
combinatorial structures? The answer is definite, i.e., mathematical combinatorics on
global elements of complex network following.

DEFINITION 1. (Element 1) A continuity flow −→
G

L
is an oriented embedded graph −→

G

in a topological space S associated with a mapping L : v → L(v), (v, u) → L(v, u), 2
end-operators A+

vu : L(v, u) → LA+
vu(v, u) and A+

uv : L(u, v) → LA+
uv(u, v) on a Banach

space B over a field F such as those shown in Fig. 7,

Fig. 7
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with L(v, u) = −L(u, v), A+
vu(−L(v, u)) = −LA+

vu(v, u) for ∀(v, u) ∈ E
(−→
G

)
and holding

with continuity equation∑
u∈NG(v)

LA+
vu (v, u) = L(v) for∀v ∈ V

(−→
G

)
.

DEFINITION 1.2 (Element 2) A harmonic flow −→
G

L
is an oriented embedded graph −→

G

in a topological space aS associated with a mapping L : v → L(v)−iL(v) for v ∈ E
(−→
G

)
and L : (v, u) → L(v, u) − iL(v, u), 2 end-operators A+

vu : L(v, u) − iL(v, u) →
LA+

vu(v, u) − iLA+
vu(v, u) and A+

uv : L(v, u) − iL(v, u) → LA+
uv(v, u) − iLA+

uv(v, u) on
a Banach space B over a field F such as those shown in Fig. 8,

Fig. 8

where i2 = −1, L(v, u) = −L(u, v) for ∀(v, u) ∈ E
(−→
G

)
and holding with continuity

equation ∑
u∈NG(v)

(
LA+

vu (v, u) − iLA+
vu (v, u)

)
= L(v) − iL(v) for ∀v ∈ V

(−→
G

)
.

An element 1 is usually denoted by −→
G

L
and an element 2 is denoted by −→

G
L2

for
emphasizing L2 mapping edges to B × B, where L1(v, u), L2(v, u) ∈ B. Let G be
a closed family of graphs −→

G under the union operation and let B be a linear space
(B; +, ·), or furthermore, a commutative ring, a Banach or Hilbert space (B; +, ·) over

a field aF . Denoted by
(

GB; +, ·
)

and
(

G±
B; +, ·

)
the respectively elements 1 and 2

form over graphs −→
G ∈ G.

Could we establish mathematics on elements 1 and 2 for a given graph family and
a Banach space, i.e., view elements 1 and 2 as mathematical elements? The answer is
positive. The main purpose of this paper is to report such a mathematical theory on
elements 2, i.e., harmonic flows because elements 1 have been extensively discussed in
references (Mao, 2015, 2016, 2017, 2018). For such an objective, a dynamic theory,
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including Banach harmonic flow space closed under action of differential, integral
operators is introduced. A few well-known results such as those of Banach theorem,
closed graph theorem and Hahn-Banach theorem are generalized with extended Euler-
Lagrange equation, i.e., establish mathematical theory on elements 1 and 2 and show
such elements can be viewed as vectors underlying topological structures, which can be
also applied to analyse the structure of matters and antimatter (Mao, 2019), and also
the n-body problem including both particles and antiparticles.

For terminologies and notations not mentioned here, we follow references (Abraham
and Marsden, 1978) for mechanics, (Conway, 1990) for functional analysis, (Brauer and
Castillo-Chaver, 2012) for biological systems, (Chen, Wang and Li, 2015) for complex
network, (Mao, 2011) for combinatorial geometry, and (Mao, 2011 and Smarandache,
1997) for Smarandache systems and multispaces.

§2. Harmonic Flow Space with Operators

2.1 Commutative Rings over Graphs. Let n ≥ 1 be an integer. Then, whether
or not a vector v = (x1, x2, · · · , xn) in Euclidean space R

n has a topological structure?
If it has, what is its underlying topological structure? Usually, one views a vector v ∈
R

n underlies a linear structure, i.e., a topological line such as those shown in Fig. 9.

