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Abstract

Reliable vehicle environmental modeling is a fundamental prerequisite for advanced driver assistance
and autonomous driving systems. A commonly used representation of environment is the occupancy
grid map. It divides the vehicle surroundings into a grid of cells and estimates the occupancy state for
each cell, assuming the cells are independent of each other. This perception system builds a model of
the driving environment by fusing measurements from multiple perceptual sensors including LIDARs,
radars, vision sensors, etc.

In state-of-the-art research, many methods have been developed to build a perception system using
the occupancy grid, but these methods are only tailored to specific sensor configurations, and their
performance is not verified on the existing automotive hardware. Nowadays, car manufacturers, within a
single model, offer a wide range of vehicle options that may differ in mounted sensors or driving comfort
features. The occupancy grid algorithm offers a single point of reference for environment perception and
can work with almost any set of sensors. This in turn can enable cost reduction of the overall system.

This thesis proposes a modular and scalable architecture for the occupancy grid algorithm that can
be customized to a variety of sensor configurations, allowing the proposed solution to be easily adapted
to different vehicle variants. Presented architecture allows for an effective reduction of measurement
uncertainties, which is confirmed by experiments in this work. Guidelines for tuning the occupancy mesh
algorithm are also described. Furthermore, the first application of the Dezert-Smarandache fusion method
in a three-state automotive occupancy grid is shown. The results of the dissertation show a successful
integration of the occupancy grid algorithm in the automated vehicle that can be easily implemented in
production.

Keywords: occupancy grid; automotive; perception; environmental modeling; sensor fusion; Dezert-
Smarandache rule of combination
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Streszczenie

Wiarygodne modelowanie środowiska pojazdu jest podstawowym warunkiem wstępnym dla
zaawansowanych systemów wspomagania kierowcy i jazdy autonomicznej. Powszechnie stosowaną
formą reprezentacji środowiska jest mapa siatki zajętości (ang. occupancy grid). Dzieli ona środowisko
na siatkę komórek i szacuje stan zajętości dla każdej komórki, zakładając, że komórki siatki są od siebie
niezależne. Ten system percepcji buduje model środowiska jazdy poprzez połączenie pomiarów z wielu
czujników percepcyjnych, w tym LIDAR-ów, radarów, czujników wizyjnych itp.

W najnowocześniejszych badaniach opracowano wiele metod budowy systemu percepcji
wykorzystujących siatki zajętości, jednak metody te są dostosowane tylko do określonych konfiguracji
czujników, a ich wydajność nie jest weryfikowana na istniejącym sprzęcie samochodowym. Obecnie
producenci samochodów, w ramach jednego modelu, oferują szeroki zakres opcji, które mogą różnić
się zamontowanymi czujnikami lub funkcjami zwiększającymi komfort jazdy. Algorytm siatki zajętości
oferuje pojedynczy punkt odniesienia dla percepcji otoczenia i może współpracować z niemal dowolnym
zestawem czujników, co z kolei może umożliwić redukcję kosztów całego systemu.

W niniejszej pracy zaproponowano modularną i skalowalną architekturę dla algorytmu siatki
zajętości, która może być dostosowana do różnych konfiguracji czujników, co pozwala na łatwe
dostosowanie proponowanego rozwiązania do różnych wariantów pojazdów. Prezentowana architektura
pozwala na efektywną redukcję niepewności pomiarowych, co zostało potwierdzone eksperymentalnie
w niniejszej pracy. Opisano również wskazówki dotyczące dostrajania opisanego algorytmu.
Ponadto przedstawiono pierwsze zastosowanie metody fuzji Dezerta-Smarandache’a w trójstanowej
samochodowej siatce zajętości. Wyniki rozprawy przedstawiają udaną integrację algorytmu siatki
zajętości w zautomatyzowanym pojeździe, który może być łatwo wdrożony do produkcji.

Słowa kluczowe: mapa zajętości; przemysł samochodowy; systemy percepcji; modelowanie
środowiska; fuzja sensoryczna; metoda kombinacji Dezerta-Smarandache’a
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1 Introduction

One of the most challenging problems in the autonomous driving field is a reliable perception of
the vehicle environment. This ability is vital to safely navigate through dense traffic and avoid collisions
with other traffic participants. Almost every modern driver assistance system relies on an environment
perception to trigger an emergency braking maneuver, an evasion maneuver, a lane change, or simply to
plan the future trajectory of the vehicle.

An automotive perception system operates in a wide variety of driving conditions. It has to be re-
sistant to different weather conditions and cannot be constrained by complex, cluttered or unseen en-
vironments. To match these requirements, modern vehicles are equipped with a variety of sensors like
LIDARs, radars, cameras, and ultrasonics. The perception system accumulates, fuses, classifies, and
filters uncertain sensor measurements in order to create an accurate representation of the actual scene
around the host vehicle.

Besides that, car manufacturers offer multiple options with different prices of the same vehicle model.
The car options may differ by an equipment, electronics, or convenience features installed onboard.
To limit the software development costs, the automotive perception system should be compatible with
multiple vehicle options without the need of redesigning the solution.

There are multiple perception approaches in the automotive industry. This thesis focuses on the oc-
cupancy grid mapping algorithm, which depicts an environment as a multidimensional spatial lattice,
where each cell stands for an independent portion of a space [Elfes and Matthies, 1987; Moravec, 1988].
Since several measurements occur over time, the grid map combines these evidences with a recursive
probability filter. One of the simplest filters used for this application is the Binary Bayes Filter (BBF),
which estimates the probability that the grid cell is either occupied or free [Dietmayer et al., 2014]. The
recursive update process has capabilities to model and filter out measurements’ uncertainties. More com-
plex frameworks such as Dempster-Shafer or Dezert-Smarandache evidence theories are additionally
able to solve the sensor information conflicts [Yager, 1987]. All grid map solutions assume that individ-
ual grid cells are independent stochastic processes, which facilitates a fast implementation at the cost of
approximation errors.

The key advantage of the occupancy grid perception is its flexibility. Grid based environment repre-
sentation can detect arbitrarily shaped obstacles, can be configured to distinguish between free space and
occluded areas, and ultimately it can be used to identify and track dynamic road users.

1.1 Objectives
The occupancy grid has become an increasingly interesting area of research in both industry and

academia nowadays. The algorithm is considered a well-known solution in the field of robotics, where
it is used to solve the simultaneous localization and mapping problem. In the research reports, the oc-
cupancy grid algorithm is presented as applicable to a variety of experimental vehicles, but the series
automotive applications are still limited.

The long-term objective of the occupancy grid development is to embed the perception module on
cars commercialized on the automotive market. This intends to enable cars to monitor their driving
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environment by using multiple sensors mounted on board. As aforementioned, the perception system
has to be robust and provide high quality output regardless of neither environmental conditions nor the
sensor uncertainties.

The purpose of this thesis is to investigate if the occupancy grid can be used as an automated vehicle
perception system and how well it performs. Nevertheless, due to the fast development in this research
area, the presentation of a single algorithm for occupancy grid mapping will be already outdated at the
time of the thesis publication. Instead, the author focuses on the development of the general occupancy
grid architecture, which is modular and can be adapted to various sensor types and automotive applica-
tions.

Moreover, this thesis aims to address some of the problems that almost every occupancy grid al-
gorithm has to manage, such as the estimation of the map quality and the filtering capabilities of the
algorithm with different types of system uncertainties.

1.2 Contributions

This thesis work incorporates the following contributions to the field.
◦ A novel multilevel information fusion architecture, which uses intermediate grids to solve sen-

sor conflicts and speed up the algorithm computation (Section 4.2).
◦ First application of the Dezert-Smarandache rules of combination in the three-state automotive

occupancy grid environment (Section 4.3).
◦ Theoretical and experimental comparison of Bayesian, Dempster-Shafer and Dezert-

Smarandache approaches for the grid fusion (Sections 4.3.2, 6.3.4 and 7.4).
◦ A new method of an occupancy grid quality assessment, which has been tested in simulated

and environmental conditions. The method is able to evaluate the algorithm using only a small
amount of ground truth information by analyzing only the map representation of specific road
objects (Section 5.2).
◦ Analysis of the impact of multiple sensor and system uncertainties on the quality of occu-

pancy grid using a simulation environment (Section 6.2).
◦ A grid filtering capabilities investigation allowed to prepare a guideline for tuning the algorithm

on a specific vehicle setup (Sections 6.3 and 7.2).

1.3 Outline

Chapter 2 introduces a brief overview of the automated driving systems available in the automotive.
It highlights a historical overview of the driving systems, their development process, and the role of
perception in the automated driving industry.

In Chapter 3, the occupancy grid framework is introduced. The algorithm foundations and state-of-
the-art solutions are presented. The basic probabilistic theories are described. A detailed look into the
algorithm architecture and its individual components is described.

Chapter 4 expands the topic of heterogeneous information fusion in the occupancy grid framework.
The multilevel fusion approach as well as the Bayesian, Dempster-Shafer and Dezert-Smarandache prob-
abilistic theories are introduced. Additionally, the combination rules, equations, and a simple comparison
are presented.

Chapter 5 focuses on the uncertainty filtering in the occupancy grid, presenting different types of
uncertainties and ways to filter them out in the occupancy grid. Moreover, the method for assessing the
occupancy grid mapping quality is defined.

J. Porębski Occupancy grid environmental modeling for automotive applications
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In Chapter 6, simulation experiments setup and results are described. First, the simulations focus on
assessment how the occupancy grid is affected by different noise types. Secondly, the filtering capabilities
of the occupancy grid are evaluated qualitatively and quantitatively in order to present their performance.

In Chapter 7, an experimental evaluation is defined. The algorithm’s real-time capabilities are as-
sessed. Furthermore, the proposed tuning procedure is described. In addition, the effects of various sensor
conflicts are characterized with an evaluation of different fusion rules.

In Chapter 8, conclusions of this thesis and future work opportunities are provided.
Appendixes A and B contain supplementary information which can be useful to fully describe results

presented in this thesis. Appendix A presents a detailed derivation of all fusion rules equations and
Appendix B shows some additional simulation evaluation results.

Occupancy grid environmental modeling for automotive applications J. Porębski
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2 Automated driving systems

Modern vehicles are equipped with a growing number of Electronic Control Units (ECUs) which
serves the purpose of vehicle’s automation. This chapter describes how these systems evolved in time
(Section 2.1) and what automation levels they could provide (Section 2.2).

Automated driving systems can be divided based on the task they streamline. The primary objective
is to improve road safety, which can be realized using passive or active safety systems. A simplified
distinction between these systems is that passive safety is designed to protect vehicle occupants in the
event of crash, while active safety systems operate during precrash traffic scenarios and their goal is to
prevent the accident occurrence. Additional objective of automated systems is to improve the driving
quality via convenience features [Cieslar et al., 2016; Galvani, 2019]. Regardless of the application, the
automated driving system has to meet the automotive standards and procedures as described briefly in
Section 2.3.

The Driver Assistance Systems (DAS) or their extended version Advanced Driver Assistance Sys-
tems (ADAS) has to perform a set of driving tasks in order to maintain its operation. The first task is
to sense and self-position in the driving environment. Secondly, the collected information has to be per-
ceived and formatted into an easy-to-understand image of the road situation. Thirdly, the vehicle might
plan future actions based on the collected data and finally act based on the derived plans [Eskandarian,
2012]. Section 2.4 focuses on the aforementioned tasks describing their responsibilities in detail.

The occupancy grid algorithm is a part of the perception system of the vehicle. It can easily merge
multiple sensors into a single representation of the environment. Occupancy maps created as an output
can be easily utilized by multiple ADAS systems in both safety and convenience areas of the application
as presented in Section 2.5.

2.1 Historical background

The chronological order of the Driver Assistance Systems development is a very delicate topic.
Sometimes well-known solutions wait years to be integrated in the automotive industry due to various
factors such as reliability, cost of production, or consumer satisfaction. The rapid advancement in this
area was disrupted by the Second World War, and the development process was not gradual, therefore.

Nevertheless, the first Driver Assistance System in the automotive market is considered to be the
anti-lock braking system (ABS), introduced in the 1950s. ABS detects if one or more wheels are about
to lock up under braking and prevents the wheels from locking up to ensure that the vehicle remains
steerable [Galvani, 2019].

On the other hand, government regulations might force car manufacturers to develop specific con-
trollers, or to install some systems as obligatory. This might be the factor that popularized the usage
of electronics in vehicles, where the government environmental regulations regarding exhaust emissions
and fuel economy introduced in the late 1960s required computer-based techniques to replace the meth-
ods applied at the time to increase engine control performance [Happian-Smith, 2006]. Nowadays, this
practice is still common, the TPMS (Tire Pressure Monitoring System) is obligatory for the new vehicles
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since 2014 and the Driver Monitoring Systems will have to be installed in all new European vehicles
since 2026, based on current Euro NCAP regulations [Bieńkowska, 2019].

Starting from the 1960s, some types of electronic systems are usually present in the vehicle. Com-
monly, every specific functionality is controlled by a separate device called an electronic control unit
(ECU). Since 1990s, the number of ECUs mounted in vehicles is growing rapidly. Today’s vehicles may
contain 100 ECUs or more controlling functions that range from essential (such as engine and power
steering control) through comfort (such as power windows, heated seats, and air conditioning), to secu-
rity and access (such as door locks and keyless entry). ECUs also control passive safety features, such as
airbags, and basic active safety features, i.e., automatic emergency braking. Therefore, the modern vehi-
cle architecture is a complicated network of multiple electronic control units, each dedicated to a specific
purpose. In order to limit the number of independent computing units, several ECUs can be evaluated on
a single multidomain controller (MDC). In addition to the advantages of signal processing and vehicle
control, the utilization of MDCs facilitates cost savings in design and manufacturing by decreasing the
number of hardware components and the amount of materials [Korta et al., 2021]. A detailed overview
of this architecture is available in Figure 2.1.

Radar

LIDAR

Camera

ADAS

MDC

Infotainment MDC

-Radio/Multimedia

-Navigation

-HMI

Powertrain MDC

- Transmission

- Engine

- Gearbox

Body MDC

- Control

- Windows

- Locks

- Lights

Ethernet Backbone

Figure 2.1. A modern vehicle control system architecture based on MDCs (inspired by [Korta et al., 2021]).

Presently, electronics make up a significant percentage of a vehicle’s price and define many of its
functionalities. The world’s biggest Consumer Electronics Show (CES), which over time presented many
technological gadgets such as CD players, high-definition television, or internet services, is now present-
ing also new developments in the automotive industry. Since 2010, almost all automotive companies are
presenting their products at CES [Anktiengesellschaft Volkswagen, 2021].

2.2 Automation levels

Levels of automation designate the degree of driver and computer control over a dynamic task. This
distinction of automation has been applied to the automotive industry to provide a framework to describe
system responsibilities. There are different automation level definitions from National Highway Traffic
Safety Administration’s (NTHSA) and Federal Highway Research Institute (BASt), but the most com-
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monly applied is the definition provided by the Society of Automotive Engineers (SAE) [Payre et al.,
2021].

The Society of Automotive Engineers defined six levels for motor vehicle automation as shown
in Figure 2.2. In order to achieve different levels of automation, different sensor redundancy and system
architectures have to be applied. This in turn differentiates ADAS features on the automation level, where
it is viable to apply them. This section lists some automated driving features grouped by the automation
levels where they could be applied. There are some exceptions from the provided classification, as not
all features correspond to a single automation level.

As mentioned before, the automation levels specify the degree of driver and computer control over the
vehicle. Starting from level 0 to level 2, the human driver has to monitor the driving environment. While
there is no automation at level 0, systems at level 1 assist the driver in the driving task (driving assistance).
At level 2, partial automation is implemented, and the system can steer, brake, or accelerate the car in
predefined situations. From level 3 to level 5, the system is capable of monitoring the driving environment
and even replacing the human driver. Conditional automation at level 3 means that the automated vehicle
can operate by itself in some conditions, but the driver should always be ready to intervene if the system
reaches its limits. At level 4, human intervention is no more required (high automation), but the system
is still limited by some environmental conditions. Fully autonomous level 5 defines a vehicle that can be
self-driving in every road situation.

Currently, most of the vehicles on the market belong to the level 0-2 category, where the human
driver is in control all the time and the assistance systems provide guidance for the driver. Higher levels
of automation are currently present only in small geo-fenced areas where strictly monitored vehicles
could take responsibility for driving.

Level 0
No

Automation

Level 1
Driver

Assistance

Level 2
Partial

Automation

Level 3
Conditional
Automation

Level 4
High

Automation

Level 5
Full

Automation

HUMAN DRIVER
MONITORS DRIVING ENVIRONMENT

AUTOMATED DRIVING SYSTEM
MONITORS DRIVING ENVIRONMENT

Figure 2.2. Levels of driving automation (inspired by [Andriamahefa, 2017]).

2.2.1 Human driver in control

Starting from level 0 to level 2, the human driver has to monitor the driving environment. Even as
on level 0 there is no automation, there are systems that can inform the driver of specific conditions or
passively improve the safety and comfort of driving. Driver assistance systems available in level 0 are,
for example:
◦ Parking sensors – introduced to cars in the 1980s, provide an acoustic warning depending on the

distance from surrounding obstacles while parking the car, to avoid damaging the vehicle.
◦ Lane Departure Warning (LDW) – this feature aids in the case when the vehicle begins to move

out of its lane and no turn indicators are activated. The LDW warns the driver by acoustic and/or
visual and/or haptic feedback if he is accidentally leaving the current lane.
◦ Blind Spot Information System (BLIS) – a feature responsible for monitoring the blind spots and

warning the driver if lane change intention is detected.
◦ Forward Collision Warning (FCW) – warns the driver in the event of an imminent collision.
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◦ Tire Pressure Monitoring System (TPMS) – real-time monitoring and low-pressure warning for
the driver.

Level 1 systems take care of a single functionality in specific cases. Driver assistance systems utilized
in this level of automation can control vehicle dynamics in lateral or longitudinal directions and are
usually based on conventional sensors which are already widely present on the market. Example level 1
ADAS systems are:
◦ Anti-Lock Braking System (ABS)– supports the driver while braking, avoiding wheel blockage.
◦ Traction Control System (TCS) – introduced in the 1970s, prevents the wheels from spinning by

reducing the drive torque at each driven wheel.
◦ Electronic Stability Program (ESP) – combines and improves both AEB and TCS capabilities to

prevent the vehicle’s tendency to become unstable (over-steered or under-steered) – introduced in
the 1980s.
◦ Hill Hold Control (HHC) and Hill Descent Control (HDC) – assist the driver in driving upwards

or downwards, respectively.
◦ Cruise Control (CC) – maintains the car at the speed selected by the driver, by controlling both the

engine and the automatic gearbox. This system was available as an option in vehicles since 1970s.
◦ Adaptive Cruise Control (ACC) – like the CC, ACC maintains the vehicle at a desired speed.

However, if there is another vehicle traveling ahead, the system is able to detect it and reduce the
speed in order to keep a safe distance from it.
◦ Autonomous Emergency Braking (AEB) and Emergency Brake Assist (EBA) – these features

responsible for warning and/or providing brake support if an imminent collision is detected.
◦ Lane Keep Assist/Aid (LKA) and Lane Centering (LC)– these features aid in the case when the

vehicle begins to move out of its lane and no turn indicators are activated. The LKA helps the vehi-
cle stay in the lane by applying counter-steering force to the steering wheel. The LC continuously
controls the steering wheel to keep the vehicle in the center of the lane.
◦ Driver Monitoring Systems – assess the driver’s alertness and warn the driver if needed, and even-

tually apply the brakes.
The level 2 systems share the same level of authority with the driver as level 1 but are able to perform

more complex maneuvers, combining longitudinal and lateral dynamics, which mainly lead to perform a
desired trajectory with a desired speed. Examples of these systems are:
◦ Highway Assist (HA) – combination of ACC, LKA, and BLIS which continuously control longi-

tudinally and laterally the vehicle.
◦ Autonomous Parking – assists the driver with both finding the parking spot and parking the car

in it. The authority is left to the driver, who remains in charge of monitoring the procedure or
controlling the pedals according to guidance.

2.2.2 Automated driving systems in control

In the automation levels 3 and above, the driver can pass full vehicle control with the specialized
ADAS systems. The systems might operate only in some conditions, but they have to be ”fail-safe”, i.e.,
when they assess that they are not capable of handling the current situation, or they detect a fault by
themselves, they warn the driver and ask to take back vehicle control.