Fig. 9

i.e., v underlies a path Pn.

Could we view these new elements 1 and 2 as vectors of linear space underlying
topological graph G? The answer is affirmative, which establishes mathematical
foundation of complex networks.

Let G be a closed family of graphs −→G under the union operation and let B be a linear
space (B; +, ·), or furthermore, a commutative ring (B; +, ·) over a field F. Define

−→
G

L2

+
−→
G′L

′2

=
(−→
G \

−→
G′

)L2 ⋃ (−→
G

⋂−→
G′

)L2+L′2 ⋃ (−→
G′ \ −→G

)L′2

, (2.1)

−→
G

L2

·
−→
G′L

′2

=
(−→
G \

−→
G′

)L2 ⋃ (−→
G

⋂−→
G′

)L2·L′2 ⋃ (−→
G′ \ −→G

)L′2

, (2.2)

λ · −→GL2

= −→
G

λ·L2

, (2.3)



606 linfan mao

where λ ∈ F and

L2 : (v, u) → (L1(v, u), L2(v, u)) , L′2 : (v, u) →
(
L′

1(v, u), L′
2(v, u)

)
,

L2 + L′2 : (v, u) →
(
L1(v, u) + L′

1(v, u), L2(v, u) + L′
2(v, u)

)
,

L2 · L′2 : (v, u) →
(
L1(v, u) · L′

1(v, u), L2(v, u) · L′
2(v, u)

)
,

λ · L2(v, u) = (λ · L1(v, u), λ · L2(v, u))

with substituting end-operator A : (v, u) → A+
vu(v, u) + (A′)+vu(v, u) or A : (v, u) →

A+
vu(v, u) · (A′)+vu(v, u) for (v, u) ∈ E

(−→
G

⋂−→
G′

)
in −→

G
L2

+
−→
G′L

′2

or −→
G

L2

·
−→
G′L

′2

and

L1(v, u), L2(v, u), L′
1(v, u), L′

2(v, u) ∈ B for ∀(v, u) ∈ E
(−→
G

)
or E

(−→
G′

)
. For example,

let all end-operators A = 1aB. Then, the operation + and · are shown in Fig. 10.

Fig. 10

Let

L◦
kl(e) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

L2
k(e), if e ∈ E

(−→
Gk \ −→G l

)
L2

l (e), if e ∈ E
(−→
G l \

−→
Gk

)
L2

k(e) ◦ L2
l (e) if e ∈ E

(−→
Gk

⋂−→
G l

) , (2.4)
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and

L◦
kls(e) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L2
k(e), if e ∈ E

(−→
Gk \

(−→
G l

⋃−→
Gs

))
L2

l (e), if e ∈ E
(−→
G l \

(−→
Gk

⋃−→
Gs

))
L2

s(e), if e ∈ E
(−→
Gs \

(−→
Gk

⋃−→
G l

))
L◦

kl(e), if e ∈ E
((−→

Gk
⋂−→

G l

)
\ −→Gs

)
L◦

ks(e), if e ∈ E
((−→

Gk
⋂−→

Gs

)
\ −→G l

)
L◦

ls(e), if e ∈ E
((−→

G l
⋂−→

Gs

)
\ −→Gk

)
L2

k(e)
◦L2

l (e)
◦L2

s(e) if e ∈ E
(−→
Gk

⋂−→
G l

⋂−→
Gs

)

, (2.5)

where ◦ is the operation +, − or · and −→
Gk,

−→
G l,

−→
Gs ∈ G. Then, we have

THEOREM 2.1 (Mao, 2015 2019) If G is a closed family of graphs under the union

operation and B a linear space (B; +, ·), then, all pair flows
(

G
B

2 ; +, ·
)

form a linear

space, and furthermore, a commutative ring if B is a commutative ring (B; +, ·) over

a field F with a zero flow O, i.e., {0,0} on edges (v, u) in
(

G
B

2 ; +
)

and a unit 1,

i.e., {1,1} on edges (v, u) in
(

G
B

2 ; ·
)

for ∀(v, u) ∈ E
(−→
G

)
,
−→
G ∈ G.