According to the SAE [SAE International, 2014], recommended practice to safely operate these sys-
tems need redundancy both in sensors and in decision electronic control units. Several companies pro-
vided guidelines for the development of automation level 3 systems, nevertheless there are still some
legal controversies according to vehicles satisfying this level of automation, e.g., who is responsible in
the case of an accident, how to safely transfer control to the driver [Aptiv et al., 2019].

Systems in a vehicle which satisfies the 4th level of automation shall be not only fail-safe but fail-
operational, i.e., able to safely work in case of failure without the intervention of the driver. An example
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of L4 ADAS system is an Automatic Valet Parking, where the vehicle might automatically park itself on
a specified parking lot and return to the driver on request.

The final automation step is level 5, which is a fully autonomous vehicle. Level 5 vehicles do not re-
quire the intervention of the driver and have such redundancy, sensing coverage, and decision intelligence
that they can even lack interface with the driver to control the car, like the steering wheel and pedals. The
driver becomes a passenger, who just sets a destination and sleeps while the vehicle is transporting him
to his decided location [Galvani, 2019].

2.3 Automotive systems development process

In each advanced engineering industry such as automotive, the introduction of a new product re-
quires considerable effort and throughout planning to limit the costs and ensure final product reliability.
Engineers on all levels must cooperate and coordinate their work during the entire product development
lifecycle.

For instance, if the manufacturing company would like to productize a novel electronic control unit
(ECU), then except for the concept of a unique software controller, they must also design the hardware
where this unit is executed. This chain of work must be compliant with different standardization bodies
and follow a detailed procedure to ensure that the resulting device will behave and perform in the way
that its concept is assumed.

One of the main standards defining automotive software process improvement and
capability determination is the ISO/IEC 15504 standard, referred also as Automotive
SPICE [International Organization for Standardization, 2012]. This standard defines best practices
for embedded software in automotive development. Among them, the V-model system engineering
process for software development is recommended.

2.3.1 The V-model

The V-Model, also known as the Verification and Validation model, is a disciplined model that re-
quires rigorous evaluation to ensure continuous assessment and development. It requires a testing phase
corresponding to each stage of development, which benefits both providers who can eliminate potential
problems in the initial stages, and clients who can assume a meticulous approach to both innovation and
development.

The V-model diagram is depicted in Figure 2.3. This process defines and characterizes several devel-
opment steps that summarize the development of the embedded automotive control system. These steps
include software design, implementation, and testing.

First, the system requirements analysis phase is performed. Concrete requirements from stakeholders
are gathered and combined into a single document. It is essential that such requirements are achievable,
verifiable, consistent, and complete due to the fact that the outcome will be utilized as input for the
subsequent work of software engineers. Simultaneously with the system requirements definition, the
system tests are defined, and the evaluation procedure starts. It is crucial for the V-model and ASPICE
standard to test the solution in every system definition and design step.

Based on the prepared requirement document, the software architects prepare the logical and techni-
cal system architecture. In this design process, the engineers distribute functions among specific software
components. At the end of this stage, the high-level system architecture documentation is prepared, and
the system integration tests are ready to verify the architecture cohesion.

Concurrently, the software architects/engineers design the interfaces of subsystems that resulted from
splitting the overall software into modules, interfaces, and specific component alignment. The detailed
software architecture documents will later serve as a specification for the developers and engineers.
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Figure 2.3. V-model development process diagram.

The most bottom part of the V-model is the component’s implementation. During this phase, software
of the product is prepared based on the documentation from previous steps. Later, the system integration
and the testing phase begin. The tests used to verify the requirements and architecture are used to assess
the actual software correctness and performance. If the tests show some errors, the software requirements
are updated, and the product has to be corrected.

After the component unit test finishes, the system integration tests, and validation are performed. In
the context of automotive software development process, system integration tests constitute a verification
of whether the unit works as expected when it is a part of the entire distributed vehicle system. To
effectively test the component, other parts of the vehicle have to be simulated.

According to the V-model, multiple development and testing tasks can be paralleled and pipelined
to ensure cost-effective management of time and engineers’ efforts. During all testing phases, if some
irregularities are detected, the process returns to the corresponding design and documentation phase,
which is denoted as a dashed line on the Figure 2.3. The final test of the software component is the full
system test in the real environment, which can be often performed by the carmaker client instead of the
manufacturing company.

The V-model provides guidance for equipment manufacturers for communication and coordination
of multiple teams of engineers. From this perspective, the V-Model reflects a project management view
of software development and fits the needs of project managers, accountants, and lawyers rather than
software developers or users. At the same time, the V-model itself is largely generic. It does not dictate
specific tools or techniques, but rather an approach to the internally selected development methods.

Design of the occupancy grid software component requires a specification related to different levels
of V-model. The first part of this thesis (chapters 3 and 4) focuses on the system architectural design.
Software requirements, integration testing guidelines (tuning) and results of specific implementation are
presented in chapters 5, 6 and 7.
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2.3.2 Standardization of automotive systems

To ensure that the automotive software and hardware is safe, it should be prepared according to
certain standards. The most important software standards and frameworks are:
◦ ISO/IEC 15504 (ASPICE) – Automotive Software Process Improvement and Capability Determi-

nation [International Organization for Standardization, 2012],
◦ IEC 61508 – Functional Safety [International Electrotechnical Commission, 2021],
◦ ISO 26262, ISO 21448 – Safety of the Intended Functionality (SO-

TIF) [International Organization for Standardization, 2019],
◦ Automotive Open System Architecture (AUTOSAR) [AUTOSAR, 2021],
◦ The Motor Industry Software Reliability Association (MISRA) [MISRA, 2021].

The first standard provides guidelines for the automotive software development process. The next two
standards refer to functional safety, which was developed to address the new safety challenges that au-
tonomous (and semi-autonomous) vehicle software developers are facing. The last two standards define
guidelines for the code style implementation in both C and C++ programming languages.

Moreover, the offices and employees of the manufacturers should ensure that the newly developed
products are not prone to cyberattacks, which may lead to leakage of protected intellectual property to
expose the product and the customers’ data. To ensure the required security level, the Trusted Information
Security Assessment Exchange (TISAX) procedures are followed, which match with the ISO/IEC 27002
standard [International Organization for Standardization, 2013].

2.4 Tasks of the automated driving systems

Driving tasks performed by Advanced Driver Assistance Systems (ADAS) require four steps simi-
lar to the human driver cognitive process [Eskandarian, 2012] (Figure 2.4). At first, the system senses
the environment and determine vehicle position. The host has to be equipped with divergent and re-
dundant sensors listed in Section 2.4.2. In order to mitigate the weaknesses of individual sensors, the
non-trivial task of data fusion has to be developed in perception ADAS features [Dickmann et al., 2015;
Dietmayer et al., 2014]. For that purpose, the occupancy grid framework together with the object tracking
module are utilized. The system understands the road situation to plan and decide which action should
be performed. The vehicle’s planning modules are described in Section 2.4.4. The final step is to act
accordingly to the circumstances.

Positioning

Perception

 - Object detection,
   classification
   and tracking
 - Occupancy
   grid mapping
 - Localization

Planning

 - Trajectory and Path
   Planning
 - Situation Awareness
 - Motion Planning
 

Control

 - Vehicle Dynamics
   and Control
 - Dynamic modeling

 

Sensing

 - Radar
 - LiDAR
 - Vision
 - Ultrasonic

Figure 2.4. Cognitive information flow of the ADAS features with elements used to perform each step.
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2.4.1 Positioning

Vehicle state estimation is a complex task of determining the car relative pose (position and orienta-
tion), velocities, and acceleration.

To determine the car pose (position and orientation) in a world fixed frame, several positioning sen-
sors are needed. The satellite-based navigation systems such as global positioning system (GPS), dif-
ferential GPS (DGPS), or real-time kinematics (RTK) may provide only the estimated vehicle state and
work only in open sky conditions.

To improve vehicle positioning and state estimation, inertial measurement units (IMU) are utilized.
The positioning module filters the data to compute the full vehicle state even if the satellite location is
not available.

2.4.2 Environment sensing

The ADAS features need to perceive the environment with high precision and accuracy in all weather
conditions. Automotive environment imaging sensors include cameras, radars, LIDARs, and ultrasonic
sensors. Each of the sensor types has an integral role in the perception module. To ensure a safe driving
experience, a combination of sensors is usually developed to mitigate possible sensor uncertain measure-
ments (see table 2.1).

The ultrasonic sensors utilize the echo times from sound waves that bounce off nearby objects. They
are suitable especially for low speed, short range applications, such as lateral moving, blind spot detection
and parking [Yi, 2001].

Radars, LIDARs and vision sensors are the masters of medium to long range imaging systems. Radar
(Radio Detection And Ranging) uses radio waves to determine the range, azimuth, and elevation of
objects. As the only sensor, the radar could measure motion as a range rate and operates in every weather
condition. LIDAR, short for light detection and ranging, is a device that measures distance to objects
using laser light. It can provide the most accurate 3D map of the car’s surroundings; however, it is the
most expensive sensor in the set. Cameras could perform classification and scene interpretation. The
stereo vision provides additionally the depth map of the environment which could be further fused with
other sensors’ data [Steinbaeck et al., 2017; Zheng et al., 2019].

Comparison of the capabilities of different sensors is presented in Table 2.1.

Table 2.1. Comparison of environment imaging sensor capabilities (extended from [Steinbaeck et al., 2017]).
Symbol ’33’ means very good performance, ’3’ acceptable execution, ’7’ and ’77’ refers to low and very
low measurement capability. Fields marked with ’—’ describe not available capabilities for the sensor.

Sensor capability Radar LIDAR Vision Ultrasonic
Short range 33 3 33 33

Long range 33 3 3 7

Range resolution 3 33 — 33

Angular resolution 7 33 3 77

Works in bad weather 33 7 7 7

Works in dark 33 33 77 33

Works in bright 33 3 3 33

Color/contrast — 7 33 —
Velocity estimation 33 — 3 —
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2.4.3 Perception systems

Each of the imaging sensors has its own advantages and disadvantages as presented in Table 2.1. To
mitigate the ubiquitous noises and weaknesses of individual sensors, the data from all sensors has to be
fused in the perception system.

The utmost objective of the perception system is to provide the most accurate representation of the
vehicle surroundings, which could be easily used by the downstream motion planning systems. Different
ADAS features require varying perception capabilities. For example, the Blind Spot Detection module
(BLIS) would require monitoring of specific areas on the sides of the vehicle against any dynamic objects.
The Adaptive Cruise Control (ACC) would use the front target position to compute the desired drive
speed. The Lane Keep Assist (LKA) would require monitoring of lane markers as well as the side target
positions.

Additional objective of the perception system is to precisely locate the vehicle on the road and in
the world. The positioning module delivers the filtered vehicle state data, but the position has to be
located in a world or road frame of reference. It can be performed using a combination of the sensed
environment representation and the existing maps of the area [Filliat and Meyer, 2003; Meyer and Filliat,
2003; Valente et al., 2018].

Historically, the most commonly used solution for the vehicle’s perception is object tracking. Tracker
collects all sensor detections and delivers a list of classified objects to multiple ADAS modules. It utilizes
multiple objects tracking algorithms which use a variety of models to identify and estimate the shape and
velocities of various road users such as vehicles, trucks, bicyclists, and pedestrians. Object tracking is
widely applied in automotive as a component in all automation levels. Nevertheless, the list of rigid
objects is not enough for all modern ADAS features. For example, the object list is not able to determine
the free area around the vehicle without some other assumptions about the tracked object quality.

The second approach for perception systems is the occupancy grid mapping. Initially, the occupancy
grid mapping focused on stationary objects, but recent improvements in this area allowed mapping also
dynamic occupancy [Danescu et al., 2011; Tanzmeister et al., 2014]. The grid-based representation of
the environment is more general than the list of objects, therefore it can be used by a wider set of
ADAS features. Additionally, vehicles with automation level 3 and above require redundancy on all
levels of processing, including perception systems. In these vehicles, the occupancy grid combined with
the object tracking provides full redundancy, as both approaches are complementary and able to detect
both stationary and dynamic objects in the environment.

The type of environment representation depends on the requirements of downstream elements and the
communication bandwidth capabilities of the whole ADAS system. Output of the perception system can
be a list of classified stationary and moving objects or the occupancy map, where each cell value stands
for a portion of space. To compress the grid-based map representation, it can be analyzed, for example,
to determine the road type [Seeger et al., 2016] or to detect the contours of static objects [Foroughi et al.,
2015]. The object track might be augmented with camera sensor to detect traffic objects like signs or
lights [Dickmann et al., 2015]. Detailed features which could be extracted from the occupancy map rep-
resentation are explained later in Section 2.5.

2.4.4 Motion planning systems

The objective of motion planning systems is to determine the path which a vehicle should follow
based on the current road situation and automated driving goals.

The path planning module combines the outputs of perception components to generate multiple tra-
jectories as shown in Figure 2.5. The situation assessment creates a comprehensive understanding of the
road scene. The module analyses the scene drivability and computes different factors determining the
safety of all actions [Guo et al., 2018]. Further on, a motion planning component classifies perceived
environment surroundings into one of the modeled traffic configurations and selects the most feasible
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trajectory. In further processing the behavior generation is performed and the vehicle controller executes
selected path [Urmson et al., 2008; Ziegler et al., 2014].

Figure 2.5. Smooth and sharp trajectories. The most viable trajectory according to road scene can be
directly executed by the vehicle controller [Urmson et al., 2008].

2.5 Occupancy grid application in automotive
The occupancy grid algorithm is present in the automotive market since late 2000s [Urmson et al.,

2008]. The occupancy mapping can simplify the perception system in almost all autonomous systems,
nonetheless its benefits are clearly present in the automation level 2 and above. The algorithm can easily
work with multiple different sensors and provide redundant tracking solution, guardrail detection, road
situation assessment, and localization of the vehicle on the road as presented in Figure 2.6.

The long-term objective of the occupancy grid development is to embed the perception module on
cars commercialized on the automotive market. This intends to enable cars to monitor their driving
environment by using multiple sensors mounted on board. Targeting the automotive market, and the
automotive domain in general, implies that the perception module is subjected to multiple constrains:
◦ First, the computations have to be performed in real-time. The rate of production of occupancy

grids must be high enough to spot any hazards on the road in both high and low velocities.
◦ Second, a mass production cannot afford expensive hardware. Thus, the integration must be real-

ized on low-cost computing platforms.
◦ Third, the computing platform must have a low electrical power-consumption to fit within the

limited source of electrical energy in cars.
◦ Finally, the module has to be safe, which includes handling sensor uncertainties, knowing numer-

ical errors during computation, and guarantying determinism.
Two-dimensional static occupancy grid managed to meet these constrains and has been successfully

integrated into the autonomous vehicle software stack [Kunz et al., 2015; Urmson et al., 2008]. Grid-
based representation is suited to perform sensor fusion and solve conflicting measures from various
vehicle environmental sensors such as radars, LIDARs, cameras and ultrasonic. Different sensor models
can be specified to adapt to the distinct characteristics of the various sensors, facilitating efficient fusion
in the grid.

Other approaches for automotive perception systems are multi-object tracking algorithms, which
maintain a list of currently known objects. However, the main limitation of these methods is that the
tracked object has to follow a set of motion and shape models. The grid-based model of the environment
allows for the representation of arbitrarily shaped objects without the need to track each object sepa-
rately. The absence of object-based representation allows easier fusion of low-level descriptive sensory
information onto the grid without requiring data association [Saval-Calvo et al., 2017].

The occupancy grid module enables vehicle self-localization [Milstein, 2008; Stachniss, 2006],
path planning [Stepan et al., 2005] and trajectory validation, which are essential in the automated driv-
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ing. There are also proposed methods of extending the occupancy grid framework into tracking so-
lution by adding the dynamic and velocity layer to the algorithm and creating dynamic occupancy
grid [Godoy et al., 2021; Steyer et al., 2017].

In the autonomous vehicle, we cannot think about the occupancy grid as an independent component.
The map provides an accurate approximation of the surroundings and acts as a tool to represent the
environment used by other components. Therefore, the occupancy grid can be easily adapted for specific
applications and requirements of the downstream elements in the software stack. The probability map
can be clustered to extract object bounding boxes or contours [Godoy et al., 2021; Pae et al., 2021]. For
other applications, especially the path planning, drivable area around the host can be extracted as an
envelope and the proposed trajectories might be invalidated on the occupancy grid [Ding et al., 2019;
Laconte et al., 2019; Szlachetka et al., 2020]. Examples of the environment representations which might
be extracted from the occupancy grid are presented on Figure 2.6.

free

occupied

unknown

Contour representation Object bounding boxes Drivable area envelope Trajectory validation

Occupancy grid

Valid trajectory

Tested trajectoryFreeObject bounding boxObject contour

Figure 2.6. Examples of information extracted from the occupancy grid. The grid representation (top)
could be transformed depending on application into, for example (from left): contours, objects, free
space envelope or a trajectory validation tool.
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3 Occupancy grid framework

Among multiple environment mapping methods, the occupancy grid is an excellent framework to
perform sensor fusion. The occupancy grid representation employs a multidimensional tessellation of
space into cells, where each cell stores a probabilistic estimate of its state. The discretization of space
representation reduces the algorithm complexity and enables processing of multiple inhomogeneous sen-
sors measurements.

The following chapter presents a comprehensive description of the occupancy grid framework de-
signed for automotive applications. Processing of the data is a computational intense and algorithmically
complex job. The assumptions needed to make the algorithm computationally feasible are described in
Section 3.1. The occupancy grid method is receiving great attention in recent years. The general review
of the current state-of-the-art automotive occupancy grids is presented in Section 3.2. An overall descrip-
tion of the occupancy grid data flow and possible architectures is presented in Sections 3.3 and 3.4. As
the occupancy grid fuses together different sensor domains, some conflicts might occur. Differentiation
and examples of contradictions resolved in the algorithm are presented in Section 3.5.

3.1 Foundation of the occupancy grid
The occupancy grid mapping was introduced in the late 1980s by Elves [Elfes, 1989;

Elfes and Matthies, 1987] and Moravec [Moravec, 1988]. It is a well-established method solving the
problem of integration of noisy data from multiple sensors and various robot positions into a common
description of the environment.

To define the occupancy grid from the mathematical point of view, it is needed to introduce some
basic definitions.

Random variable A random variable X is a measurable function defined on a probability space that
maps from the sample space to the real numbers. A random variable can designate the result of an
experiment, the state of a system, the value of a measurement, etc. A quantitative random variable can
be continuous or discrete, depending on if it is obtained by measuring (i.e., continuous) or counting (i.e.,
discrete). For instance, the result of the toss of a coin is a discrete random variable X that can take on
two values: head or tail [Rakotovao et al., 2016].

The occupancy grid makes use only of discrete random variables; therefore, the following definitions
implicitly assume only the usage of discrete random variables.

Probability of a discrete event Let X be a discrete random variable, S the set of all possible values of
X , and x an element of S. The probability distribution of X is a function P that assigns a non-negative
real number to each value x of X such that

P (x) ≥ 0
∑
x∈S

P (x) = 1 (3.1.1)

The quantity P (x) denotes the probability that X takes a value x. From Equation (3.1.1) follows that
P (x) is a real number between 0 and 1.
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Conditional probability It is a measure of the probability of an event occurring, given that another
event has already occurred.

Let X and Y be two random variables, and SX and SY the sets of all possible values of X and Y
with the non-zero probability of event y (P (y) > 0). The conditional probability of the joint of events
(x, y) where x ∈ SX and y ∈ SY denotes the quotient:

P (x|y) =
P (x ∧ y)

P (y)
(3.1.2)

where P (x ∧ y) is the probability that X takes value x and Y takes value y.

Bayesian theorem This theorem describes the probability of an event, based on prior knowledge
of the conditions that might be related to the event. It allows to redefine the conditional probability
equation (3.1.2) as:

P (x|y) =
P (y|x) P (x)

P (y)
(3.1.3)

where P (y|x) is also a conditional probability: the probability of event Y to take value y occurring given
that event X produced a value x.

Occupancy grid The occupancy grid G models a physical world with a grid subdivided into cells c,
which can be defined as:

G = {ci} i = 1, ..., N
∨
i 6=j

: ci ∩ cj = ∅ S =
N⋃
i=1

ci (3.1.4)

where:

G – the grid,
N – number of cells,
ci – the i-th grid cell,
S – area of the grid.

Occupancy grid cell Each cell of the grid describes a portion of the environment as an independent
stochastic process with the Markov property. The probabilistic state of the cell evolves over time by the
accumulation of sensor measurements.

Depending on the fusion framework, the cell state might be a binary continuous random variable
describing if the cell is occupied or in general a collection of random variables defined on a common
probability space. Every cell of the grid is an independent stochastic process defined as:

∀Ni=1ci = {Xi(t, z) : t ∈ T, z ∈ Z} (3.1.5)

where:

t ∈ T – time,
z ∈ Z – sensor measurements,

Xi(t, z) – random variable describing state of the i-th cell over time and measurements.

The occupancy grid cell estimation of the environment is periodically updated by the new sensor
measurement to compute the best prediction of the real environment. New sensor information data de-
noted as ztn are fused into prior grid cell ci(tn−1) state in order to produce the posterior cell state
ci(tn). ’Prior’ refers to the state estimation up to the time of the update (from t0 to tn−1), while ’poste-
rior’ describe the latest estimate of the state (from t0 up to tn).
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Markov property The stochastic process of the i-th occupancy grid cell ci depends only on time and
prior sensor measurements. In the occupancy grid inference framework, this process is the Markovian
one (holds the Markov property).

A stochastic process {X(t) : t ∈ T} is Markovian if, for any n, the distribution ofX(tn) conditional
on the values of X(t0), X(t1), ..., X(tn−1) with t0 < t1 < ... < tn−1 < tn and ti ∈ T , depends only
on X(tn−1):

P (Xtn = xn|Xtn−1 = xn−1, ..., Xt0 = x0) = P (Xtn = xn|Xtn−1 = xn−1) = F (xn, xn−1; tn, tn−1)
(3.1.6)

In other words, the Markov property of the cell process ensures that the posterior state of the process
X(tn) depends only on the most recent known value of the process X(tn−1) and on the current mea-
surements ztn :

Xtn = F (X(tn−1), ztn) (3.1.7)

The occupancy grid accumulation is performed in a discrete time, only when the sensor measure-
ment is ready for processing. Thus, the inference step might be described as a discrete time process as
in equation (3.1.6). Other processing steps might require a continuous time approach, but the Markov
property will be still preserved [Gómez-Corral et al., 2015].

Cell independence As the grid is a collection of cells, representing the real environment, the cells
might be coupled together by multiple dependencies. Nevertheless, modeling cell dependency leads to a
combination explosion of possible grid states. To avoid that, it is commonly assumed that the cells on the
grid are independent processes. Therefore, this assumption allows the computational unit to process the
sensor fusion for each portion of the space separately, making it computationally feasible.

Robotic and automotive grids The occupancy grid mapping method was originally suited to solve the
simultaneous localization and mapping (SLAM) problem for autonomous mobile robots. However, this
method has been recently adapted for automotive industry purposes [Saval-Calvo et al., 2017].

The key difference between automotive and robot occupancy grids is the area which the map repre-
sents. In robotics, the occupancy grid builds the map for the whole operational area (one room, parking,
one-floor of building). In automotive, however, a vehicle operates on a much bigger area and keeping
track of the whole grid-based map is ineffective. Thus, in the automotive, the occupancy grid represents
only the local environment as presented in Figure 3.1.

Host positioning Representation of the local environment around the vehicle requires more mainte-
nance steps than in the robotic approach. Firstly, the coordinate system of the host has to be defined.
In this case, a derivative of the ISO 8855:2011 standard on vehicle dynamics is applied. Following this
norm, a right-hand-sided occupancy grid coordinate system can be defined. An example of the occupancy
grid is shown in Figure 3.2.

The environment’s representation on the grid is discrete, although the vehicle is moving and turning
in the real, continuous world. To eliminate discretization errors which would occur if the map were to be
rotated, the host performs its motion relative to the grid with a fixed orientation [Weiss et al., 2007].

Moreover, since the host may turn on the map, the occupancy grid has to be a square to ensure
a constant representation of the area in front of the vehicle. This condition implicates that the grid
resolution in both dimensions is equal and the cells are squares.
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Figure 3.1. Robot and automotive occupancy grids. (a) Robot grids depict whole operational area of
robot (image adapted from [Stachniss, 2006]). (b) Automotive occupancy grid map only local environ-
ment and is shifted as the vehicle moves to the new area.
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Figure 3.2. Coordinate systems used to position the occupancy grid in the world frame.

Automotive grid assumptions outline All assumptions of the automotive occupancy grid can be as-
sembled into six points:
◦ Each cell of the grid is an independent Markovian stochastic process representing the state of the

portion of the space,
◦ In automotive, the occupancy grid represents only the local area around the vehicle,
◦ Host position on the map is known variable,
◦ Occupancy map is only shifted relative to the fixed world frame, it cannot be rotated,
◦ Host is moving and turning in continuous coordinate system relative to the map origin,
◦ Automotive grid map is square with the same cell resolution in both directions.

3.2 State-of-the-art of automotive occupancy grids

The automotive occupancy grid was first proposed by [Weiss et al., 2007] in 2007. This publication
was followed by numerous others and until today the topic of occupancy grid mapping in automotive is
continually active. The industry is also interested in this solution, with more than 200 patents related to
the applications and different types of occupancy maps.

Current trends in occupancy grid development can be differentiated into three groups: maps which
estimate the velocities for each cell, called dynamic occupancy grids, maps which operate on higher than
two dimensions and grids with variable resolution.
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Each of the seminal approaches to the occupancy grid presented in this section offers new capa-
bilities of the algorithm at the cost of the higher computational load. In contrary, most of the modern
automotive vehicles in series production has limited computational resources, because they contribute to
total vehicle manufacturing cost. Therefore, regardless of numerous occupancy grid techniques, in the
discussed application, the grid is usually used to represent the environment in a 2D map with a constant
cell size [Andriamahefa, 2017; Pietzsch et al., 2009].

3.2.1 Dynamic occupancy grid

Dynamic occupancy grid (DOG) is an extension of the occupancy grid allowing estimation of the dy-
namic environment and its velocities [Danescu et al., 2011; Nègre et al., 2014]. The dynamic occupancy
grid approach utilizes a particle filter together with a Dempster-Shafer evidence theory. The particle
filter empowers the estimation of a velocity for each occupied cell [Gies et al., 2018], thus reinforc-
ing the fusion method to distinguish static and dynamic occupancy. In this type of occupancy grid, the
Dempster-Shafer evidence theory is utilized, supporting more than only two occupancy states of each
cell. An example of the dynamic occupancy grid is presented in Figure 3.3(a).

Seminal research on the dynamic occupancy grid topic is the DOGMA algorithm [Nuß, 2017]. Mul-
tiple implementations of the algorithm are available as open-source frameworks. Nevertheless, to support
the DOGMA real-time operation, a parallel computing unit such as GPU is preferred. From the automo-
tive perspective a graphical processing unit is an expensive module, which can be installed only in luxury
or highly automated vehicles nowadays (level 4 or 5). Due to that, modern DOG implementations are too
computationally complex to be utilized within existing cheap automotive electronic control units.

3.2.2 Multidimensional representations

Most of the indoor occupancy grid applications represent the environment as a 2D spacial lat-
tice. However, in external applications, due to problems with an elevated or slanted road, the height
handling for the grid is needed. The proposed extensions of the occupancy grid are two-and-half-
dimensional (2.5D) stixel or multi-level maps [Oniga and Nedevschi, 2010; Pfeiffer and Franke, 2011;
Saleem et al., 2018; Triebel et al., 2006] and a complete three-dimensional (3D) voxel representation
[Fankhauser and Hutter, 2016; Wurm et al., 2010].

The 2.5D stixel world representation (Figure 3.3(b)) model the environment with adjacent rectangular
sticks of a given width and height. Elevation maps (Figure 3.3(c)) store at a cell level the height of the
object occupying the cell. Established grid surface may be utilized to classify non-drivable space.

The full 3D environment representation can be modeled by 3D occupancy grids. The environment is
subdivided into adjacent cubic cells called voxels. The probability that each voxel is occupied by an ob-
stacle is computed from the sensor measurements. An example of robotic 3D occupancy grid application
is shown in Figure 3.3(d).

Currently, the computational complexity of the 3D occupancy grid makes them unfeasible for auto-
motive applications, however, with the increasing computational power, this approach might be trans-
ferred from robotics to automotive.

3.2.3 Multi resolution occupancy maps

Depending on the granularity of the mapped environment, the occupancy grid map could be com-
pressed to save the memory. It could be done by dynamically changing the cell size. One of the ap-
proaches for lossless occupancy map compression are the 2d-trees which spatial subdivision is presented
in Figure 3.4. For 2D occupancy grid maps, this approach is called quadtree [Andriamahefa, 2017] and
for 3D – octree [Wurm et al., 2010].

Occupancy grid environmental modeling for automotive applications J. Porębski
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(a) 2D Dynamic occupancy grid [Steyer et al., 2017]
(b) 2.5D Stixel map [Saleem et al., 2018]

(c) 2.5D Elevation map [Oniga and Nedevschi, 2010]
(d) 3D occupancy map [Fankhauser and Hutter, 2016]

Figure 3.3. Examples of occupancy grid extensions for handling the dynamic objects and the multidi-
mensional environment structure.

Figure 3.4. The tree structure of 2d-trees with the corresponding spatial subdivision [Andriamahefa, 2017].

3.3 Occupancy grid architectures

The occupancy grid framework is usually used for the fusion of multiple sensors’ data. Depending
on the accumulation method, the occupancy grid algorithm may be divided into two different methodolo-
gies: low- and high-level [Gálvez del Postigo Fernández, 2015; Porębski et al., 2019]. The comparison
of those two methods is presented in Figure 3.5.

The low-level or centralized occupancy grid architecture contains only one instance of the grid filter
feedback loop. The main principle of this architecture is a direct fusion of the sensor data. The advantage
of this approach is the low latency of the fused grids, which translates to possible shorter accumulation
times of the algorithm.

The high-level occupancy grid is characterized by multiple accumulation loops in the algorithm flow.
The occupancy filtering is usually performed separately for each sensor or for a selected domain of sen-
sors. Intrinsic occupancy grids contain the history of the measurements, and the final fusion is performed
on all intrinsic maps. The high-level framework is more modular than the low-level approach, it could
fuse occupancy grid maps from different sources or other modules. This approach is more memory and
computation consuming, nevertheless it allows better sensor data validation.
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Figure 3.5. Comparison of the low- and high-level grid fusion architectures.

The main distinction between low and high architecture levels is that in the low-level grid the ac-
cumulation loop is performed only once per algorithm step, while in high-level it is carried multiple
times.

As the accumulation loop is the most time-consuming part of the algorithm, therefore, the low-level
grid fusion approach will almost always execute faster than the high-level one. Moreover, the ability to
connect all sensor scans in a single node of the algorithm offers the developer more flexibility for sensor
conflict resolution or different optimization techniques.

A lot of research does not provide information about the detailed architecture of their occupancy grid
implementation; however, the low-level fusion could be assumed to be the most common one due to its
simplicity and flexibility. All occupancy grid algorithms presented in this thesis would be based on this
architecture, however, elements of the high-level option can be useful for the separation of independent
structures if only the synchronization between different grid maps is provided.
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3.4 Occupancy grid data flow

At the core of the occupancy grid algorithm is the idea of environment state estimation from the
sensor data. This computation addresses the problem of estimating quantities from sensor data that are
not directly observable, but that can be inferred. Notwithstanding, sensors carry only partial information
about those quantities, and their measurements are corrupted by noise. As the vehicle has to rely on
its sensors to gather occupancy data, the sensor information processing is a crucial step which might
assess all the uncertainties of the system. Later, the probabilistic state estimation of the occupancy grid
algorithm computes belief distributions over possible world states.

The occupancy grid data flow can be divided into four steps, which forms a filtering loop as presented
in Figure 3.6. To properly fuse evidences, adequate information from sensor measurements has to be

Occupancy grid filter

Sensor modeling

Occupancy
grid

Grid decay

Probabilistic
evidence

Detections

Fuse and
accumulate
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Shift grid to the
measurement time

Vehicle position
state

(localization)

Sensor
measurements
(detections)

Figure 3.6. Occupancy grid data flow.

extracted and converted in the grid information domain in the sensor modeling step. The key step of
producing the occupancy grid is the fusion and accumulation of sensor evidences into the persistent
occupancy grid. The fusion step considers the prior map information and measurement probabilistic
evidence and produces the predicted occupancy grid. The algorithm processes the new data recursively
and to mitigate the accumulation overconfidence, the decay step is needed. The decay acts as a forgetting
mechanism, slowly declining cells’ evidences. Finally, as the vehicle moves, the grid has to be shifted to
ensure the correct positioning relative to the vehicle.

3.4.1 Sensor information processing

In automotive applications, different types of sensors are utilized to ensure the redundancy and ro-
bustness of the perception system. Each sensor has different characteristics, which drive the way in which
the measurement is represented. Majority of the devices used for environment perception are so-called
range sensors [Elfes and Matthies, 1987; Eskandarian, 2012; Thrun et al., 2005]. A range sensor is a de-
vice that senses the world by exploiting the properties of a physical support such as light, radio waves,
or acoustic waves. The process of sensing outputs a measurement that reflects the world as sensed by the
sensor [Andriamahefa, 2017].

3.4.1.1 Vehicle position state interface

In order to properly accumulate environment representation around a moving vehicle the occupancy
grid algorithm has to receive precise information about current vehicle state. Such data are usually ob-
tained from a separate component which combines information from the vehicle’s inertial measurement
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units (IMUs) and from global positioning systems such as GPS. The minimal information required for
the occupancy grid to work is the local position and rotation of the vehicle, which can be computed based
on vehicle linear and angular velocity or taken from global positioning unit.

3.4.1.2 Sensor data interface and format

Each measurement z from range sensors is able to provide two not complementary types of informa-
tion. Firstly, range measurements sense the presence of an object (o). Secondly, the reflected rays carry
the information about the possible traversal space to the target (f )

z ∈ {o, f} (3.4.1)

where:

z – sensor measurement,
o – range detection describing occupancy from the reflection,
f – possible traversal space to the target describing free space.

Moreover, the radar sensor used in automotive utilizes the Doppler shift effect to determine the
relative velocity of the detection called range rate. Using this information, the Static-Unknown-Dynamic
classification can be determined from the single detection

o ∈ {s, d, {s ∪ d}} (3.4.2)

s – static detection,
d – dynamic object,

{s ∪ d} – ambiguous or unknown detection motion status.

The ISO/DIS 23150 standard about logical interface in automotive sensors specifies different sensor
measurement representation [International Organization for Standardization, 2021]. For the occupancy
grid purposes, the types can be divided into two main groups: point and contour shape measurements
(as presented in Figure 3.7). Point detections are implemented in radar and LIDAR sensors, while the
contour shape is utilized in vision free space measurements.

a) b)

Figure 3.7. Sensor scan measurement types: (a) point (radar and LIDAR detections),
(b) contour shape (vision free space envelope).
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3.4.2 Sensor modeling

Each occupancy grid input sensor has unique properties, which can be utilized to extract more in-
formation about the environment. The sensor modeling part of the occupancy grid algorithm aims to
improve the accumulation procedure by transferring as much information as possible from the detec-
tion model to the occupancy grid. The sensor model has to consider all types of uncertainties present in
the occupancy grid. Usually in the experimental setup, many uncertainty characteristics are not directly
measurable, and the sensor model has to approximate the overall grid detection uncertainty, not only the
sensor parameters itself.

In the literature, there are two families of sensor models for the occupancy grid: forward and inverse
sensor models, further referenced as FSM and ISM accordingly. Both of these sensor models derive the
posteriori grid probability p(G|z), which can be further used in the fusion step.

Physical sensor model aims to model the behavior of the sensor given some simulated environment
to imitate the sensor behavior in the virtual domain. Classical sensor model (e.g., radar model) takes the
virtual environment representation and computes the measurements of it. As a result, the model delivers
the probability of measurement given map – p(z|G).

In the occupancy grid, the problem of modeling, however, requires the opposite kind of information.
The aim is to estimate the probability of a cell being occupied p(G) given the sensor measurement z –
p(G|z).

3.4.2.1 Forward sensor model (FSM)

The forward sensor model gives the probability of observing a reading p(z|G) based on map knowl-
edge p(G) [Thrun, 2003]. Forward models have the advantage that they can be determined experimen-
tally and can characterize a sensor in a more straightforward manner.

A prerequisite for using FSM is to have an accurate physical sensor model, which generates p(z|G)
from given map probabilities p(G).

The physical sensor model for the sensor is known, forward sensor models promise accurate occu-
pancy modeling. They might consider all sensor specifications, such as multi-bounces or reflections (if
the sensor model supports them).

To convert the physical sensor model probability into the forward sensor model output, the Bayes
theorem might be applied:

p(G|z) =
p(z|G) · p(G)

p(z|G = Occupied) · p(z|G = Occupied)
(3.4.3)

where:
p(G|z) – probability of a grid cell being occupied given measurements,
p(z|G) – probability of measurement given map – known, computed by the physical

sensor model,
p(G) – occupancy probability of the given map – unknown,

p(z|G = Occupied) – true positive rate of sensor – given by the sensor characteristics,
p(z|G = Occupied) – false positive rate of sensor – given by the sensor characteristics.

Nonetheless, the physical sensor model has to be evaluated on already known grid maps (normally
the virtual environment provides that, but here only historical information is known). Therefore, the
forward sensor model became a single high-dimensional optimization problem aiming to estimate the
map p(G) which would generate measured sensor detection z.

In the literature, there are a multitude of FSM techniques tackling this optimization algo-
rithm [Carvalho and Ventura, 2013; Thrun, 2003]. In practice, however, the forward sensor models are
still too computationally complex to be applicable in the automotive software stack, which has to pro-
cess hundreds of detections from multiple sensors at the same time. The alternative for that is an inverse
sensor model (ISM).
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3.4.2.2 Inverse sensor model (ISM)

Inverse sensor model (ISM) is a tool used to determine the occupancy probability based on sensor
detection and their inaccuracies. The aim of the ISM is to detect the real environmental obstacle that
causes sensor detection and update the grid with proper probabilities. In opposite of FSM, the ISM is a
method to deduce the occupancy (cause) from sensor readings (effect).

The first Bayesian inverse sensor model (ISM) designed for the ultrasonic sensors was presented in
the late-80s by Elfes and Matthies [Elfes and Matthies, 1987]. The Bayesian approach computed the ISM
utilizing the sensor model, therefore expressing the measurement uncertainties given the physical loca-
tion of the sensed obstacle. This approach requires the enumeration of all possible grid configurations,
which causes the exponential computation complexity.

In order to create the ISM with a linear complexity, the analytical approach has been pro-
posed [Andriamahefa, 2017]. It approximates the sensor model using a continuous function defined over
the distance from the sensor. It is based on the Gaussian distribution [Konolige, 1997] or on the power
function [Yguel et al., 2008].

The further simplification of the analytical ISM has been presented
in [Homm et al., 2010; Weiss et al., 2007; Wurm et al., 2010], which approximates the occupancy
depending on the distance from detection. This approach uses simple analytical functions like linear
approximation or 3-valued spline [Weiss et al., 2007; Wurm et al., 2010].

Inverse sensor model specifies a probability distribution over map cells m given sensor measure-
ments z ⇒ p(G|z). It decomposes the high-dimensional mapping problem into many binary estimation
problems, which are then solved independently of each other. Using arbitrary distribution profiles, the
ISM might be divided into many binary estimation problems, which can be easily optimized and paral-
leled.

3.4.2.3 Dual inverse sensor model

Range sensors such as laser-based sensors, stereo cameras, radars, and ultrasonic sensors are com-
monly used in robotics and for autonomous vehicles. Each detection from these sensors is able to provide
two not complementary types of information. Firstly, range measurements sense the presence of an ob-
ject. Secondly, the reflected rays carry the information about the possible traversal space to the target.

In common implementations of the inverse sensor models, those two information are packed in
one distribution [Elfes and Matthies, 1987; Joubert, 2012; Konolige, 1997; Yguel et al., 2008]. Never-
theless, various grid applications require separation of free and occupancy data to solve sensor con-
flicts [Foroughi et al., 2015] or to estimate additional environment parameters [Valente et al., 2018].

In order to address this problem, the proposed framework unravels the ISM distribution by split-
ting the process into two separate paths, which internally accumulate two independent information. This
implementation of the ISM could be paralleled since the reflection and traversal space paths are indepen-
dent, as presented in Figure 3.8.

The processing flow presented in Figure 3.8 consists of cell selection probability calculation for a
single range sensor detection.

The first step of the processing is the selection of significant grid cells relative to the applied prob-
ability distribution. The cell selection policy significantly reduces the computational complexity of the
modeling step, because the probability has to be computed only for a subset of cells. The second step
is probability calculation, where the actual evidence is extracted from the cell area. For the probability
distribution, either Gaussian or power functions are utilized [Porębski, 2020].