2.2 Banach Harmonic Flow Space For ∀−→GL2

∈ G
B

2 with L2(e) = (L1(e), L2(e)),

e ∈ E
(−→
G

)
define ∥∥∥∥−→GL2

∥∥∥∥ =
∑

e∈E

(−→
G

) (‖L1(e)‖ + ‖L2(e)‖) , (2.6)

where B is a Banach space (B; +, ·) over a field F with a norm ‖ · ‖. Then we know

THEOREM 2.2 (Mao, 2019) If G is a closed family of graphs under the union
operation and B a Banach space (B; +, ·), then, G

B
2 with linear operators A+

vu, A+
uv

for ∀(v, u) ∈ E

⎛⎜⎝ ⋃
G∈G

−→
G

⎞⎟⎠ is a Banach space, and furthermore, if B is a Hilbert space,

G
B

2 is a Hilbert space too.

Thus, all elements in G
B

2 can be viewed as vectors underlying a graph −→
G ∈ G.
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2.3 Operators on Banach Harmonic Flow Space.

DEFINITION 2.3 Let T : G±
B → B± be an operator on Banach harmonic flow space

G±
B over a field F. Then, T is linear if

T

(
λ
−→
G

L2
k

k + μ
−→
G

L2
l

l

)
= λT

(−→
G

L2
k

k

)
+ μT

(−→
G

L2
l

l

)

for ∀−→GL2
k

k ,
−→
G

L2
l

l ∈ G±
B and λ, μ ∈ F, is continuous at −→GL2

0
0 if there always exist a number

δ(ε) for ∀ε > 0 such that ∥∥∥∥T

(−→
G

L2
)
− T

(−→
G

L2
0

0

)∥∥∥∥ < ε

if
∥∥∥∥−→GL2

−−→
G

L2
0

0

∥∥∥∥ < δ(ε), bounded if
∥∥∥∥T

(−→
G

L2
)∥∥∥∥ ≤ ξ

∥∥∥∥−→GL2
∥∥∥∥ for ∀−→GL2

∈ G±
B with a

constant ξ ∈ [0,∞) and furthermore, a contractor if∥∥∥∥T

(−→
G

L2
k

k

)
− T

(−→
G

L2
l

l

)∥∥∥∥ ≤ ξ

∥∥∥∥−→GL2
k

k −−→
G

L2
l

l

∥∥∥∥
for ∀−→GL2

k
k ,

−→
G

L2
l

l ∈ G±
B with ξ ∈ [0, 1).

Then, the fixed point theorem and Banach theorem in functionals are generalized
to harmonic flows following.

THEOREM 2.4 (Fixed Harmonic Flow Theorem, (Mao, 2019) If T : G±
B → G±

B is a

linear continuous contractor, then there is a uniquely harmonic flow −→
G

L2

∈ G±
B such

that
T

(−→
G

L2
)

= −→
G

L2

.

THEOREM 2.5 (Mao, 2019) A linear operator T :
−→
G

±
→ G±

B is continuous if and

only if it is bounded.

THEOREM 2.6 (Banach, (Mao, 2019)) Let T : G±
B

1

→ G±
B

2

be a linear continuous

operator with Banach spaces B1 and B2. If T is bijective then its inverse operator T−1

is continuous.

Similarly, we define graph of an operator T in G±
B

2

following.
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DEFINITION 2.7 Let T : G±
B

1

→ G±
B

2

be a linear continuous operator with Banach

spaces B1, B2. The graph of T in G±
B

2

is defined by

GrapT =
{(−→

G
L2

,T

(−→
G

L2
))∣∣∣∣−→GL2

∈ G±
B

1

}
and T is closed if Cl (GrapT ) = GrapT , i.e., a closed subspace.