The ISO/DIS 23150:2021 standard states that each sensor detection should have an exis-
tence probability measurement. This quantity depicts the uncertainty and can be used in the dis-
counting operation in the ISM probability calculation step. Therefore, the discounting step is
already embedded in the ISM processing and will not be covered in the sensor fusion sec-
tion [International Organization for Standardization, 2021].
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Figure 3.8. Graphical illustration of the sensor model data flow.

3.4.2.4 Intermediate grid evidence separation

In common implementations of occupancy grid algorithms, all the aforementioned information types
are packed into a single processing data flow [Elfes and Matthies, 1987; Joubert, 2012; Konolige, 1997;
Yguel et al., 2008]. This approach is not commutative, so the output grid depends on the order of data
processing even within single sensor scan [Thrun, 2003].

As a solution to that problem, Foroughi et al. in [Foroughi et al., 2015] introduced two independent
grid maps: one for occupancy and one for free space accumulation. This approach requires separation
of cell states, but can be used to solve sensor conflicts [Foroughi et al., 2015] or to estimate additional
environment parameters [Valente et al., 2018].

Accordingly, the proposed occupancy grid framework unravels the probability representation by
splitting the process into separate paths, which internally accumulate independent information. The types
of evidences accumulated within the occupancy grid framework mimics all the information provided
from sensors. Automotive sensors, however, might provide four types of evidences and their hierarchical
illustration is presented in Figure 3.9.

Unknown DynamicStatic

OccupancyFree space

Types of evidences

Figure 3.9. Types of independent evidences maintained in the proposed occupancy grid framework.
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Each processing path accumulates a different probability type on a separate intermediate grid. The
intermediate grids (IG), similarly to the main occupancy grid, are matrices, where each element describes
a portion of a space.

The occupancy information can be internally divided into three groups as specified in (3.4.2), thus
they are managed on three intermediate grids representing different evidences: Static IGS , Dynamic IGD

and Unknown occupancy IGS∪D. Depending on the used sensors and fusion framework, some of these
intermediate grids might be disabled to reduce the memory requirement of the algorithm. Values of the
occupancy intermediate grid express the probability of an i-th cell ci being an origin for any of processed
sensor occupancy {s, d, {s ∪ d}}

IGS(ci) = p(ci|s)
IGD(ci) = p(ci|d)

IGS∪D(ci) = p(ci|{s ∪ d})
(3.4.4)

Respectively, the free space data IGF describe probability of the cell being free from obstacles f

IGF (ci) = p(ci|f) (3.4.5)

Intermediate grids store information only between each fusion iteration. In that period, the incoming
measurements zt are fused into intermediate grids. The fusion rule for each grid could be different and
should depict the kind of information provided by sensors. Each consecutive reflection from some ob-
stacle is a new evidence, so it should increase the occupancy intermediate grid probability. For that grid,
the De Morgan’s fusion method is used:

IGt+1
S (ci) = 1−

(
1− IGt

S(ci)
) (

1− p(ci|st)
)

IGt+1
D (ci) = 1−

(
1− IGt

S(ci)
) (

1− p(ci|dt)
)

IGt+1
S∪D(ci) = 1−

(
1− IGt

S∪D(ci)
) (

1− p(ci|ut)
) (3.4.6)

On the other hand, the free-space information IGt
F depend mostly on different sensor capabilities

instead as the number of traversed rays. To meet that assumption, a maximum policy could be applied:

IGt+1
F (ci) = max

(
IGt

F (ci), p(ci|f t)
)

(3.4.7)

3.4.3 Evidence fusion and accumulation

At the core of the occupancy grid algorithm is the idea of estimating the state from sensor data.
Probabilistic state estimation algorithms compute belief distributions over possible world states. The
fusion and accumulation might be refereed as a measurement update step in common filtering algorithms
such as Bayes of Kalman Filter [Thrun et al., 2005].

In the occupancy grid, evidence accumulation is performed by recursive fusion of new sensor data
into the persistent occupancy grid. The topic of different fusion frameworks is discussed in detail in the
next Chapter 4.

3.4.4 Decay

Occupancy and free space modeling simplify many physical dependencies of the sensor measure-
ment. For example, it assumes data completion and cell independence. These hidden dependencies are
omitted during the fusion process of integrating multiple pieces of evidence. Consequently, the results
quickly become overconfident [Thrun et al., 2005].

In order to deal with the problem, the information decaying procedure is applied. In the occupancy
grid algorithm, the decay corresponds to the prediction update step in other filters. To model the for-
getting of the older evidences, it artificially diminishes the evidence on the entire grid over time. The
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overconfidence of occupancy modeling may be handled using different methods, applying the grid pre-
diction [Thrun et al., 2005].

Nevertheless, the common forgetting procedure is an exponential decay. It increases the uncertainty
of grid cells while preserving the overall variance of the map. The exponential decay for the occupancy
grid is described as:

p(ci)
t+∆t =

(
p(ci)

t − p(ci)t0
)
· e−

∆t
τ + p(ci)

t0 (3.4.8)

where:

p(ci)
t – probability of the i-th cell at time t,

p(ci)
t0 – initial probability of the cell, for Bayesian occupancy grid p(ci)t0 = 0.5, for

evidence-based grid types p(ci)t0 = 0.0
∆t – time elapsed between two decay operations,
τ – mean lifetime.

Mean lifetime represents the time period after which only 1
e ≈36.7% of the evidence remains in the cell.

The behavior of the decay depends on the update rate of the occupancy grid, which influences the
decay rate value. The example processes of decaying for both occupied and free cells for various τ values
is depicted in Figure 3.10. The decay always tends towards the most uncertain probability value, p(ci)t0
which is 0.5 for the Bayesian inference method and 0.0 for the evidence-based grids.
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Figure 3.10. Decaying process of the occupied cell with p = 0.9 (solid lines) and free cell p = 0.1
(dotted lines) for different mean lifetimes τ . The decay is applied with 10 Hz frequency.

3.4.5 Grid shift

The automotive occupancy grid algorithm is highly limited by the memory consumption require-
ments. Therefore, the automotive occupancy grid represents only the closest vehicle surroundings. Each
cell of the grid, however, always represents the same area of the environment, thus as the host moves,
the grid must be shifted. The shift might be performed perpendicular to the cell side by the distance
equal to the integer multiplication of the cell size. Illustration of the grid shift procedure is presented in
Figure 3.11.
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Figure 3.11. Graphical illustration of the grid shift procedure.

The grid representation is never rotated to prevent cell approximation and Moiré pat-
terns [Weiss et al., 2007]. To enable vehicle turning, the host position on the grid is continuous and
can rotate freely.

Vehicle might be positioned in the center of the occupancy map as presented in Figure 3.12(a).
This positioning is useful in low velocity or urban scenarios, where the vehicle has to monitor the sur-
roundings on all sides. For other applications, where the vehicle is moving relatively fast in a forward
direction, the host might be moved closer to the grid border. In this application, the ego vehicle is posi-
tioned on a constant radius circle from the grid center, allowing better usage of the available grid space
(Figure 3.12b) [Porębski et al., 2019]. Shift distance is computed before each sensor fusion step ensuring
correct grid position for every sensor measurement.

a) b)

Figure 3.12. Types of host positioning (a) center, (b) constant radius [Porębski et al., 2019].
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3.5 Sensor conflict resolution

The occupancy grid algorithm has to deal with heterogeneous data sources. As mentioned in the Sec-
tion 2.4.2, each sensor has its own advantages and disadvantages. Therefore, a conflict in the perceived
environment state might happen and has to be resolved by the occupancy grid fusion.

Conflicts in the occupancy grid processing can be divided depending on the period in which they
happen. If conflicting sensor information comes from the same sensor and time stamp, they can cause
self-sensor conflicts. If the disagreement is between two separate sensor scans coming from different
timestamps, it results in multi-sensor conflicts.

Causes of those conflicts can be different, hence they should be handled accordingly in the occupancy
grid processing. This section describes the types of sensor conflicts, while detailed examples of these
conflicts’ resolution are presented in Section 4.3.

3.5.1 Self-sensor conflicts

Commonly, automotive perception sensors produce sensor detection in batches, called sensor scans.
Sensor scan is an instant measure of the environment state. In the occupancy grid processing presented in
this thesis, four different evidences are extracted from the scan and represented on four intermediate grids
(IGS , IGD, IGF , IGS∪D). As the intermediate grids are independent evidences, fusion of those sources
of information may cause self-sensor conflict.

Wrongly classified radar detection can be an example of conflict measurement. If a dynamic object
is moving perpendicular to the radar center line, the detection coming from this object might be wrongly
classified as stationary. This may result in, i.e., two detections close to each other with conflicting sta-
tionary and dynamic evidences.

This family of sensor conflicts also consists all false positive detections (detection of not existing
objects) and sensor modeling inaccuracies. Single timestamp conflicts are instantly resolved by the in-
termediate grid fusion step of the occupancy grid algorithm. An example of this conflict resolution is
presented in Section 4.3.

3.5.2 Multi sensor conflicts

Automated vehicle has to operate in a dynamic environment. Nevertheless, due to sensor measure-
ment latency or rapid changes in the surroundings, consecutive sensor readings may vary significantly.
As every grid cell stands for the same portion of space regardless of time, that causes the fusion of
conflicting measurements with the prior cell state.

As an example of that, multi-sensor conflict can be caused by dynamic objects present in the occu-
pancy grid. As the object moves, its dynamic occupancy traverses to new grid cells. The area behind the
object has to be made free with new sensor measurements, creating a dynamic occupancy residual.

Multi sensor conflicts also cover contradictions between different sensors, which might happen in
case of changing weather conditions or due to differences in sensor accuracy. The contradicting informa-
tion in this type of conflicts are subjected to the stochastic filtering of occupancy grid fusion. An example
of this conflict resolution is presented in Section 4.3.
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The occupancy grid is a comprehensive perception module, interconnecting the sensors with more
abstract downstream components. One of the major advantages of the grid-based environment represen-
tation is that it can unify heterogeneous sensor domains into a single map of occupancy. In automotive
applications, different types of sensors are utilized to ensure the redundancy and robustness of the per-
ception system.

A probabilistic model of the environment, the occupancy grid, can be defined using different prob-
ability frameworks. Focusing on their applicability for the automotive perception module, three main
probability frameworks are defined in Section 4.1.

The output occupancy map representation is an amalgamation of the input data. Section 4.2 inves-
tigates different fusion architectures and rules of combination which can be applied in the automotive
occupancy grid. In order to validate the correctness of the occupancy grid, the model of the environ-
ment has to be properly visualized. Proposed approach for grid visualization techniques is presented in
Section 4.2.5.

Finally, Section 4.3 defines the combination rule equations for the three evaluated fusion frameworks
and provides a simple example to present and compare different combination rules.

4.1 Probability and uncertainty representation formalisms
The management and combination of uncertain, imprecise, or highly conflicting sources of infor-

mation is a crucial part of the occupancy grid algorithm. Historically, the first probabilistic inference
method was Bayes theorem, founded in the XVIII century. More recently, the emergence of artifi-
cial intelligence and machine learning algorithms resulted in a growth of interest relating to the man-
agement of uncertainty and evidential reasoning. This resulted in the generalization of the classical
Bayesian probability by the Dempster-Shafer theory (DST) of belief functions [Shafer, 1976]. Never-
theless, rapid progress continues and in 2004, F. Smarandache and J. Dezert proposed further general-
ization of the DST framework into Dezert-Smarandache Theory (DSmT) of plausible and paradoxical
reasoning [Smarandache and Dezert, 2004]. All these three methods found application as occupancy grid
information fusion frameworks.

The Bayesian probability framework has been used since the inception of occupancy
grids [Elfes and Matthies, 1987; Rakotovao et al., 2016; Weiss et al., 2007]. The Bayesian framework
assumes complete knowledge about the cell state which can be either ”occupied” or ”free” and these
states are mutually exclusive. Each grid cell maintains a binary random variable, which values depict the
probability of a cell state. When the probability is high, the cell is more likely occupied, while when it is
low, the cell is believably free. Due to the limited hypothesis set, no measurement uncertainty modeling is
possible, and the binary cell states are interconnected. If any sensor decreases the occupancy probability,
it implies increasing free space estimation.

As an extension to the possible cell state, the Dempster–Shafer approach introduces unions of states,
along with the idea of a ”mass”, or a measure of confidence in each of the alternatives [Challa and Koks,
2004]. Therefore, Dempster–Shafer grid cell will be described not only by the ”occupied” and ”free”
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states, but also as their union ”unknown” hypothesis (”occupied” or ”free” states). This breaks the con-
nection between ”occupied” and ”free” and these beliefs are now independent values. In the occupancy
grid area, the Dempster-Shafer evidence has gained advantages over Bayesian for it being able to clearly
distinguish the ignorance and the contradiction [Yi et al., 2000]. Specifically for the automotive applica-
tion, DST is used mostly for the dynamic occupancy grid application, because it enables multiple cell
state representation [Nuß, 2017; Tanzmeister et al., 2014].

The third and latest probabilistic reasoning framework is the Dezert-Smarandache Theory (DSmT).
It is a generalization of the DST framework, which extends the possible beliefs with also intersections
of states. As an example, for the ”occupied”–”free” grid cell state, the DSmT cell would estimate both
”unknown” (”occupied or free”) and ”occupied and free” beliefs. In the actual environment, the second
one: ”occupied and free” is never a real cell state, however, this belief can be especially useful when
managing the resolution of sensor conflicts. The framework is relatively new, yet it has already pro-
posed multiple new fusion rules, and it can be easily reduced to the classical Dempster-Shafer frame of
discernment [Smarandache and Dezert, 2005]. Despite its novelty, the DSmT framework has been suc-
cessfully applied in some occupancy grid applications for example in [Dezert et al., 2015; Moras et al.,
2015; Wang et al., 2018].

This thesis presents a comparison of different occupancy grid frameworks, focusing on their appli-
cability in automated vehicle perception. The following paragraphs describe the aforementioned frame-
works in the details needed for implementation of the functional occupancy grid algorithm.

4.1.1 Bayesian probability framework

The binary Bayesian framework is the simplest one considered in this chapter. Assumptions and
applications of the Bayesian framework have been thoroughly described in multiple prior arts such
as [Challa and Koks, 2004; Thrun et al., 2005]. Therefore, in this thesis, the author describes only the
minimal level of detail required for understanding and implementation of the presented variants of the
occupancy grid algorithms.

In the Bayesian occupancy grid, each cell state X is described as a single binary random variable
defining if the cell is occupied or not.

X ∈ {occupied, free} (4.1.1)

These two cell states are mutually exclusive; therefore, the sum of their probabilities is equal to 1.

p({occupied}) + p({free}) = 1 (4.1.2)

The probability p({occupied}) denotes the probability that the cell is occupied.
In this framework, there is no place for any uncertainty management or reallocation of sensor con-

flicts. All measurements are taken as true without any confidence approximation.

4.1.2 Dempster-Shafer Theory (DST)

Dempster-Shafer Theory (DST), also called mathematical theory of evidence, was introduced
in 1976. This framework is attractive for the occupancy grid application because it gives a nice mathemat-
ical model for the representation of uncertainty, and it includes Bayesian theory as a special case [Shafer,
1976; Yi et al., 2000].

This section presents a short introduction to the Dempster-Shafer theory required for the occupancy
grid implementation and development. A complete presentation of the mathematical theory of evidence
proposed by Glenn Shafer can be found in his book in [Shafer, 1976].

The classic Dempster-Shafer Theory assumes an exhaustive finite frame of discernment Θ:

Θ = {θ1, θ2, . . . , θn} (4.1.3)

J. Porębski Occupancy grid environmental modeling for automotive applications



4.1 Probability and uncertainty representation formalisms 55

whose elements are mutually exclusive. That means the hypotheses θi (also called elemental hypotheses)
are well precisely defined (identified) in such a way that they do not overlap and fill the whole possibility
space. The frame of discernment is a key element building the proposition set PΘ, which describe all
permitted combination of hypotheses. The proposition set PΘ is also called body or corpus of evidence
and sometimes noted as B .

A Basic Belief Assignment (BBA) is a mapping m(·) : PΘ → [0, 1], such that:∑
A∈PΘ

m(A) = 1 (4.1.4)

Despite that the DST is a matured mathematical theory, it is in permanent dynamic evolution, therefore,
there is no established nomenclature for some of its elements. The quantity m(A) can be called: Basic
Belief Assignment (BBA), Basic Probability Assignment (BPA) or Basic Belief Mass (BBM) of A. For
the consistency of naming in this work, the value m(A) will be referred to as Basic Belief Assignment
(BBA) or mass of A.

The belief (credibility) and plausibility functions of A ⊆ PΘ are defined as:

Bel(A) =
∑
X⊆A

m(X) (4.1.5)

Pl(A) =
∑

X∈PΘ,X∩A 6=∅

m(X) = 1− Bel(A) (4.1.6)

where A denotes the complement of the proposition A in PΘ.
The belief function Bel uniquely corresponds to BBA of m and vice versa. Belief and plausibility

can be interpreted as an upper and lower probability assigned to the BBA.
Another method of conversion from the BBA into probability is the transformation defined as:

betP(A) =
∑
X⊆Θ

|X ∩A|
|X|

m(A)

1−m(∅)
(4.1.7)

where |X| denotes the number of states in the set X (cardinality of X).
Glenn Shafer in [Shafer, 1976, p.35–37] considers the proposition set called power set 2Θ, which

consists of all elementary hypotheses θi and their unions
(
2Θ := (Θ,∪)

)
.

As an example of the power set elements, consider a three-element frame of discernment:

Θ = {θ1, θ2, θ3} (4.1.8)

The power set based on that frame has a cardinality of |2Θ| = 8 with elements denoted as:

2Θ = {α0, α1, . . . α7} (4.1.9)

where each αi corresponds to a set of elemental hypotheses θi. In the example power set, the αi sets are
defined as:

α0 :=∅
α1 :=θ1

α2 :=θ2

α3 :=θ3

α4 :=θ1 ∪ θ2

α5 :=θ1 ∪ θ3

α6 :=θ2 ∪ θ3

α7 :=θ1 ∪ θ2 ∪ θ3

(4.1.10)

The set α7 = θ1 ∪ θ2 ∪ θ3 = {Θ} is called vacuous set and the m(Θ) is described as the Vacuous
Belief. Ifm(Θ) = 1 it defines a fully ignorant state, where no hypotheses are available, assignment. This
belief assignment is called Vacuous Belief Assignment (VBA) and will be denoted as mv(·)

mv(·) : mv(Θ) = 1 ∧ mv(A 6= Θ) = 0 (4.1.11)
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The role of the set α0 = ∅ is also important as it defines the conflict state and might indicate that the
frame of discernment set Θ is not exhaustive. In the classic Dempster-Shafer Theory, m(∅) := 0, which
is also called as ”closed world assumption”. This restriction was revoked by Smets in the Transferable
Belief Model (TBM), which allows m(∅) ≥ 0. If this mass is greater than zero, it means that the frame
of discernment does not define the environment well enough. That generalizes DST by enabling the
accumulation of conflict belief and can be useful in the fusion methods definition. More details about the
Transferable Belief Model can be found in [Smets, 1990].

In the occupancy grid area, the DST has been applied due to its property to distinguish the ignorance
and contradiction from sensor reading. Using Dempster-Shafer theory, the measurements can have some
uncertainty, which is applied in a discarding procedure of sensor fusion. The most common frames of
discernment used in the occupancy grids are:

Θ = {O,F} or Θ = {S,D, F} (4.1.12)

O – occupancy state – cell is occupied,
F – free state – area is drivable,
S – cell is occupied by stationary obstacle,
D – there is a dynamic/moving object within the cell.

This thesis will cover only the second frame of discernment Θ = {S,D, F}, because it also includes the
smaller frame Θ = {O,F} and provides more flexibility in fusion and dynamic object handling in the
occupancy grid.

For the frame of discernment Θ = {S,D, F}, the power set 2Θ consist of eight elements as defined
in (4.1.10). For this frame elemental hypotheses θi are defined as:

θ1 = {S} θ2 = {D} θ3 = {F} (4.1.13)

and the meaning of all possible Basic Belief Assignments is:

m(α0) = m(∅) – conflict evidence about states not covered by other BBAs,
m(α1) = m({S}) – static evidence,
m(α2) = m({D}) – dynamic evidence,
m(α3) = m({F}) – free space evidence,

m(α4) = m({S ∪D}) – static or dynamic evidence – ambiguous evidence of undefined oc-
cupancy also referred as m(O),

m(α5) = m({S ∪ F}) – static or free space evidence – cell state is uncertain but not dynamic,
m(α6) = m({D ∪ F}) – dynamic or free space evidence – cell state is uncertain but not sta-

tionary,
m(α7) = m({S ∪D ∪ F}) – static or dynamic or free space evidence – no information, cell state

is fully uncertain.

Belief m(α0) represent conflicting information or evidence not covered by the other states. By the defi-
nition of the DST m(α0) := 0.

Beliefs {m(α1),m(α2),m(α3)} provide evidences for the raw elemental hypotheses of the frame
of discernment, i.e., stationary, dynamic, or free. Masses {m(α4),m(α5),m(α6)} can be explained
as the negative evidence for the corresponding elemental hypothesis, i.e., not-free, non-dynamic, non-
stationary. As will be presented in the Section 4.3.1.2 some fusion rules might result in locking evidences
m(α5) and m(α6) on the value of 0 therefore, they are discarded by some works such as [Steyer et al.,
2018]. Nevertheless, these cell states might be correct, especially if some fusion rule might provide evi-
dences for negative evidence.

Belief m(α7) is also called unknown state or VBA (Vacuous Belief Assignment) and sometimes
denoted as m(Θ). This mass is equal to 1 in the initial state of the system, when no evidences are
available.
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4.1.3 Dezert-Smarandache Theory (DSmT)

Dempster-Shafer modified theory or Dezert-Smarandache theory (DSmT) by Dezert and Smaran-
dache [Dezert, 2002; Smarandache and Dezert, 2004] allows mutually overlapping elements of a frame
of discernment. Thus, a frame of discernment is a finite exhaustive set of elements Θ, but not neces-
sarily exclusive in DSmT [Daniel, 2014]. DSmT uses Basic Belief Assignments and belief functions
defined analogically to the classic Dempster-Shafer theory (DST), but they are defined on a so-called
hyper-power set or Dedekind lattice DΘ instead of the classic power set 2Θ of the frame of discernment.

The hyper-power set DΘ is defined as the set of all composite propositions built from elements of Θ
with ∪ and ∩ operators

(
DΘ := (Θ,∪,∩)

)
[Smarandache and Dezert, 2004].

As an example of the hyper-power set definition, let us consider the same three-elements’ frame of
discernment as in the previous paragraph:

Θ = {θ1, θ2, θ3} (4.1.14)

The hyper-power set based on that frame has a cardinality of |DΘ| = 19 with elements denoted as:

DΘ = {α0, α1, . . . α18} (4.1.15)

where each αi : i ∈ {0, . . . , 18} corresponds to a set of elemental hypotheses θj : j ∈ {1, 2, 3}. In the
example hyper-power set, the αi sets consist of all possible intersection sets:

α0 :=∅
α1 :=θ1

α2 :=θ2

α3 :=θ3

α4 :=θ1 ∪ θ2

α5 :=θ1 ∪ θ3

α6 :=θ2 ∪ θ3

α7 :=θ1 ∪ θ2 ∪ θ3

α8 :=(θ1 ∩ θ2) ∪ θ3

α9 :=(θ1 ∩ θ3) ∪ θ2

α10 :=(θ2 ∩ θ3) ∪ θ1

α11 :=θ1 ∩ θ2 ∩ θ3

α12 :=(θ1 ∪ θ2) ∩ θ3

α13 :=(θ1 ∪ θ3) ∩ θ2

α14 :=(θ2 ∪ θ3) ∩ θ1

α15 :=θ1 ∩ θ2

α16 :=θ1 ∩ θ3

α17 :=θ2 ∩ θ3

α18 :=(θ1 ∩ θ2) ∪ (θ1 ∩ θ3) ∪ (θ2 ∩ θ3)

(4.1.16)

The basis of the DSmT is the refutation of the principle of exclusivity of the Shafer’s propositions.
The Dezert Smarandache model (DSm) can be applied to describe fuzzy sets of states, where the defi-
nition of elements θi cannot be properly identified and precisely separated. The full propositions hyper-
power set with all possible intersections and unions is called free, because no other assumption is done
on the hypotheses. Nevertheless, depending on the intrinsic nature of the elements, the free model might
not fit the reality. Some elements of DΘ can be truly exhaustive or truly non-existing at all at the given
time. For example, in the occupancy grid state {O∩F} (”occupied” and ”free”) is never possible, as the
area cannot be occupied and free at the same time. Therefore, these integrity constraints can be explicitly
and formally introduced to form a hybrid Dezert Smarandache model [Smarandache and Dezert, 2004].

The classical Dempster-Shafer model is an example of hybrid DSm, where all intersections are con-
strained to be empty sets. For the three-element example from (4.1.16) the hyper-power set (4.1.15) is
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defined as:

α0 :=∅
α1 :=θ1 6= ∅
α2 :=θ2 6= ∅
α3 :=θ3 6= ∅
α4 :=θ1 ∪ θ2 6= ∅
α5 :=θ1 ∪ θ3 6= ∅
α6 :=θ2 ∪ θ3 6= ∅
α7 :=θ1 ∪ θ2 ∪ θ3 6= ∅
α8 :=(θ1 ∩ θ2) ∪ θ3 = α3 6= ∅
α9 :=(θ1 ∩ θ3) ∪ θ2 = α4 6= ∅

α10 :=(θ2 ∩ θ3) ∪ θ1 = α1 6= ∅
α11 :=θ1 ∩ θ2 ∩ θ3 = ∅
α12 :=(θ1 ∪ θ2) ∩ θ3 = ∅
α13 :=(θ1 ∪ θ3) ∩ θ2 = ∅
α14 :=(θ2 ∪ θ3) ∩ θ1 = ∅
α15 :=θ1 ∩ θ2 = ∅
α16 :=θ1 ∩ θ3 = ∅
α17 :=θ2 ∩ θ3 = ∅
α18 :=(θ1 ∩ θ2) ∪ (θ1 ∩ θ3) ∪ (θ2 ∩ θ3) = ∅

(4.1.17)

The frame DΘ defined with constrains (4.1.17) has now |DΘ| = 8 = |2Θ| has different elements and
corresponds to Shafer’s model. This proposition set definition will be used in the application of the hybrid
DSm fusion rules in occupancy grids.

In the hybrid Dezert-Smarandache model definition for the stationary-dynamic-free example, all ele-
mental hypotheses are exclusive, i.e., there should not be any cells which are at the same time for example
stationary and free. Meaning of the states {α0, . . . α7} is the same as in the Dempster frame as described
in Section 4.1.2. Propositions {α8, . . . α18} in the hybrid DSmT model describe conflict states. These
sets of elemental hypotheses cannot be observed in the real world, but they might be used for deduction
of the origin of contradictory information. Meaning of the states {α15, α16, α17, α11} could be described
as:

α15 = {S ∩D} – stationary and dynamic state,
α16 = {S ∩ F} – stationary and free state,
α17 = {D ∩ F} – dynamic and free state,

α11 = {S ∩D ∩ F} – stationary and dynamic and free state.

The state α18 = {(S∩D)∪(S∩F )∪(D∩F )} describes that the grid cell is in either {S∩D} or {S∩F}
or {D∩F} states. Prepositions {α8, α9, α10} narrows down the hypothesis to a single intersection and a
union of states. And finally, the states {α12, α13, α14} define which intersection can be excluded, as the
states {α4, α5, α6} exclude one of the elemental hypotheses.

In the occupancy grid area, the DSmT was applied to utilize the fusion rules specially defined for this
framework on the two elemental frame of discernment Θ = {O,F} [Dezert et al., 2015; Moras et al.,
2015; Wang et al., 2018]. This thesis presents application of the hybrid DSm with Shafer constrains on
the three-element frame of discernment Θ = {S,D, F}.

4.2 Heterogeneous fusion rules

Probabilistic information fusion is the core step of the occupancy grid algorithm. In this step, the
processed sensor scan in the form of intermediate grid evidences is fused into a prior occupancy grid
state. This produces a new grid posteriori estimate as in the measurement update step in common filtering
algorithms such as Bayes of Kalman Filter [Thrun et al., 2005]. The sensor information fusion can be
performed using different fusion rules, tailored for specific applications and requirements.

Each sensor scan consists of a number of detections or a list of contour points (see Section 3.4.1.2).
The sensor scan corresponds to a single time measurement, meaning all detections have the same time
stamp.
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As presented in the Section 3.4.2.4, automotive sensor information can be divided into four different
evidences represented on four intermediate grids. All intermediate grids can be produced from the same
sensor scan; therefore, they should contribute equally to the a posteriori grid output. Moreover, the fusion
of the intermediate grids should be associative and commutative, because all these evidences come from
the same time and contribute the same environment state.

On the other hand, new cell state is inferred only from prior information and current measurements.
In a real system we might safely assume that the time cannot flow backward, and the new measurements
are fused in natural chronological order (from the oldest to newest). Based on that there is no need to
maintain the full associativity of different timestamps data fusion and this operation may not be reversible
(reverting time flow can give different results).

Therefore, the fusion of the intermediate grids has to be associative, nevertheless the combination
with the prior cell state does not have to hold that condition. For this specific occupancy grid application,
three common fusion architectures can be specified as presented in Figure 4.1.
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state

𝐼𝐺𝑆 𝐼𝐺𝐷 𝐼𝐺𝑆∪𝐷 𝐼𝐺𝐹
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𝐼𝐺𝐹

New

state

(b) Instantaneous 5-element fusion
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𝐼𝐺𝑆∪𝐷

𝐼𝐺𝐹

New
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(c) Hybrid two-step fusion

Figure 4.1. Fusion architectures designed for combination of intermediate grids into prior
occupancy grid cell states. The symbol ⊗ represents fusion operation.

The first option is to fuse the intermediate grids sequentially directly into the prior state (Fig-
ure 4.1(a)). As an opposite, the second type of fusion is instantaneous or centralized fusion (Fig-
ure 4.1(b)). Third option separates the fusion of measurement intermediate grids and the prior state
in a hybrid two-step fusion (Figure 4.1(c)).

While there are various fusion rules which can be applied in the occupancy grid algorithm, a few of
them hold the associativity property: Bayesian, Dempster and conjunctive rule. Only these rules can be
applied if the sequential or centralized fusion architecture is utilized. In the hybrid two-step fusion, the
associative rule has to be applied in the first step, while the other step can be selected from a bigger set
of non- or semi-associative combination rules.

The hybrid two-step fusion is already recommended for application in some complex fusion rules
such as hybrid Dezert-Smarandache (DSmH) or Proportional Conflict Redistribution v.1-6 (PCR1-6)
rules of combination [Smarandache and Dezert, 2004, 2005]. Based on these premises, the hybrid two-
step fusion is applied in the presented occupancy grid algorithm.

The following section will describe the fusion rules applicable for the different probability represen-
tation formalisms.
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4.2.1 Measurement evidence representation

The intermediate grid evidences are stored as a single number in the range [0, 1], which describe the
hypothesis evidence. The value describes the measurement belief that the hypothesis is true (static/dy-
namic/occupied or free).

To convert the evidence into occupancy probability, one can apply the linear scaling [Porębski, 2020]:

pS(occupied) =0.5 · (1 + IGS)

pD(occupied) =0.5 · (1 + IGD)

pS∪D(occupied) =0.5 · (1 + IGS∪D)

pF (occupied) =0.5 · (1− IGF )
(4.2.1)

Additionally, evidences might be used to directly construct BBAs for the Dempster-Shafer frame-
work. Using the notation defined in (4.1.13) the BBAs definition follows:

mS(α1) =IGS mF (α7) =1− IGS ∀i={0,2,3,4,5,6}mS(αi) =0

mD(α2) =IGD mD(α7) =1− IGD ∀i={0,1,3,4,5,6}mD(αi) =0

mF (α3) =IGF mF (α7) =1− IGF ∀i={0,1,2,4,5,6}mF (αi) =0

mS∪D(α4) =IGS∪D mS∪D(α7) =1− IGS∪D ∀i={0,1,2,3,5,6}mS∪D(αi) =0

(4.2.2)

4.2.2 Bayesian framework fusion rules

The Bayesian probability still dominates the area of occupancy grid probabilistic frameworks. As the
name follows, the most commonly used fusion rule in this approach is the Bayesian rule defined as:

p(Gt+1) =
p(Gt) · p(G|zt)

p(Gt)p(G|zt) + (1− p(Gt)) (1− p(G|zt))
(4.2.3)

where:

p(Gt+1) – new, updated occupancy map probabilities (a posteriori grid),
p(Gt) – prior map of occupancy probabilities (a priori grid),

p(G|zt) – set of probabilities of the grid being occupied given sensor measurements. This value can
be derived from the intermediate grid evidences using equation (4.2.1).

This fusion rule is fully associative and commutative, and it can be used in any fusion architecture.
Nonetheless, Bayesian fusion is unable to model sensor uncertainty and lack of sensor conflict resolution.
However, this fusion rule has a major advantage for embedded automotive applications: it can be easily
optimized to significantly reduce its computational complexity. To do that, the fusion rule must undergo
a logit transformation:

l = logit(p) = log

(
p

1− p

)
p =

el

1 + el
(4.2.4)

Using this transformation, the Bayesian fusion equation takes form:

l(Gt+1) = l(Gt) + l(G|zt) (4.2.5)

This log-odds form of the Bayesian fusion rule requires only a single addition operation in order to
fuse new evidence, therefore it does not require much computational resources to be developed in the
automotive environment [Markiewicz and Porębski, 2020; Markiewicz et al., 2018].

There are plenty of different fusion rules applicable in the Bayesian framework, such as the afore-
mentioned De Morgan and Maximum Policy (Equations (3.4.6) and (3.4.7)). Definition of other fusion
rules can be found in [Markiewicz and Porębski, 2020].
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4.2.3 Combination rules for the Dempster Shafer evidence framework

The Bayes and Dempster–Shafer approaches are both based on the concept of attaching weights to
the postulated states of the system being measured. While Bayes applies a more ”classical” meaning to
these in terms of well-known ideas about probability, Dempster–Shafer theory assigns its mass to all
the unions of the entities that comprise a system. This approach requires the definition of new rules of
combination that operates on the Basic Belief Assignments.

The Shafer’s model requires for all elementary hypotheses θ1, θ2, . . . , θn to be truly exhaustive and
exclusive. Therefore, for the Shafer’s model, the BBA of the null set is always zero (m(∅) = 0). The
exhaustive constraint is revoked in the Smets’ model, and there the mass of the null set can be greater
than zero (m(∅) ≥ 0).

This section covers two of the most common rules of combination applicable to the DST framework:
Conjunctive rule, which operates on Smets’ model and the Dempster rule of combination working in
classical Shafer’s model.

4.2.3.1 Conjunctive rule of combination

The conjunctive rule (known also as conjunctive consensus) for two BBAs m1 and m2 in the DST
framework is defined ∀A ∈ 2Θ by:

m∩(A) =(m1 ∩©m2)(A) =
∑

X∩Y=A

m1(X)m2(Y ) ∀X,Y ∈ 2Θ (4.2.6)

m∩(·) is not a proper belief assignment satisfying the Shafer’s definition, since in most cases the sources
do not totally agree (there exists partial and/or total conflicts between sources of evidence), so that
m∩(∅) > 0. Therefore, this fusion rule can be applied only to the Smets’ model.

This fusion rule is commutative, associative, preserves the neutral impact of VBA, and can be defined
for k ≥ 2 sources of information:

m∩(A) =(m1 ∩©m2 ∩© . . . ∩©mk)(A) =
∑

X1∩X2...∩Xk=A

k∏
i=1

mi(Xi) ∀X1, X2, . . . Xk ∈ 2Θ (4.2.7)

The conjunctive rule for k ≥ 2 sources can be also fused sequentially, meaning it can be used as a first
fusion step for the hybrid fusion [Smarandache and Dezert, 2004]. When fusing four intermediate grids
together with the equation of the intermediate grid fusion case, equation (4.2.7) takes form:

m∩(A) = (mS ∩©mD ∩©mF ∩©mS∪D)(A) = (((mS ∩©mD) ∩©mF ) ∩©mS∪D) (A) (4.2.8)

Therefore, each intermediate grid BBA can be fused sequentially using the same equation set.

4.2.3.2 Dempster rule of combination

The Dempster’s rule of combination is the most widely used rule of combination so far in many
expert systems based on belief functions since historically it was proposed in the seminal book of Shafer
in [Shafer, 1976]. This rule, although presenting interesting advantages (mainly the commutativity, asso-
ciativity and neutral impact of VBA) fails however to provide coherent results due to the normalization
procedure it involves.

Dempster’s rule is based on the conjunctive consensus, however, in order to meet with the Shafer’s
definition, it transfers the conflicting mass to non-empty sets proportionally to their resulting masses

mDS(A) =

m∩(X) · 1

1−m∩(∅)
, ∀X ⊆ 2Θ \ ∅

0 , X ∈ {∅}
(4.2.9)
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As mentioned in [Smarandache and Dezert, 2005] Dempster’s rule consists of two steps: first applies
the conjunctive consensus rule and the second normalizes the masses using conflict measurement

k12 =
1

1−m∩(∅)
(4.2.10)

Therefore, in the hybrid two-step fusion, the Dempster’s rule can be applied as a second step coupled
with conjunctive consensus.

4.2.4 Combination rules for the Dezert-Smarandache evidence framework

The DSmT evidence framework extends the DST by the introduction of additional possible proposi-
tions in the power set 2Θ by creating hyper-power set DΘ as presented in Section 4.1.3.

Smarandache and Dezert in [Smarandache and Dezert, 2004] defines two types of hyper power sets:
free and hybrid. The free hyper-power set allows the existence of all possible unions and intersections
of elemental hypotheses θi in the hyper-power set DΘ. The hybrid power set enables the definition of
constrains on the permitted subsets. It can be used to define DST power set as a variant of hybrid hyper-
power set and use DSmT rules in combination with the Dempster’s model.

4.2.4.1 Classic DSm rule of combination

When the free DSm model holds for the fusion problem under consideration, the classic DSm rule
of combination (DSmC in short) of two independent sources of evidences over the same frame Θ with
belief functions corresponds to the conjunctive consensus of the sources. It is given by:

mDSm(A) =
∑

X∩Y=A

m1(X)m2(Y ) ∀X,Y ∈ DΘ (4.2.11)

This rule of combination is commutative and associative and can always be used for the fusion of sources
involving fuzzy concepts. This rule can be directly and easily extended for the combination of k ≥ 2
independent sources of evidence similarly as the conjunctive rule presented in (4.2.7):

mDSm(A) =
∑

X1∩X2...∩Xk=A

k∏
i=1

mi(Xi) ∀X1, X2, . . . Xk ∈ DΘ (4.2.12)

4.2.4.2 Hybrid DSm rule of combination

As aforementioned, the DSmT is a new theory that is in permanent dynamic evolution, which may
lead to different kinds of inconsistencies in nomenclature. Daniel noticed that there are two different
definitions of the hybrid DSm rule of combination [Daniel, 2014]. In this thesis the first definition of the
hybrid DSm rule (DSmH in short) is assumed based on [Dezert, 2002; Smarandache and Dezert, 2004].

The DSmH is defined as:

mDSmH(X) = φ(X) [S1(X) + S2(X) + S3(X)] (4.2.13)

where φ(X) is a characteristic non-emptiness function of a setX , i.e., φ(X) = 1 ifX /∈ ∅ and φ(X) = 0
otherwise.

J. Porębski Occupancy grid environmental modeling for automotive applications



4.2 Heterogeneous fusion rules 63

S1(A), S2(A) and S3(A) are defined for two sources (for n-ary versions
see [Smarandache and Dezert, 2004]) as follows:

S1(A) =mDSmC(X) =
∑

X∩Y=A

m1(X)m2(Y ) ∀X,Y ∈ DΘ (4.2.14)

S2(A) =
∑

[(u(X)∪u(Y ))=A]∨
[(u(X)∪u(Y ))∈∅∧A=Θ]

m1(X)m2(Y ) ∀X,Y ∈ ∅ (4.2.15)

S3(A) =
∑

X∪Y=A,X∩Y=∅

m1(X)m2(Y ) ∀X,Y ∈ DΘ (4.2.16)

where u(X) is the union of all singletons θi that compose X and Y and the set Θ describes a fully
ignorant/vacuous belief.