Then, we generalize the closed graph theorem in functionals as follows.

THEOREM 2.8 (Mao, 2019) Let T : G±
B

1

→ G±
B

2

be a linear operator with Banach

spaces B1, B2. Then T is closed if and only if for any harmonic flow sequence{−→
G

L2
n

n

}
∈ G±

B
1

with lim
n→∞

−→
G

L2
n

n = −→
G

L2
0

0 ∈ G±
B

1

, lim
n→∞

T

(−→
G

L2
n

n

)
= −→

G
L2

∈ G±
B

2

and

T

(−→
G

L2
0

0

)
= −→

G
L2

.

THEOREM 2.9 (Closed Graph Theorem, (Mao, 2019)) If T : G±
B

1

→ G±
B

2

is a closed

linear operator with Banach spaces B1, B2, then T is continuous.

Particularly, we generalize the Hahn-Banach theorem following.

THEOREM 2.10 (Hahn-Banach, (Mao, 2019)) Let H±
B be a harmonic flow subspace of

G±
B and let F : H±

B → C be a linear continuous functional on H±
B. Then, there is a

linear continuous functional F̃ : G±
B → C hold with

(1) F̃

(−→
G

L2
)

= F

(−→
G

L2
)

if −→GL2

∈ H±
B;

(2)
∥∥∥F̃

∥∥∥ = ‖F‖.

COROLLARY 2.11 (Mao, 2019) For −→
G

L2

∈ G±
B, if F

(−→
G

L2
)

= 0 hold with all linear

functionals F on G±
B then −→

G
L2

= O

Clearly, G±
B

1

and G′±
B

2

are both labeled graph families by definition. Consequently,

we define a harmonic flow space G±
B

1

isomorphic to G′±
B

2

if there is a linear continuous
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operator T : G±
B

1

→ G′±
B

2

of bijection with T : −→GL2

∈ G±
B

1

→
−→
G′L

′2

∈ G±
B

2

such that

T
(
A+

vu, (L(v, u),−L(v, u)), A+
uv

)
=

(
A′+

vu, (L′(v, u),−L′(v, u)), A′+
uv

)
for ∀(v, u) ∈ E

(−→
G

)
. We can therefore classify harmonic flow spaces following.

THEOREM 2.12 (Mao, 2019) A harmonic flow spaces G±
B

1

is isomorphic to G′±
B

2

with

T : −→GL2

→
−→
G′L

′2

if and only if G = G′ and B1 is isomorphic to B2.

§3. Harmonic Flow Dynamics

3.1 Harmonic Flow Calculus

DEFINITION 3.1 Let D be a boundary subset of Cn = {(x1, x2, · · · , xn)|xi ∈ C, 1 ≤ i ≤ n},
B = C(D) of differentiable functions on D and all end-operators in A satisfying
[A, ∂

∂xi
] = 0 for ∀A ∈ A. Define n differential operators ∂i : G2

B → G2

B, 1 ≤ i ≤ n by

∂i
−→
G

L2

= −→
G

∂L2

∂xi ,

and denoted by d
−→
G

L2

dz if D ⊂ C for −→
G

L2

∈ G2

B in which the integral flow of −→GL2

∈ G2

B
along a curve C = {z(t) |α ≤ t ≤ β} of length< +∞ is defined by∫

C

−→
G

L2

dz = −→
G

∫
C

L2dz
.

A calculation immediately shows the following result.

THEOREM 3.2 (Mao, 2019) All partial differential operators ∂i and the integral
operator

∫
C are linear continuous on G2

B, and furthermore, on G±
B for integers

1 ≤ i ≤ n.