The formulas S1(A), S2(A) and S3(A) of the DSmH combination can be explained as:

S1(A) – corresponds to the classic DSm rule on the free DSm model,

S2(A) – represents the mass of all relatively and absolutely empty sets in both the input BBA’s,
which arises due to non-existential constraints and which is transferred to the total or
relative ignorance,

S3(A) – transfers the sum of masses of relatively and absolutely empty sets, which arise as conflicts
of the input BBA’s, to the non-empty union of input sets [Daniel, 2014].

Hybrid DSm rule of combination is commutative but not associative. Therefore, it cannot be applied
in a sequential fusion step in the occupancy grid algorithm. Nevertheless, it can be coupled with the
DSmC rule in the two-step fusion architecture as presented in [Smarandache and Dezert, 2004].

4.2.5 Visualization of the occupancy grids

Presentation of the occupancy grid is often an underestimated problem of data visualization. In
automotive applications, grids are relatively small – usually a grid has around half a million of
cells [Porębski et al., 2019]. A natural choice to present such data is to convert the grid into an image.
On this scene, each pixel corresponds to the cell state. Conveniently, the time sequence of grids may be
showcased as a video presenting how the occupancy evolves with changing environment [Andriamahefa,
2017; Thrun et al., 2005].

For a binary state or single-valued occupancy grid, the grayscale image is usually chosen for the
occupancy probability or other single value representation.

Nevertheless, the human eye can be easily fooled by the gray scale images. Our perception of contrast
depends on the overall image lightness, and some gray scale levels might appear different depending on
their surroundings. An example of this so-called brightness contrast illusion is presented in Figure 4.2.
The middle gray square appears darker in the bright environment and brighter in the dusky surround-
ing [Takahashi, 2017].

As a solution for that problem, the author proposes the usage of grid-structured pie charts, where each
pie represents the cell state. This approach is not feasible for visualizing high areas of the environment,
but might be used for displaying small grid areas, omitting brightness problems.

Moreover, as the grid quality is usually determined based on a visual assessment, a secondary presen-
tation method can be useful to spot any grid representation issues even during the algorithm development.

In this thesis, the mapping of probabilities p into the color value is defined as an inverted gray scale:

RGB = {1− p, 1− p, 1− p} (4.2.17)
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Free space probability

Occupancy probability

Occupied

Free

Unknown

Figure 4.2. Brightness contrast illusion in the gray-scale occupancy grid and proposed
grid structured pie charts as a grid visualization.

where RGB is a Red-Green-Blue triplet, where each value represents the intensity of the corresponding
color, i.e., RGB = {1, 1, 1} – white, RGB = {0, 0, 0} – black, RGB = {0, 1, 1} – cyan, etc.

An example of a grid mapped using (4.2.17) is presented in the Section 7.3 in Figure 7.8.
Visualization of the occupancy grids which are based on the three-element frame of discern-

ment Θ = {S,D, F} can be done similarly by using colored map of cells. For the grid visualization
Steyer et al. proposed linear colormap based on plausibility [Steyer et al., 2018]. In this thesis, the color
mapping definition is modified such that the red color defines the dynamic belief, blue color represents
the static and the green coefficient mean free space.

RGB =

1−
∑
X∈2Θ,

X∩{D}=∅

m(X), 1−
∑
X∈2Θ,

X∩{F}=∅

m(X), 1−
∑
X∈2Θ,

X∩{S}=∅

m(X)

 (4.2.18)

RGB = {pl({D}), pl({F}), pl({S})} (4.2.19)

An example of a grid mapped using (4.2.19) is presented in the Section 4.2.6 in Figure 4.4 and later in
the Chapter 7.

The Dempster-Shafer BBA cell state can be also visualized as a triangular graph plot as presented
in [Jøsang et al., 2005]. Nevertheless, in this work, the pie chart grid is used also in the Bayesian cell
visualization. The color of each belief mass is determined using (4.2.19) to keep consistent colormaps
between different pictures. Legend for pie charts is presented in Figure 4.3.

𝑝(occupancy)

𝑝(free space)

(a) Bayesian cell – two values

𝑚(𝛼0)− ∅

𝑚(𝛼1)− {S}

𝑚(𝛼4)− {𝑆 ∪ 𝐷} 𝑚(𝛼2)− {𝐷}

𝑚 𝛼5 − {𝐷 ∪ 𝐹}

𝑚(𝛼3)− {𝐹}

𝑚(𝛼6)− {𝑆 ∪ 𝐹}

𝑚(𝛼7)− {𝑆 ∪ 𝐷 ∪ 𝐹}

(b) Dempster Shafer cell – 8 values/colors

Figure 4.3. Legend for the pie chart cell state visualization.
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4.2.6 Quantitative evaluation of contradictory evidences

Occupancy grid visualizations presented in Section 4.2.5 are able to display the occupancy grid state
and qualitatively determine the presence of sensor conflict. Nevertheless, for an automated occupancy
grid assessment, the sensor conflict should be measured quantitatively. Depending on the application and
researcher preferences, different metrics are used to measure evidence disagreement.

Commonly, sensor conflict metrics are used to measure the distance between two Basic Belief As-
signments to measure the disagreement between them. An example of such metric can be Dempster
normalization factor k12 [Shafer, 1976], diffBetP metric [Jousselme et al., 2001] or hidden sensor con-
flict [Daniel and Kratochvíl, 2020].

In the occupancy grid conflict assessment, however, self-conflict measurement is needed. For simple
quantitative grid conflict measurement, three different metrics can be used: entropy, specificity and auto-
conflict. The values of these metrics for the example grid from the previous section are visualized in
Figure 4.4.

d) Auto conflictc) Entropy

b) Specificitya) Raw grid

Figure 4.4. Presentation of quantitative conflict metrics for the example Dempster-Shafer’s grid snap-
shot. The gray-scale for entropy and auto conflict is changed in a way that white areas represent
more inconsistency in the cell evidence. Most of the conflicts are visible in the dynamic residual area
(red area in the middle of the top left grid image and as an envelope of stationary object (blue area in the bottom
of the top left grid image).
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4.2.6.1 Entropy and specificity

In [Yager, 2008] Yager introduced the concepts of entropy and specificity in the framework of
Dempster-Shafer’s theory. These parameters are complementary and can be used to indicate the qual-
ity of evidence.

A high value of entropy can indicate inconsistency in the distribution of mass beliefs. The entropy of
a cell can be calculated as follows:

Ec = −
∑

X⊆PΘ

m(X) · ln(pl(X)) (4.2.20)

where pl(X) is the plausibility of X .

The specificity parameter provides an indication of how the belief mass is dispersed. Therefore, it has
a higher value if the mass distribution is less doubtful. The specificity value of a cell can be calculated as
follows:

Sc =
∑

X⊆PΘ\∅

m(X)

|X|
(4.2.21)

Considering the two parameters, we can conclude that: the lower the entropy, the more consistent is the
evidence; and the higher the specificity, the less diverse it is. Therefore, for better certainty we need low
entropy and high specificity [Valente et al., 2018].

The values of these evidence quality measurements are visualized using gray-scale images in Fig-
ure 4.4. The specificity is presented using the same inverted gray scale as the Bayesian occupancy
grid (4.2.17). For the entropy, however, the normal gray scale was used to amplify the contrast in the
output image.

4.2.6.2 Auto conflict

Another method of assessing sensor conflict is the auto-conflict measurement defined
in [Martin et al., 2008; Osswald and Martin, 2006]. It is computed by applying the conjunctive rule of
combination to the cell state itself:

a(m) = m∩(∅) = (m ∩©m)(∅) (4.2.22)

This definition can be extended to higher degrees of auto conflict, but in most cases the first-order auto
conflict is enough to detect and measure sensor conflicts.

The auto-conflict behaves similarly to the entropy measure, the area with higher value is characterized
with more inconsistencies in evidences as visualized in Figure 4.4.c.
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4.3 Occupancy grid fusion

Information fusion is the core of automotive occupancy grid processing. Every valid sensor detection
is firstly a subject for the inverse sensor modeling, then it is fused into the occupancy grid environment
representation. The probabilistic fusion has to retain reliability robustness even during the processing of
uncertain or even false sensor measurements.

Probability representation frameworks, as well as fusion architectures and rules of combination, are
already presented previously in the current chapter. This section focuses on the application and testing
of three fusion architectures, which put to use five different rules of combination.

4.3.1 Evaluated fusion architectures

This thesis investigates the topic of multi-sensor automotive occupancy grid, which should be able
to operate on heterogeneous sensor sources. As explained in section 4.2, the best fusion setup for that set
of sensors is the two-step hybrid architecture. Based on the capabilities of the presented sensor fusion
rules, three fusion architectures models were selected to highlight the character of every probabilistic
representation framework. Developed and implemented hybrid fusion architectures are presented visually
in Figure 4.5.

Prior

state𝐼𝐺𝑆

𝐼𝐺𝐷

𝐼𝐺𝑆∪𝐷

𝐼𝐺𝐹

New

state
𝐵𝑎𝑦𝑒𝑠 𝐵𝑎𝑦𝑒𝑠

(a) Bayesian inference

Prior

state𝐼𝐺𝑆

𝐼𝐺𝐷

𝐼𝐺𝑆∪𝐷

𝐼𝐺𝐹

New

state
𝐷𝑆∩

(b) Dempster-Shafer Theory (DST)

Prior

state𝐼𝐺𝑆

𝐼𝐺𝐷

𝐼𝐺𝑆∪𝐷

𝐼𝐺𝐹

New

state
𝐷𝑆𝑚𝐶 𝐷𝑆𝑚𝐻

(c) Dezert-Smarandache Theory
(DSmT)

Figure 4.5. Developed hybrid fusion architectures tailored for usage within different fusion frame-
works. Symbol ∩© represents conjunctive fusion rule, DS – Dempster rule of combination, DSmC
and DSmH – classical and hybrid Dezert-Smarandache rules accordingly.

Recent directives for automated driving such as [Aptiv et al., 2019;
International Organization for Standardization, 2021] suggest that some value of uncertainty should
be measured within the perception system. Bayesian inference framework is not able to model sensor
uncertainty, but the DST and DSmT frameworks can. For these two cases, the hybrid fusion architecture
accumulates sensor conflicts in the first stage. Redistribution of the internal sensor conflict is modeled
in the second step, together with the application of the Dempster’s model constraints.

4.3.1.1 Bayesian inference

Figure 4.5(a) depict developed Bayesian inference architecture. In this setup, both fusion steps are
managed using the same Bayesian fusion rule:

pposteriori =
pprior · pmeasurement

pprior · pmeasurement + (1− pprior) (1− pmeasurement)
(4.3.1)

where:

pposteriori – a posteriori cell occupancy probability (updated cell state),
pprior – prior occupancy probability of a cell,

pmeasurement – measurement occupancy probability computed from intermediate grid evidences us-
ing equation (4.2.1).
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Equation (4.3.1) is used for sequential fusion of the intermediate grid evidences in the first step and
then may be used to fuse the prior cell probability into the temporal result. In front of application of the
Bayesian fusion rule, the conversion of evidences into Bayesian probabilities has to be computed using
equation (4.2.1).

For an embedded algorithm’s implementation, the logit transformation can be used, but it requires
that all inverse sensor models deliver occupancy probabilities in the same domain of log odds. This thesis
considers only the probability representation, because it ensures that the same inverse sensor model can
be reused for all fusion frameworks.

As aforementioned, the Bayesian inference method is a simple and efficient way to represent the
occupancy grid. This solution can be applied for systems which require low computational complexity
without uncertainty modeling.

4.3.1.2 Dempster Shafer Theory

Representation of probabilities as beliefs and masses offers new possibilities for uncertainty model-
ing and sensor conflict redistribution. This architecture, visually presented in Figure 4.5(b), makes use
of the two most commonly used fusion rules: conjunctive and Dempster combination. Nevertheless, the
proposed setup is designed in a way that the Dempster combination rule can be swapped with other
fusion rules if only they are able to properly redistribute the sensor conflict.

For the DST and DSmT occupancy grid in this thesis static-dynamic-free frame of discernment is an-
alyzed (Θ = {S,D, F}), which beliefs are described in (4.1.13). In order to present the fusion examples
clearly the following notation is assumed:

mi
1 =m1(αi) mi

2 =m2(αi) (4.3.2)

where the definition of each subset αi is specified also in 4.1.2.

Conjunctive rule of combination

The conjunctive rule of combination is described in Section 4.2.3.1. This rule holds associative and
commutative properties; therefore, the intermediate grid fusion can be done sequentially without loss of
generality.

Assuming that the initial state (m1(init)) is a VBA:

∀i∈{0,...,6}mi
1(init) =0 m7

1(init) =1 (4.3.3)

And all IG BBAs defined as (4.2.2) are fused as m2 with constrains:

∀i∈{1,2,3,4,7}mi
2 ≥0 ∀i∈{0,5,6}mi

2 =0 (4.3.4)

The simplified conjunctive rule equation takes form:

m∩(α0) =m0
1 +m1

1(m2
2 +m3

2) +m2
1(m1

2 +m3
2) +m3

1(m1
2 +m2

2 +m4
2) +m4

1m
3
2

m∩(α1) =m1
1(m1

2 +m4
2 +m7

2) +m1
2(m4

1 +m7
1)

m∩(α2) =m2
1(m2

2 +m4
2 +m7

2) +m2
2(m4

1 +m7
1)

m∩(α3) =m3
1(m3

2 +m7
2) +m7

1m
3
2

m∩(α4) =m4
1(m4

2 +m7
2) +m7

1m
4
2

m∩(α5) =0

m∩(α6) =0

m∩(α7) =m7
1m

7
2

(4.3.5)

J. Porębski Occupancy grid environmental modeling for automotive applications



4.3 Occupancy grid fusion 69

This fusion rule operates on the Smets’ model, and it accumulates sensor conflict measurements in the
form of mass m∩(α0). Therefore, the first step of the Dempster fusion architecture has to be normalized
to valid Dempster’s model of evidence.

For the direct occupancy grid implementation, the equation (4.3.5) can be simplified for the sequen-
tial fusion of the intermediate grid due to the specific structure of their BBAs (4.2.2). Detailed derivation
of the equation (4.3.5) is presented in the Appendix A.

Dempster rule of combination

Second stage of the DST fusion architecture is realized using Dempster rule of combination defined
in Section 4.2.3.2. Similarly, to the conjunctive rule, it also holds associate and commutative properties.

For the three-element frame of discernment, the fusion rule takes form:

k12 =
1

1−m∩(α0)
(4.3.6)

mDS(A) =

{
m∩(αi) · k12 , A ∈ {α1, . . . , α7}
0 , A = α0

(4.3.7)

which redistributes the sensor conflict m∩(α0) uniformly to all other non-zero masses.
Uniform conflict redistribution assumes that the sensor disagreement originates equally from dif-

ferent evidences. This approach is a controversial topic for some researchers [Dezert et al., 2012;
Khan and Anwar, 2019; Odgerel and Lee, 2016; Zadeh, 1996] who argue its correctness on various ex-
amples. In order to resolve controversies related to the Dempster rule, in presented fusion setup, it can
be replaced with other weighted operator (WO) or proportional conflict redistribution (PCR) rules as
described in [Smarandache and Dezert, 2005].

The Dempster combination rule equation (4.3.7) cannot be computed for completely conflicting
sources, where m∩(α0) = 1. Nevertheless, in the real automotive application, this condition has to be
handled in the fusion algorithm. For the implementations presented in this thesis, in case of full conflict,
the output cell is reverted to the initial vacuous hypothesis state (VBA):

if m∩(α0) = 1 then mDS(A) = mv(A) =

{
0 , A ∈ {α0, . . . , α6}
1 , A = α7

(4.3.8)

Based on the characteristics of the occupancy grid sensor inputs, the masses corresponding to propo-
sitions α5 = {S ∪ F} and α6 = {D ∪ F} will be always equal to zero if the Dempster rule of combi-
nation would be applied in the second fusion step. This means that some sensor conflicts, e.g., between
stationary and free evidences cannot be effectively solved using the DST framework with the default
fusion rules.

4.3.1.3 Dezert-Smarandache Theory

Desert-Smarandache model of evidences provides a more complete description of the frame of dis-
cernment. Elements of the hyper-power set define not only unions, but also intersections of elemental
hypotheses. Moreover, DSmT offers methods for the reduction of the full hyper-power proposition set of
the free DSm model into the Dempster’s frame of discernment, defined as a specific hybrid DSm model.

The hybrid DSmT two-step fusion is an analog to the Dempster architecture, utilizing the classic
DSm rule (DSmC) as a first step and the hybrid DSm (DSmH) rule as a second as presented in Fig-
ure 4.5(c).
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Classic DSm rule of combination (DSmC)

The classic DSm rule of combination (DSmC) is an equivalent of the conjunctive Dempster rule
of combination. It is associative and commutative but can be applied only to the free DSm model. As
described in Section 4.1.3 the intersections of elemental hypotheses do not have any physical explanation
for the occupancy grid states. Nevertheless, using the DSmC rule, these masses can be exploited as a
detailed sensor conflict representation. For example, the belief of subset α16 = {S∩F} can be explained
as a conflict between static and free space measurements. Therefore, the free DSm model of evidences is
better suited for managing sensor conflict, as it can represent conflicts with 13 beliefs instead of a single
mass of empty set in the DST.

The detailed conflict representation can be also a downside of the DSmC rule, as it increases the
complexity and number of computations required for this fusion. Nevertheless, sensor measurement ev-
idences presented in the form of intermediate grids have specific and simple BBA definitions (equa-
tion (4.2.2)), which can simplify the DSmC fusion. For clarity, this section provides only the final,
reduced equations of the rules of combination. Derivation procedure of this equation can be found in
Appendix A.

First step fusion using DSmC rule starts with the assumption that the initial state m1(init) is a fully
ignorant state – a Vacuous Belief (VBA):

∀i∈{0,...,18}\{7}m
i
1(init) =0 m7

1(init) =1 (4.3.9)

Furthermore, the intermediate grid BBAs (4.2.2) are constrained by the DSmT framework as:

∀i∈{1,2,3,4,7}mi
2 ≥0 ∀i∈{0,5,6,8,9,...,18}m

i
2 =0 (4.3.10)

Based on these two assumptions, the DSmC fusion rule takes form:

mDSmC(α0) =0

mDSmC(α1) =m1
1m

1
2 +m1

1m
4
2 +m4

1m
1
2 +m1

1m
7
2 +m7

1m
1
2
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1m

2
2 +m2

1m
4
2 +m4

1m
2
2 +m2

1m
7
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1m
2
2
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3
2
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(4.3.11)
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Same as the conjunctive rule, equation (4.3.11) can be further simplified for each particular IG BBA.
Nevertheless, using evidences in the form of four intermediate grids, the DSm rule assigns non-zero
beliefs to only 10 propositions out or 19 possible subsets of hypotheses.

Hybrid DSm rule of combination (DSmH)

The hybrid DSm rule (DSmH), similarly to the Dempster fusion, aims to distribute sensor conflict
into the propositions supported by the hybrid DSm model. The hybrid DSm rule can differentiate between
various types of conflicts and transfer the conflicting mass more accurately than the Dempster rule.
The DSmH rule does that by transferring conflict to the partial total ignorance upon the principle that
between two conflicting hypotheses, one is right [Smarandache and Dezert, 2005]. Nevertheless, if this
assumption is not enough, this particular fusion rule might be as well replaced by other combination
rules i.e., proportional conflict redistribution or minC rule.

The DSmH fusion step is performed only once to fuse together the output of DSmC combination
(m1) with the prior cell state (m2). Both input BBAs have some constrains, defined as:

∀i∈{1,2,3,4,7,11,12,15,16,17}m
i
1 ≥0 ∀i∈{0,5,6,8,9,10,13,14,18}m

i
1 =0 (4.3.12)

∀i∈{1,...,7}mi
2 ≥0 ∀i∈{0,8,...,18}m

i
2 =0 (4.3.13)

The hybrid DSm rule of combination for the aforementioned BBAs can be simplified into the fol-
lowing set of equations:
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(4.3.14)

Detailed derivation of the equation (4.3.14) is presented in the Appendix A.

4.3.2 Fusion rules comparison

To compare the three aforementioned two-step fusion architectures (Figure 4.1) an example of a
single cell evidences fusion is presented in this section.

The example consists of three consecutive fusion iterations. First iteration describes the initialization
phase of the occupancy grid. The second takes the output of the first iteration and presents a common
situation when fusion improves the state estimate in the presence of small internal sensor conflict. The
third iteration of this example takes the output of the second iteration and fuses it with highly conflicting
input data to depict multi-sensor conflict redistribution differences between fusion rules.

Cell values for both steps of each fusion iteration are presented in the form of pie charts in Figures
4.6, 4.7 and 4.8 and as numerical values in Tables 4.2, 4.3 and 4.4.

Input evidences

The intermediate grid input values for each fusion iteration are presented in Table 4.1. Input values
were selected arbitrarily in order to present clear differences between different fusion methods.
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In the first step, only the static or dynamic evidence is fused into the initial cell state. Second input
data contains a partially free and static cell state, which corresponds to a meager instant sensor conflict.
The third measurement delivers strong evidence about the dynamic cell state with some chance of free
area. Third fusion iteration is an example of multi-sensor conflict, which is described in Section 3.5.

Table 4.1. Intermediate grid input values for each fusion iteration.

Intermediate grid evidence First iteration Second iteration Third iteration
IGS 0 0.1 0
IGD 0 0 0.2
IGF 0 0.2 0.4
IGS∪D 0.3 0 0

Visualization of fusion iterations

Three consecutive fusion iterations present how each grid framework handles different sensor con-
flicts. Each iteration can be described as:

First Iteration – Initialization of the cell state – Figure 4.6
Second Iteration – Instant sensor conflict – Figure 4.7

Third Iteration – Multi sensor conflict – Figure 4.8

As presented in Figure 4.6 the initial state for the Bayesian occupancy grid is p = 0.5, while for the
DS and DSm frameworks it is the full ignorance state (VBA). Presented fusion architectures hold the
property of neutral impact of p = 0.5 and VBA, therefore, the results of the first input measurements are
an exact copy of the input data. Result of the Bayesian fusion is obtained using normalization (4.2.1),
which converts intermediate grid evidences into probability.

Measurement

𝐼𝐺𝑆

𝐼𝐺𝐷

𝐼𝐺𝐹

𝐼𝐺𝑆∪D
DSmT

Dempster

Shafer

Theory

Bayesian

inference

Prior state Fused state

Figure 4.6. Graphical visualization of fusion example – Iteration 1: Fusion into initial cell state.

Second fusion iteration presented in Figure 4.7 fuses 2nd intermediate grid evidences into the first
fusion output. In this example, the outputs from DST and DSmT architectures are visually similar. Small
differences in values are still present and are discussed in the next section.

The result of the third fusion iteration (Figure 4.8) varies significantly depending on the fusion ar-
chitecture. Dempster framework is able to redistribute conflict only to already non-zero masses, while
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Figure 4.7. Graphical visualization of fusion example – Iteration 2: Instant sensor conflict.

the DSmT framework can affect all valid subsets of propositions. In this example, a mass for subset
α6 = {D ∪ F} is generated and is clearly visible as a yellow slice in the DSmT fusion output.
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Figure 4.8. Graphical visualization of fusion example – Iteration 2: Multi sensor conflict.

Cell state values analysis

Graphical visualization of the fusion presents some insight into the different architectures, however,
to complete the picture, the exact values of each cell are presented in Tables 4.2, 4.3 and 4.4. Addition-
ally, the fusion results can be analyzed for the quantitative values of sensor conflict in Table 4.5.

Bayesian cell holds only a single occupancy probability value (Table 4.2). This straightforward rep-
resentation loses information about the type of occupancy and sensor conflicts.

In the Dempster-Shafer theory, the power set for the three-elements frame of discernment consists
of 8 propositions. Although due to the structure of the input evidences, the masses corresponding to
propositions α5 = {S ∪ F} and α6 = {D ∪ F} will be always empty in the DST approach, which is
highlighted in table as ’N/A’ value. The mass of an empty set (α0 = {∅}) is zero by definition of the
Dempster model, but it can be valid using Smets’ model in the first step of fusion. As presented in
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Table 4.2. Cell probabilities for the Bayesian fusion example

Cell probability
Initial

probability
First iteration Second iteration Third iteration

1st step 2nd step 1st step 2nd step 1st step 2nd step
p 0.5 0.65 0.65 0.45 0.6 0.61 0.7

Table 4.3 four intermediate grid inputs are converted into 6 possible beliefs in the first fusion step, and
then normalized into valid 5 states using Dempster rule of combination in the 2nd step.

Table 4.3. Mass values for the DST fusion example. 1st step – conjunctive rule, 2nd step – Dempster
rule. ’N/A’ refers to propositions equal to 0 by the definition of fusion rule or model.

Cell proposition
Initial
masses

First iteration Second iteration Third iteration
1st step 2nd step 1st step 2nd step 1st step 2nd step

α0 = {∅} N/A 0 N/A 0.02 N/A 0.08 N/A
α1 = {S} 0 0 0 0.08 0.09 0 0.05
α2 = {D} 0 0 0 0 0 0.18 0.31
α3 = {F} 0 0 0 0.18 0.14 0.12 0.18
α4 = {S ∪D} 0 0.3 0.3 0 0.23 0 0.14
α5 = {S ∪ F} N/A N/A N/A N/A N/A N/A N/A
α6 = {D ∪ F} N/A N/A N/A N/A N/A N/A N/A
α7 = {S ∪D ∪ F} 1 0.7 0.7 0.72 0.54 0.48 0.32

The Dezert-Smarandache fusion architecture extends the capabilities of the DST. The conflicting in-
formation can be presented as 5 propositions {α11, α12, α15, α16, α17} instead on a single α0 in Dempster
framework. These additional information layer enables more accurate conflict redistribution in the 2nd

step and the DSmH fusion rule can properly model all propositions of the Dempster frame including the
α5 and α6.
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Table 4.4. Mass values for the DSmT fusion example. 1st step – DSmC, 2nd step – DSmH. ’N/A’
refers to propositions equal to 0 by the definition of fusion rule or model. Propositions beliefs, which
are always zero regardless of the input data, has been omitted.

Cell proposition
Initial
masses

First iteration Second iteration Third iteration
1st step 2nd step 1st step 2nd step 1st step 2nd step

α1 = {S} 0 0 0 0.08 0.08 0 0.04
α2 = {D} 0 0 0 0 0 0.32 0.25
α3 = {F} 0 0 0 0.18 0.13 0.12 0.15
α4 = {S ∪D} 0 0.3 0.3 0 0.22 0 0.15
α5 = {S ∪ F} 0 N/A 0 N/A 0 N/A 0.01
α6 = {D ∪ F} 0 N/A 0 N/A 0 N/A 0.04
α7 = {S ∪D ∪ F} 1 0.7 0.7 0.72 0.57 0.48 0.35
α11 = {S ∩D ∩ F} N/A 0 N/A 0 N/A 0 N/A
α12 = {(S ∪D) ∩ F} N/A 0 N/A 0 N/A 0 N/A
α15 = {S ∩D} N/A 0 N/A 0 N/A 0 N/A
α16 = {S ∩ F} N/A 0 N/A 0.02 N/A 0 N/A
α17 = {D ∩ F} N/A 0 N/A 0 N/A 0.08 N/A

Quantitative evaluation of fusion example

Major drawback of the Bayesian fusion is that it is not able to describe neither conflicts nor un-
certainty of the measured cell state. Therefore, comparison between the Bayesian and other two fusion
architectures can be performed only on the level of occupancy probability measurement. For that pur-
pose, a pignistic transformation is used, which for the Dempster model of probabilistic state takes form:

betP (α4 = {S ∪D} = {O}) = m(α1) +m(α2) +
1

2
m(α5) +

1

2
m(α6) +

2

3
m(α7) (4.3.15)

The values for the occupancy probability values obtained using equation (4.3.15) are presented in
Table 4.5. For the first and second iteration, the Bayesian and Dempster frame shows different occupancy
value estimates. In the third iteration, however, the pignistic occupancy probability is almost the same
for all fusion rules. Generally, when the overall cell uncertainty is high (i.e., the ignorance mass m(α7)
is high), the occupancy probability estimates for Bayesian and Dempster fusion may differ, but as more
information is collected, the occupancy probability and pignistic transformation tend to the same value.

Comparison between DST and DSmT fusion can be measured using Entropy, Specificity and Auto
conflict values, which are displayed in the Table 4.5. For the first iteration, DST and DSmT frameworks
are identical, because both of them have the same definition of full ignorance state (VBA). The internal
sensor conflict in the second iteration is solved similarly in both architectures, but in the DSmT the
entropy and auto conflict values are slightly lower. The first step of the DSmT correctly identifies the
meager conflict between static and free evidences, which affects the result by 0.01 for each evidence.

Difference between DST and DSmT frameworks is clearly present in the third fusion iteration. En-
tropy and auto conflict measurements are significantly lower for the DSmT fusion, meaning the result
is less conflicted there. Specificity of the third iteration’s output is a bit higher for the Dempster frame,
which suggests that the Dempster rule is able to extract more information from the evaluated input data.
Nevertheless, the fusion example presents highly conflicting information, therefore from the practical
point of view, it might be better to extract less, but more precise information than overfit the Basic Belief
Assignment.
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Table 4.5. Quantitative measurement of probability and conflict in different fusion frameworks

Value First iteration Second iteration Third iteration
Pignistic

occupancy
probability

Bayesian 0.65 0.60 0.70
DS 0.77 0.68 0.71

DSmT 0.77 0.68 0.70

Entropy
DS 0 0.10 0.27

DSmT 0 0.09 0.20

Specificity
DS 0.38 0.52 0.71

DSmT 0.38 0.51 0.67

Auto conflict
DS 0 0.09 0.21

DSmT 0 0.08 0.17

Summary of the example analysis

From the three investigated fusion architectures, the Bayesian approach is the least complex one,
providing no more information than the occupancy probability. Dempster and Dezert-Smarandache fu-
sion architectures deliver a similar occupancy estimate as the Bayesian fusion when there is plenty of
evidences and information delivered. In the case of sparse data, their uncertainty modeling capabilities
enable the resolution of both internal and multi-sensor conflicts. The DSmT framework can estimate all
possible combinations of conflicts separately, providing the most accurate conflict redistribution meth-
ods. On the other hand, DST fusion can estimate only a single conflict parameter, but characterizes with
less computational complexity than the DSmT rules of combination. Furthermore, experiments compar-
ing these architectures, features and complexity are presented in the experiments section 7.4.
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5 Occupancy grid noise filtering

The occupancy grid algorithm is tailored to work as a connection node, where different sensor mea-
surements are aggregated into a single map of probabilistic states representing the vehicle’s environment.
During the process of information fusion, multiple types of uncertainties can be present and have to be
dealt with appropriately.

The occupancy grid is an input source of information for the downstream components of the software
stack. Based on the map, they have to make decisions about the future vehicle actions. Therefore, the
development and tuning of the algorithm require reliable metrics to measure the quality of the occupancy
grid.

As a comprehensive solution for perception, the mapping algorithm can be tuned to the desired
application by a variety of calibration factors, ranging from grid size and resolution, through to differ-
ent sensor modeling possibilities and decay mean lifetime adjustment. Understanding of the parameters
which drives the occupancy grid algorithm is a key to deliver a versatile mapping solution.

Classification of the common uncertainty sources present in the algorithm is described in Section 5.1.
In order to assess the filtering capabilities of the mapping solution, an overview of available and novel
quality metrics is presented in Section 5.2. Finally, Section 5.3 draws forward four main grid filtering
capabilities, whose effects are measured in the next chapters.

5.1 Types of uncertainty

The occupancy grid algorithm aggregates heterogeneous sensor measurements into a single represen-
tation of the vehicle’s environment. The measurement unification process comes with the disadvantage
that all measurements have to be transformed into a grid frame of reference prior to the fusion step. As
presented in Figure 5.1 the transformation from the detection coordinate to grid frame consists of two
conversions: from the sensor frame to vehicle and from vehicle to grid frame. Positioning of the inter-
mediate sensor and vehicle frames is reported as sensor mounting and vehicle position. Measurement
uncertainty for these attachment points adds up to the total grid uncertainty level.

Moreover, the occupancy grid is fusing time series data. Synchronization issues or latency delays
will result in errors in the correct detection placement.

Overall, the sources of uncertainty can be separated into four groups as presented in Figure 5.2. Each
of these uncertainty types is described in detail in the following section.

5.1.1 Data synchronization delays

The process of data collection and processing requires accurate time measurements which are syn-
chronized together. Ideally, all the vehicle’s components should be aligned with the time master clock as
specified in, for example, the AUTOSAR Time Synchronization Protocol [AUTOSAR, 2019].

In reality, however, even if the time is synchronized around the vehicle ECUs, every sensor might
process measurements for different amounts of time, therefore producing detections with nonidentical
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Figure 5.1. Coordinate transformation chain connecting sensor detection and grid measurement repre-
sentation.
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Figure 5.2. Schematic representation of four types of uncertainties present in the occupancy grid algo-
rithm.

latencies. Measurement processing delays might amplify when the detections have to go through post-
processing to validate or improve their quality. An example of sensor measurement postprocessing might
be the extraction of the free space envelope from the camera image or the radar detection motion classi-
fication based on their range rate measurements.

Components of an automated vehicle are connected through CAN or FlexRay networks. Transmis-
sion of data packets via these networks is fast, but not instantaneous. When the detection processing
chain is long or the network load is high, the transportation delay might even overcome the sensor pro-
cessing latency. Fortunately, system can compensate and synchronize sensor measurements at the cost of
increasing the total system latency.

5.1.2 Sensor detection characteristics

Each sensor measurement has uncertainty associated with spatial position of the detection. The level
of uncertainty depends mostly on the type of the sensor and the detection position, i.e., its range and
azimuth.

The minimal detection uncertainty levels could be achieved using LIDAR sensors. LIDAR provides
accurate detections from the whole field of view.

Within automotive sensors, radars characterize with relatively high angular resolution errors and
considerably smaller range errors. Radar detection uncertainty distribution forms a lens, or a bean shape
as conceptually presented in Figure 5.2. Radar uncertainty depends on the range of detection – objects
further away from the sensor might have higher uncertainty levels.
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The camera sensor used to measure the free space envelope in front of the vehicle has high range
measurement uncertainty which, similarly to the radar sensor, increases with the measured object dis-
tance.

5.1.3 Sensor mounting vibrations

The third type of uncertainties are sensor mounting vibrations. Sensors are mounted on the vehicle’s
body using holders to ensure accurate sensor placement. The holders are designed to withstand harsh road
conditions, during drive it is subject to various high frequency vibrations which might tilt or misplace the
sensor. For automotive applications, perception sensors are designed to detect objects from far ranges.
Even a slight noise in the angular positioning of the sensor might result in increased spread of detections.

As a solution to that problem, some sensors may periodically run an alignment routine, which mea-
sures the accurate sensor mounting position and orientation relative to the vehicle frame of reference.

5.1.4 Host positioning uncertainties

The last but not the least source of sensor uncertainties are host positioning inaccuracies. The vehicle
might measure its position in the world frame either using the external source of positioning such as
GPS or by integrating internal linear and angular velocities to compute the relative position change. Both
these methods are utilized in automotive and have their own advantages and disadvantages.

Nevertheless, as the occupancy grid in automotive applications represents only the closest surround-
ing area, the global position shift does not impact the grid quality. Nevertheless, even a slight bias in
the measurement of linear or angular velocities might result in changing position misalignment, which
leads to wrong detection placement on the grid map. This type of uncertainty behaves similarly to the
synchronization issue, where the velocity estimation error shifts the vehicle frame and the whole grid to
the wrong position.

5.2 Assessing occupancy grid mapping quality

A common approach for the evaluation of a map is visual inspection combined with the algorithm’s
expert knowledge. Nevertheless, the currently used visualization methods may lead to ambiguous con-
clusions as mentioned in the previous chapter in Section 4.2.5. This often leads to subjective results of
the evaluation [Balaguer et al., 2009; Wagan et al., 2008]. In order to enable the systematic validation of
the occupancy map, binary classification key performance indicators (KPIs) such as false positive rate,
precision and recall are applied against the reference ground truth map.

One option to assess the matrix of cells within the grid is to compare cell by cell with the reference
map. In order to enable the systematic validation of the occupancy map, binary classification KPIs such
as false positive rate, precision, and recall are applied to the reference ground truth map. Application
of continuous classification KPIs, such as a map score and covariance, also does not give satisfactory
results [Grewe et al., 2012]. As presented in [Grewe et al., 2012], the existing quality measures from
robotics are not adequate for automotive applications. The different goals in robotic and vehicle mapping
limit the quality of an automotive map from a robotic viewpoint. The other downside of cell-wise grid
evaluation is the requirement of highly accurate and therefore expensive ground truth information. De-
termining the complete ground truth for a stationary environment poses major practical challenges, and
the data collection and labeling will contribute to the overall cost of the algorithm. Such metrics can be
conveniently applied in simulated scenarios [Markiewicz and Porębski, 2020; Skruch et al., 2015].

Another approach for the evaluation of a grid map is the extraction of specific object representations
and validation of their quality. This approach was first proposed by [Wagan et al., 2008] for robotic appli-
cations. The procedure was extended into automotive applications by [Laconte et al., 2019; Ledent et al.,
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2019] for collision risk estimation and by [Steyer et al., 2019] for grid-based object tracking. In these
evaluation applications, the occupancy grid is compared with a labeled list of reference dynamic objects
or with an accurate scene description. This approach still requires well-described test scenarios or pre-
cisely labeled experimental data, but the reference information might be usable also in the development
of different components (such as multi-object tracking), which lower their total cost.

As mentioned before, the automotive occupancy grid evaluation method should be able to assess
grid quality using sparse reference scene description. The objects evaluated using this method should
be frequently accessible during the test drives, and their labeling should be minimal to limit the cost of
evaluation. This assessment criteria are met for signs and guardrails, which can be found very often on the
road and whose metal elements effectively act as scattering centers for radar. Other object representations
also might be used as evaluation metrics for the occupancy grid; however, they would require a complex
assessment procedure. If the object has a complicated shape (as buildings and vegetation do), the grid
representation will be different, based on the object’s angle of incidence. Moreover, arbitrarily shaped
objects might be subject to occlusions, which make the assessment even harder.

The specifications of a pole and its representation make it an ideal candidate for the evaluation refer-
ence point. Thanks to the simple cross-section of the pole, its representation will be independent of the
vehicle’s relative direction. Furthermore, poles are one of the most common objects in the highway en-
vironment. They are also accurately mapped using high-definition maps of roads and are clearly visible
to other sensors, such as LiDARs or cameras, which makes the reference mapping easier. This feature
evaluation can work on the sparse reference scene description. The ground-truth information used in
the procedure can be easily obtained from an independent parallel perception setup, thereby limiting
the effort required for the implementation of new algorithm versions [Porębski and Kogut, 2021]. This
evaluation approach is further extended in the present chapter.

5.2.1 Extraction of interesting occupancy grid features

On the occupancy grid, the pole-like objects generate circular or elliptical grid map representations,
as presented in Figure 5.3 for signs, bollards, or even guardrails. For guardrails (Figure 5.3c), all the
detections are reflected from the poles supporting the guardrail, not from the railing itself, resulting in
the characteristic dotted line of occupancy.

Extraction and identification of relevant objects from the occupancy grid should be performed prior
to the KPI calculation step. In order to automate object detection, a clustering algorithm or a neural
network solution could be used. From the family of clustering algorithms, the agglomerative methods
such as DBSCAN algorithm show the most benefits for the occupancy grid application. The DBSCAN
clustering is able to discard noise, it can detect any number of clusters, and its simple structure allows
various optimizations for grid-based data approach [Feng et al., 2017]. Nevertheless, the out-of-the-shelf
clustering algorithms can tackle only binary maps, therefore any occupancy grid type should be converted
into single value grid map and binarized using manual or automatic thresholding such as Otsu’s method.

There are different methods to simplify the occupancy grid state into a single number representation.
To properly detect the stationary poles, this single value grid should emphasize static evidences. For
the Bayesian type of occupancy grid, the only choice is to use the probability value for clustering. For
the Dempster-Shafer grid representation, the stationary belief map will extract only evidences related
to the evaluated landmark representation. An example of the clusters extracted from different types of
occupancy grids is presented in Figure 5.4.

In the following thesis, the objects were identified using DBSCAN clustering algorithm and com-
pared with the ground truth feature placement in order to associate only relevant clusters. For the clus-
tering, a manual threshold value was utilized based on the probability value for the Bayesian occupancy
grid types and stationary belief for the Dempster-Shafer ones.
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(a) (b) (c)

Figure 5.3. Examples of the occupancy grid representations of highway pole-like objects with
corresponding video frames: (a) traffic bollard; (b) sign; (c) guardrail. The occupancy grid is
generated using a single automotive-graded radar located in front of the vehicle (Image reused
from: [Porębski and Kogut, 2021]).
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Figure 5.4. Comparison of clusters extracted from the Bayesian and Dempster-Shafer occupancy grid
using the same binarization threshold levels. Clustering based on probabilities in Bayesian grid cannot
deal with the trail of dynamic occupancy (violet cluster on the left). Clustering based on only stationary
belief values in the DS grid (right) filters out dynamic and ambiguous occupancy from the cluster
representation.
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5.2.2 Definition of grid quality metrics

The grid representation of a pole should preserve the number of objects in the real world, limit their
variance, and maintain the object’s shape. To meet these requirements, the pole-like object’s representa-
tion must be compact (without any gaps), occupy the finest space, and have low sensor conflict associated
(low entropy). These attributes are the basis of a KPI definition.