Similar to the calculus, if d
−→
G

L2

dz =
−→
G′L

′2

, i.e., d
−→
G

L2

=
−→
G′L

′2

dz then −→
G

L2

is called

the primitive flow of
−→
G′L

′2

and denoted by
∫ −→

G
L2

dz. We know easily that∫
C

−→
G

L2

dz = −→
G

∫
C

L2dz
= −→

G

∫
L2dz|β−

∫
L2dz|

α =
∫ −→

G
L2

∣∣∣∣
β
−

∫ −→
G

L2
∣∣∣∣
α

and if C is the boundary curve of a simply connected domain on R
2,∫

C

−→
G

L2

dz = O.
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Furthermore,

−→
G

L2

(z) =
1

2πi

∫
C

−→
G

L2

(ζ)
ζ − z

dζ

with z ∈ D if −→GL2

is differentiable on D and continuous on Cl(D) = D+C by definition.
We generalize a few well-known results of complex analysis to G2

C , for instance the
following result.

THEOREM 3.3 (Cauchy Integral Formula, (Mao, 2019)) Let D ⊂ C be a domain with

boundary curve C and B = C(D). If −→
G

L2

∈ G2

B or G±
B is differentiable on D and

continuous on Cl(D) = D + C, then

−→
G

L2

(z) =
1

2πi

∫
C

−→
G

L2

(ζ)
ζ − z

dζ, (3.1)

where, z ∈ D.

3.2 Harmonic Flow Dynamics. Let L
[
L2(t, x(t), ẋ(t))

]
: (v, u) ∈ E

(−→
G

)
→

L
[
L2(t, x(t), ẋ(t))(v, u)

]
be a differentiable functional with

[
L, A

]
= 0 for A ∈ A.

Then, there must be −→
G

L[L2(t,x(t),ẋ(t))] ∈ G±
B.

Consider the variational action

J

[−→
G

L2

[t]
]

=
t2∫

t1

−→
G

L[L2(t,x(t),ẋ(t))]
dt. (3.2)

on a harmonic flow −→
G

L2

[t] ∈ G±
B where x = (x1, x2, · · · , xn). According to the

Hamiltonian principle there must be δJ

[−→
G

L2

[t]
]

= O, i.e.,

∫ t2

t1

n∑
i=1

⎛⎝(
∂L
∂xi

− d

dt

∂L
∂ẋi

)∣∣∣∣∣
(v,u)

⎞⎠ δxidt = 0 (3.3)

for (v, u) ∈ E
(−→
G

)
. We therefore get the Euler-Lagrange equations on −→

G
L2

[t] following.

THEOREM 3.4 (Mao, 2019) If L2(t, x(t), ẋ(t))(v, u) is a Lagrangian on edge (v, u),
L

[
L2(t, x(t), ẋ(t))

]
: (v, u) → L

[
L2(t, x(t), ẋ(t))(v, u)

]
is a differentiable functional on
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a harmonic flow −→
G

L2

[t] for (v, u) ∈ E
(−→
G

)
with

[
L, A

]
= 0 for A ∈ A, then

∂
−→
G

L

∂xi
− d

dt

∂
−→
G

L

∂ẋi
= O, 1 ≤ i ≤ n. (3.4)

Particularly, if L is linear dependent on L2, we get a conclusion following.

COROLLARY 3.5 (Mao, 2019) If L is linear dependent on L2, then

∂
−→
G

L2

∂xi
− d

dt

∂
−→
G

L2

∂ẋi
= O, 1 ≤ i ≤ n.

Furthermore, if all parts on edges are moving in coherence or synchronization, we get
the Euler-Lagrange equations.

COROLLARY 3.6 (Euler-Lagrange, (Mao, 2019)) If the Lagrangian L
[−→
G

L2

[t]
]

of a

harmonic flow −→
G

L2

[t] is independent on (v, u), i.e., all Lagrangian L2(t, x(t), ẋ(t))(v, u),

(v, u) ∈ E
(−→
G

)
are synchronized, then the dynamic behavior of −→

G
L2

[t] can be
characterized by n equations

∂L

∂xi
− d

dt

∂L

∂ẋi
= 0, 1 ≤ i ≤ n, (3.5)

which are essentially equivalent to the Euler-Lagrange equations of bouquet −→B L2

1 ∈ −→
B1

±
B,

i.e, dynamic equations on a particle P .

Corollary 3.6 explains an additional assumption in classical mechanics also, i.e.,
we can view an object as a geometrical point only in the case that all of its parts are
synchronized. However, the non-coherence appears from time to time in eyes of humans,
which implies that the non-coherence is general but coherence is special. Whence, for
understanding the reality of matters we have to turn our attention on coherence to
non-coherence by Smarandache multispaces (Mao, 2011, 2014)).

§4. Applications

4.1 Matter-Antimatter Asymmetry Problem. The universe is made up
both by matter and antimatter. Although it was first theoretically considered by
Paul A.M.Dirac in 1928, antimatter for instance, positron, antiproton, antineutron,
antideuteron, antihydrogen,· · · were discovered one after another in laboratory since
1932. In fact, the most interesting character of antimatter is it will be completely
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annihilated into energy if it collides with its normal matter. For example, an electron
collides with a positron will completely transforms to 2 photons, an energy form, i.e.,

e−1 + e+ → γ + γ.

Theoretically, the Big Bang should have created equal amounts of matter and
antimatter in the early universe. However, all things we see from the smallest life forms
on Earth to the largest stellar objects is made entirely of matter, without antimatter.
Why there is an asymmetry picture for matter and antimatter in today’s universe?

In the Standard Model of Particle (SM), baryons such as those of the proton and
neutron are bound of 3 quarks and antiquarks, including gluon such as those shown in
Fig. 11. Certainly, such a composition theory on matter by quarks and gluons in SM
is essentially the elements 1 on complex networks, which enables one to speculating
its behavior by combinatorial speculation. Particularly, we present a question on
the behavior of antigluon, i.e., is it attractive, likewise the behavior of gluon or its
reverse, repulsive? This will enables one explaining why the matter-antimatter picture
is asymmetry and understanding well the material constitution of universe.

Fig. 11

We usually understand the universe by matter, not including antimatter. However,
the universe consists of matter and antimatter, and the matter contributes only 4.6%
to the whole matter/energy distribution of the universe as physicist verified. Thus, we
always understand the universe by the known matter, i.e., 4.6% not the whole 100%
consisting of the universe. However, we can not conclude the universe is dominated
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by the matter, and can not claim that we have hold on the truth face of the universe
because all known of humans are a partial or local true on matters. Now, if we include
antimatter distribution in the universe, we would extend our understanding on the
universe. For this objective, a central topic is the assumption on the behavior of
antigluon.

Attraction Assumption. This is the current notion on antigluon consisting of
antiproton, antineutron, antimeson,· · · within an internal equilibrium between regions
of attraction R2 and repulsion R1 such as those shown in Fig. 12

Fig. 12

where r is the distance of 2 quarks, R1 = 5× 10−14cm, R2 = 4× 10−12cm (Tian, 2014)
and results in an attractively residual strong interaction of antiproton or antineutron
to form antimatter. However, it is this notion that leads to the asymmetry problem
of matter and antimatter, contradicts to all experimental results of humans. If it is
true, there must be all antimolecules likewise the molecules, and there are must be all
antianimals, particularly, antihumans like animals on the earth. If so, humans ourselves
can not being in the universe. Whence, it is only a priori hypothesis on matter and
antimatter forming after the Big Bang.

Repulsion Assumption. This is an opposite notion to the current on antigluon
within an internal equilibrium between regions of repulsion R2 and attraction R1 such
as those shown in Fig.13 which finally results in a repulsion of residual strong interaction
within antiprotons and antineutrons.
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Fig. 13

In this case, the residual strong interaction within an antiproton or antineutron
is repulsive, which contributes a different composite theory to the usual theory on
antimatters, i.e., an antiproton can not be bound with an antiproton, an antiproton
can not be bound with an antineutron, and an antineutron can not also be bound with
an antineutron in theory. However, this assumption can explains the asymmetry of
matter and antimatter, consistent with known experiments on matter and antimatter,
which also implies that the huge investment on searching new elementary particles of
matters such as the investment more than 5 billion dollars on the ring electron-positron
collider (CEPC) of China is worthless because the matter contributes only 4.6% to the
whole matter and we can not understand the reality of the universe by this way. For
details, the reader is referred to the reference (Mao, 2019).

4.2 N-Body Problem. Formally, the n-body problem (Abraham and Marsden,
1978) is to predict the individual motions of a group of celestial objects interacting
with each other gravitationally, i.e., find solution of differential equations

mi
d2ri

dt2
=

∑
j �=i

mimj (rj − ri)
|rj − ri|3

in classical mechanics, where ri = (xi, yi, zi) for 1 ≤ i ≤ n. This problem is partially
solved by Weierstrass in 1880’s, H.Poincaré in 1890, K.Sundman in 1912 and then,
completely solved in power series by Q.D.Wang (Wang, 1991) in 1991.

We have known that there always exists universal gravitation in 2 normal particles
by Newton. But for antimatter, how about the gravitation between 2 antiparticles, is
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it also an attraction? If so, why do we not find large antimatter in large mass unless
a few elementary antiparticles today? Certainly, all experimental results point to that
the gravitation in 2 antiparticles is not attractive but maybe a repulsive one.

If the gravitation in antimatters is repulsion, the behaviors of gravitation in particles
and antiparticles are classified into 3 cases following :

(1) Attractive in 2 normal particles;

(2) Repulsive in 2 antiparticles;

(3) No gravitation in normal particles and antiparticles. Certainly, an electron
attracts a positron if they are very close to and then, transforms to 2 photons
but this is not a result of gravitation. It is only because of the electromagnetic
force between them.

Clearly, this classification on gravitation is an extension of Newton’s, i.e., gravity is
everywhere in the universe. Furthermore, if the n-body problem includes both particles
and antiparticles, we can conclude also the existence of power series solution by result of
Q.D.Wang in 1991 because in this case, there are 2 independent systems of differential
equations respectively on particles and antiparticles, i.e.,

mi
d2rM i

dt2
=

∑
j �=i

mimj
(
rM j − rM i

)∣∣rM j − rM i

∣∣3
for integers 1 ≤ i ≤ n1 and

mi
d2rM i

dt2
= −

∑
j �=i

mimj

(
rM j

− rM i

)
∣∣∣rM j

− rM i

∣∣∣3
for integers 1 ≤ i ≤ n2, where, n1+n2 = n, mi, mi denote the masses and rM i, rM i

are
the position vector (xi, yi, zi) of particle or antiparticle in R

3, respectively. Therefore,
we get global elements of particles and antiparticles to be a disjoint union of 2 elements
1, i.e., −→

G
L

M

⋃−→
G

L

M , where −→
G

L

M and −→
G

L

M are respectively elements 1 of particles and
antiparticles in the universe.

§5. Conclusion. Certainly, we have classically mathematical elements on reality
of matters in the universe. But these elements are not enough for understanding
the reality of matters because all these system must be a compatible one in eyes of
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humans, i.e., classical mathematics. However, contradictions exist everywhere. We
need new elements form mathematical systems for hold on the reality of matters in
the universe. For such an objective, we introduce new mathematical elements, i.e.,
elements 1 and 2 which globally characterize complex networks on matters and can be
really viewed as mathematical elements, likewise classical mathematical elements, i.e.,
vectors underlying a combinatorial structure −→

G
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Barabaśi, A.L. and Albert, R. (1999) : Emergence of scaling in random network, Science, Vol. 286,
5439, 509.

Brauer, Fred and Castillo-Chaver, Carlos (2012) : Mathematical Models in Population Biology
and Epidemiology (2nd Edition), Springer.

Chen, G.R., Wang, X.F. and Li, X. (2015) : Introduction to Complex Networks – Models,
Structures and Dynamics (2 Edition), Higher Education Press, Beijing.

Conway, John B. (1990) : A Course in Functional Analysis, Springer-Verlag New York,Inc.

Ho-Kim, Quang and Xuan Yem, Pham (1988) : Elementary Particles and Their Interactions,
Springer-Verlag Berlin Heidelberg.

Mao, Linfan (2011) : Smarandache Multi-Space Theory (2nd Edition), The Education Publisher Inc.,
USA.

Mao, Linfan (2011) : Combinatorial Geometry with Applications to Field Theory (2nd Edition), The
Education Publisher Inc., USA.

Mao, Linfan (2014) : Mathematics on non-mathematics - A combinatorial contribution, International
J.Math. Combin., Vol. 3, 1.

Mao, Linfan (2015) : Extended Banach
−→
G -flow spaces on differential equations with applications,

Electronic J. Mathematical Analysis and Applications, Vol. 3, No. 2, 59.

Mao, Linfan (2015) : A new understanding of particles by
−→
G -flow interpretation of differential

equation, Progress in Physics, Vol. 11, 3, 193.

Mao, Linfan (2015) : A review on natural reality with physical equation, Progress in Physics, Vol.
11, 3, 276.

Mao, Linfan (2015) : Mathematics with natural reality – Action Flows, Bull. Cal. Math. Soc., Vol.
107, 6, 443.

Mao, Linfan (2016) : Labeled graph – A mathematical element, International J. Math. Combin.,
Vol. 3, 27.

Mao, Linfan )2017) : Mathematical combinatorics with natural reality, International J. Math.
Combin., Vol. 2, 11.

Mao, Linfan (2017) : Hilbert flow spaces with operators over topological graphs, International J.
Math. Combin., Vol. 4, 19.



618 linfan mao

Mao, Linfan (2017) : Complex system with flows and synchronization, Bull. Cal. Math. Soc., Vol.
109, 6, 461.

Mao, Linfan (2018) : Mathematical 4th crisis : to reality, International J. Math. Combin., Vol. 3,
147.

Mao, Linfan (2019) : Harmonic flow’s dynamics on animals in microscopic level with balance recovery,
International J. Math. Combin., Vol. 1, 1.

Mao, Linfan (2019) : Science’s dilemma – A review on science with applications, Progress in Physics,
Vol. 15, 2, 78.

Mao, Linfan (2019) : A new understanding on the asymmetry of matter-antimatter, Progress in
Physics, Vol. 15, 3, 78.

Smarandache, F. (1997) : Paradoxist Geometry, State Archives from Valcea, Rm. Valcea, Romania,
1969, and in Paradoxist Mathematics, Collected Papers (Vol. II), Kishinev University Press, Kishinev,
5.

Tegmark, M. (2003) : Parallel universes, in Science and Ultimate Reality: From Quantum to Cosmos,
ed. by J.D.Barrow, P.C.W.Davies and C.L.Harper, Cambridge University Press.

Tian, M. (2014) : View Physics by Mathematics – Elementary Particles and Unified Field Theory (in
Chinese), Science Press, Beijing.

Wang, Q.D. (1991) : The global solution of n-body problem, Celest. Mech., Vol. 50, 73.

Zhang, Zhichong (2007) : Comments on the Inner Canon of Emperor (Qing Dynasty, in Chinese),
Northern Literature and Art Publishing House.

1CHINESE ACADEMY OF MATHEMATICS AND SYSTEM SCIENCE
BEJING 100190, P.R. CHINA

2OF MATHEMATICAL COMBINATIONS & APPLICATIONS (AMCA)
COLORADE, USA

E-MAIL : maolinfan@163.com