As the occupancy grid can be constructed without the access to a global positioning sensor such as
GPS, the localization of the object does not impact the KPI values. Only the shape of the representation
is considered for the algorithm performance estimator.

5.2.2.1 Consistency

A consistency describes whether the pole’s image on the occupancy grid can be expressed as one
solid and convex object. Consistency measures the density of a representation, and in image processing
may be called the solidity of an object. A measure of consistency can be obtained as a ratio of the object’s
area to the area of the convex hull of the object:

Consistency =
Cluster cell number

Convex area
(5.2.1)

where ”Cluster cell number” is the number of occupied cells classified for the object and ”Convex area”
is the number of cells which lie within the convex contour around the selected occupied cells. The convex
hull of the cluster can be computed easily using different cluster envelope algorithms.

For evaluation purposes, every updated cell is taken into account; the convex hull size is computed
over the measured pole representation area. Visualization of this KPI measure is presented in Figure 5.5a.

The best value of compactness should be as close to 1 as possible. If the consistency of the represen-
tation is close to zero, the object is sparse and should be divided into smaller ones. Computation of this
KPI value is a validation check, enabling further quality assessment.

(a) Consistency calculation schematic.
Black cells are occupied. In green is the computed
convex hull.

b

a

(b) Area and circularity (eccentricity) ellipse.
Blue lines mark major (a) and minor (b) ellipse
axes which correspond to 2σ values of the corre-
sponding distribution.

Figure 5.5. Schematic visualization of key performance indicators (KPI). (Image reused
from: [Porębski and Kogut, 2021])
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5.2.2.2 Area of the object representation

Consistency KPI considers only the binary image as a basis for the object’s area measure. Such an
approximation, however, does not consider individual cell weights and can be used only for rough object
validation and not for the estimation of the object’s variance.

The pole-like object representation on the occupancy grid plane is generated by radar scattering cen-
ters located in the pole’s section. Hence, the grid object may be approximated as a Gaussian distribution.
The estimated pole variance is measured as the area of distribution stretching over the standard deviation
σ range.

The weighted maximum likelihood estimator [Gebru et al., 2016] is used to estimate Gaussian dis-
tribution for each set of cells taking into consideration their probabilities as weights for each data point.

µ̂ML =

N∑
i=1

wixi

N∑
i=1

wi

Σ̂ML =

N∑
i=1

wi(xi − µ̂ML)(xi − µ̂ML)T

N∑
i=1

wi

(5.2.2)

where:

µ̂ML – estimated center point of the Gaussian distribution.
Σ̂ML – estimated covariance matrix of the Gaussian distribution.
N – number of selected object’s cells.
wi – i-th cell probability.
xi – i-th cell coordinates in 2D plane.

The area and circularity measurement require only information about Gaussian covariance matrix
eigenvectors λ, which represent the variance of the distribution

det(Σ− λI) = 0 (5.2.3)

The occupancy grid always has limited resolution of the object representation. To reflect that discrete
parameter, the computed variance has some minimal value.

To estimate this minimal value, let us consider a single cell object. This object distribution should fit
entirely into the cell area. For the Gaussian distribution, the 99.7 % of evidence lies inside the 3σ ellipse,
thus the minimum variance is equal to:

λ >
(grid resolution)2

9π
(5.2.4)

If any of the measured eigenvalues is smaller than the acceptable minimum value, it should be artifi-
cially increased to match this condition.

The standard deviation σ can be easily computed by taking the square root of the Gaussian variance λ.

σ =
√
λ (5.2.5)

The approximated distribution area for given standard deviations is an ellipse with major and minor
axes equal to the computed values (Figure 5.5b). Measured area of the object should cover at least 95%
of the total’s object evidence, therefore the area A95 is an ellipse stretching over the 2σ range (5.2.6).

A95 = 4π · σa · σb (5.2.6)

where σa is the standard deviation over the semi-major axis of the fitted distribution, and σb is the
standard deviation over the semi-minor axis.

In order to minimize the pole-like object representation spread, the area of occupancy should be
minimized as well.
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5.2.2.3 Entropy

The Dempster-Shafer occupancy grid framework enables qualitative measurements to determine the
presence of sensor conflict. As presented in Section 4.2.6 entropy measurement can be used to measure
the inconsistency level of the cell state.

In order to measure the level of sensor conflict associated with the pole object representation on the
occupancy grid, the maximum cell entropy is computed for the cells corresponding to the object. This
KPI can be used only in the Dempster grid framework and is useful only in cases when the sensor conflict
might be present.

5.3 Occupancy grid filtering capabilities

The occupancy grid algorithm data flow consists of four steps as presented in Section 3.4: sensor
modeling, fusion, decay, and grid shift. Each of these steps has its own calibration parameters which
might be changed to tune the occupancy grid filter. A variety of parameters provide great flexibility for
the algorithm application, but dependencies between different calibrations can be hard to observe.

This section describes how the sensor modeling, decay, and grid shift calibration influence the uncer-
tainty filtering process of the occupancy grid. Fusion step has been extensively described in Chapter 4,
therefore its influence will be omitted here.

5.3.1 Sensor detection modeling

Each occupancy grid input sensor has unique properties, which can be utilized to extract more in-
formation about the environment. The sensor modeling part of the occupancy grid algorithm aims to
improve the accumulation procedure by transferring as much information as possible from the detec-
tion model to the occupancy grid. The sensor model has to consider all types of uncertainties present in
the occupancy grid. Usually in the experimental setup, many uncertainty characteristics are not directly
measurable, and the sensor model has to approximate the overall grid detection uncertainty, not only the
sensor parameters itself.

The modeling can be performed via forward or inverse sensor modeling. Forward methods optimize
the occupancy distribution based on accurate physical models of sensors. This type of modeling requires
a lot of computational power and is not considered in the presented evaluation analysis.

The second type of modeling—the inverse sensor model—spreads the detection point into the oc-
cupancy probability based on a probabilistic distribution. This type of representation is commonly em-
ployed in occupancy grid algorithms. Sensor models may be differentiated based on the number of di-
mensions in which the distribution is computed.

The simplest and most widely utilized sensor model is the zero-dimensional hit-point model (Fig-
ure 5.6a). Its distribution assigns maximum occupancy evidence to the cell where the detection is located,
and no evidence to other cells. This model is widely exploited due to its minimal computational and im-
plementation requirements.

The other commonly used inverse sensor model is based on a two-dimensional probability distri-
bution. The model computes evidence values in Cartesian or polar coordinates around the detection
(Figure 5.6b). The evidence value is usually approximated as a Gaussian distribution with the constraint
that the sum of all evidences should be equal to the detection’s existence probability [Thrun et al., 2005].

Tuning of the hit point inverse sensor model consists of a single parameter, which determines the
evidence assigned to the associated cell. This parameter is called the detection existence probability, and
it describes the correctness of the measurement (probability of true positive).

For the 2D sensor model, the existence probability determines the total evidence assigned to the
single detection. This sensor model can be calibrated using the range and cross-range standard deviation,
which describe the distributions produced by the model.
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(a) Detection

axial6

radial6

(b)

Figure 5.6. Types of sensor models: (a) hit point; (b) 2D approximation of detection uncertainty. Darker
areas represent cells with higher probabilities.

5.3.2 Free space estimation filtering

Free space modeling exploits the fact that range sensor detections provide information not only about
the obstacle, but also about empty areas along the space traversed by detection. This determination is
developed by casting rays on the detections. The traversed space is then updated to increase the free
space probability along the ray.

This type of filtering is extensively utilized for LIDAR occupancy grids, where the overall detection
density is higher [Yguel et al., 2008]. The ray casting technique in such applications leads to Moiré
artifacts or false free space determination.

This thesis implements the triangle ray casting method presented in prior research [Porębski, 2020],
which solves the problem of artifacts by using a wider area for updates. Every cell in the triangle ray is
filled with the same value, thereby forming a uniform free space probability distribution as presented in
Figure 5.7.

Figure 5.7. Example of the segment free space sensor model. Area inside the envelope is filled uni-
formly with free evidence equal to the free space gain.
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This uniform free space sensor model can be calibrated using a single parameter: free space gain.
This gain coefficient describes the free space evidence assigned to every cell in the sensor model step.
As presented in Figure 5.7, every cell inside the envelope is assigned with the free space gain evidence
value.

5.3.3 Dealing with modeling overconfidence

The key limitation of sensor and free space modeling is the simplification of many physical
dependencies—the algorithm assumes data completion and cell independence. During the process of in-
tegrating multiple pieces of evidence, hidden dependencies are omitted. Consequently, the results quickly
become overconfident [Thrun et al., 2005]. In order to deal with this overconfidence, the decay step is
used to artificially diminish the evidence on the entire grid over time.

The overconfidence of occupancy modeling may be handled using different methods, but the most
common one is the exponential decay described in Section 3.4.4. The calibration of this functionality
consists of a single mean lifetime value τ . Nevertheless, the mean lifetime tuning is counter-intuitive –
setting higher values of the mean lifetime slows down the decay. For the tuning and evaluation presented
in this thesis, the inverse of the mean lifetime value called decay rate r will be used:

r =
1

τ
(5.3.1)

The decay rate r directly represents the speed of evidence forgetting, increasing the decay rate makes the
decay work faster.

5.3.4 Sensor synchronization

Measurement lag and transport delays are ubiquitous in automated systems and cannot be removed
completely. Data collection, processing, and transmission is not instantaneous, the final perception sys-
tem always has some overall latency. Accurate time measurement and ECU synchronization might limit
the impact of this uncertainty on the occupancy grid processing, but these systems are expensive and do
not solve all the synchronization problems completely.

Handling sensor time differences within the occupancy grid is still rarely described in research pub-
lications. Many of the real occupancy grid applications omit this issue and assume no synchroniza-
tion delay for their systems, forwarding the uncertainties to the sensor modeling step. The other ap-
proach is to use the so-called spatio-temporal detection alignment, where different sensor timestamps
are aligned, and the detections are artificially moved to predicted positions using some motion mod-
els [Tanzmeister and Steyer, 2016]. This approach enables the processing of multiple sensor scans at the
same time, improving the algorithm performance. On the other hand, the application of motion model to
detection might lead to increasing their uncertainties, especially for dynamic object measurements.

In order to minimize the impact of the sensor synchronization and timing delays in the occupancy
grid, every sensor scan is fused into the map independently. For every sensor scan, the occupancy grid is
shifted to reflect the sensor timestamp, so the data might be fused to the grid without any spatio-temporal
shifting needed.
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6 Simulation evaluation

Advanced Driver Assistance Systems (ADAS) are complex structures combining multiple indepen-
dent Electronic Control Units (ECUs), which communicate together using different communication pro-
tocols. As the number of important road scenarios for the system grows, mathematical modeling and
computer simulation become important engineering tasks that aim to assure the required quality and
compliance with safety standards.

The virtual validation environments are important for ADAS systems to quickly and reliably test
an increasing number of important road scenarios required for quality assurance and safety stan-
dards [Markiewicz et al., 2018; Skruch et al., 2015].

For the evaluation presented in this thesis, the simulation environment offers full control and moni-
toring of all relevant parameters: the road scenery, sensors, their uncertainties, and timing. Simulations
allow isolating the influence of some effects, therefore enabling their detailed evaluation.

As described in previous chapter 5 there are different uncertainty sources which might affect the
occupancy grid and the grid can filter the information using various filtering features. This chapter defines
the simulation environment in Section 6.1 and then describes in detail how different noise types and their
levels impact the occupancy grid in Section 6.2. Handling noise level is presented in Section 6.3

6.1 Simulation environment

The simulation has been designed using the Driving Scenario Designer toolbox available in Math-
Works MATLAB. The Driving Scenario Designer app enables designing synthetic driving scenarios for
testing autonomous driving systems. The application is capable of creating different road scenarios based
on real map snapshots, nevertheless, for the purpose of tuning the occupancy grid algorithm, a simple
driving scenario was prepared.

6.1.1 Driving Scenario Designer

The Driving scenario presented in Figure 6.1(a) consists of a 250 m road segment with a narrow
S-shaped turn which emphasis the impact of heading angle and velocities. The vehicle is moving along
the selected trajectory with the constant linear speed of 20 m

s .
The simulated vehicle is equipped with five ideal radar sensors. Four of them are corner radars with

150◦ field of view (FOV) and 50 m maximum measurement range. The last sensor is a front radar with
100◦ FOV and 100 m maximum range. Schematic of the bird’s eye view of the sensor FOVs is presented
in Figure 6.1(b). The simulated radar sensors are producing the new sensor scan every 50 ms (20 Hz
frequency). Information about the host position and velocity is provided with 100 Hz frequency.

Along the vehicle there are placed 130 poles with dimensions 10 × 10 × 200 cm. Obstacles are
placed every 10 m along the road and are distanced −12, −2, 2, 6 and 16 m away from the vehicle. Pole
placement reflects the possible position of real structures placed on the boundaries of the surrounding
lanes of the highway. The obstacles visible from the vehicle point of view at the start of the simulation
are presented in Figure 6.1(c).
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(a) (b)

(c)

Figure 6.1. Simulation environment used for the evaluation of the occupancy grid. All simulations were
prepared using Driving Scenario Designer application in MathWorks MATLAB.

6.1.2 Sensor uncertainty simulation

The simulation scenario is utilized to generate the baseline data set without any sensor inaccuracies.
Sensor uncertainties are added as a post-processing step for more flexibility. All detections reported by
the simulated sensors are true positive measurements, there are no false detections or missed objects. For
the random uncertainties, the zero-mean Gaussian noise is assumed with variable standard deviation.

The generated noised sensor files are passed to the occupancy grid algorithm in order to generate
the occupancy grids. The difference between maps generated using the ideal sensor data and noised
detections is presented in Figure 6.2.

Figure 6.2. Snapshots of the two occupancy grids generated using the simulation environment without
any filtering enabled. Figure on the right presents a grid with applied example noise parameters.
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6.1.3 Occupancy grid configuration used for the simulation evaluation

The occupancy grid used for the simulation utilized cells with 20 cm resolution, and the total grid
size of 100x100 m. The host position on the grid was adjusted to focus on the front area of the grid by
placing the vehicle on the circle with radius of 45 m from the grid center (see Figure 6.3 for details).
Occupancy grid algorithm operates with 20 Hz; however, every sensor scan is still fused independently
on the map, without any spatio-temporal shifting.

In the simulated scenario vehicle is moving with the constant linear speed of 20 m
s , therefore the

100 m span of environment depicted by the occupancy map is accumulated over 5 s of movement. In this
time sensor working with the 20 Hz frequency produces 100 scans of measurements. Based on that every
pole representation on the occupancy grid is constructed from approximately 100 to 200 detections from
all sensors (assuming that a pole produces single radar reflection in every sensor scan).

45 
m100 m

100 m

0.2 m

Figure 6.3. Grid dimensions and host placement in simulation scenario.
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6.2 Comparison of different uncertainty types on the occupancy grid

The occupancy grid algorithm has to deal with different sources and levels of uncertainty as presented
in Chapter 5. In order to compare the influence of each type of uncertainty, isolated simulation tests
were performed. In every of these test scenarios, only a single uncertainty parameter was modified to
emphasize its influence on the occupancy grid.

All evaluations were performed on the Dempster-Shafer occupancy grid framework using the DSmH
fusion rule. Decay and free space filtering methods were disabled and for the sensor modeling, the zero-
dimensional hit point sensor model with 90% existence probability was utilized.

The four main types of sensor noise presented in Section 5.1 define the main sources of uncertainties.
Nevertheless, these sources can be further divided into subcategories of individual independent control
parameters. In total, 12 different noise types were tested, which consist of:

(a) ideal — Baseline simulation without any noise,
(b) σr — Detection range uncertainty,
(c) σϕ — Detection azimuth uncertainty,
(d) σϕorigin — Uncertainty in sensor origin yaw measurement,
(e) σϕhost — Uncertainty in host yaw measurement,
(f) σsync — Synchronization uncertainty,
(g) σxyorigin — Sensor origin positioning uncertainty along both X and Y axes of the sensor frame,
(h) σxyhost — Host positioning uncertainty both X and Y axes of the vehicle frame,
(i) biasϕhost — Bias in host yaw angle measurement,
(j) biasxyhost — Bias in host position measurement along both X and Y axes of the vehicle frame,
(k) biasvhost — Bias in host linear velocity measurement,
(l) biasωhost — Bias in host yaw rate measurement.

Uncertainties marked as σ are a zero mean Gaussian noises, where the σ value describes the standard
deviation of this noise level. For the offset uncertainties marked with ’bias’ name, the corresponding
value is shifted by the ’bias’ value for the whole scenario, mimicking, for example, the velocity estima-
tion bias error.

The following sections present how each type of sensor uncertainty affects the simulated object rep-
resentation and propose a qualitative and quantitative comparison for different noise amplitudes relative
to system characteristics.

6.2.1 Qualitative evaluation of noise types

In order to measure the influence of each noise level qualitatively, each noise level was tuned to have
the same mean pole object area throughout the simulation. Considered uncertainty levels are equal to:

(a) 0 (ideal detections), (e) σϕhost = 0.3 deg, (i) biasϕhost = 1.5 m,
(b) σr = 0.25 m, (f) σsync = 10 ms, (j) biasxyhost = 10 deg,
(c) σϕ = 0.3 deg, (g) σxyorigin = 0.13 m, (k) biasvhost = 0.5 m

s ,
(d) σϕorigin = 0.3 deg, (h) σxyhost = 0.13 m, (l) biasωhost = 0.46 deg

s .

Firstly, to get the overall view of the generated pole representation for each type of noise, snapshots
of the sample pole in the occupancy grid are presented in Figure 6.4. The images are recorded from the
middle of the simulation when the vehicle is performing the S-turn, when each pole accumulated around
100 radar detections. The arrow in the first image points the direction to the current host position on the
map.

Secondly, all objects in the whole simulation scenario are analyzed for the estimated area of the
ellipse corresponding to the landmark representation as described in Section 5.2. The area measurements
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Figure 6.4. Grid snapshots of pole representation with different sensor noise types. Images represent
the pole on the left side of the vehicle (host position is pointed by the arrow). Host is in the middle
of the S-turn maneuver and is moving from the left to right (relative to the images). The transparent
ellipses depict the area of the landmark’s Gaussian representation.

are collected and presented in the form of violin plots in Figure 6.5. This analysis considers only poles
closer than 80 m from the vehicle to limit poles with only a small number of evidences accumulated.

Violin plot is an extended version of the box plot, where the shape of the width of the violin in any
point represents the frequency of the data. In the middle of the violin there is a box plot, where the middle
line describes the median and the bold gray box depicts a range between 25% and 75% quantile of the
data. The point in the middle of the violin describes the mean area of the object.

Based on the qualitative evaluation presented in Figure 6.5, constant bias on the host vehicle position
and orientation does not influence the occupancy grid quality. Even high errors such as biasxyhost = 10◦

and biasϕhost = 1.5 m produced results close to the ideal occupancy grid. These types of noises are
present mostly in the low-cost global positioning modules, where the satellite signal might be easily
disturbed by the terrain structures. These errors do not impact the occupancy grid quality but might
affect some downstream components if they require accurate map positioning in the world frame. Based
on that, the constant bias on the host vehicle position and orientation is not omitted in the following
sections.

The shape of the snapshots and corresponding landmark ellipse distributions shows that the angular
uncertainties σϕ, σϕorigin and σϕhost produce similar results. In the case of these three error types, the
pole representation is heavily elongated in the direction perpendicular to the host position. The bias on
the angular host velocity (biasωhost) produce similar snapshot results, but since the angular aspect of the
velocity is amplified only during turns, the resulting distribution of the landmark’s area is different.

Bias in the linear host velocity (biasvhost) causes the pole’s representation to be elongated along the
vehicle’s trajectory. Similarly, the detection range uncertainty σr lengthen landmarks along the radial
direction to the vehicle.

Finally, synchronization σsync, sensor mounting σxyorigin and host position σxyhost uncertainties af-
fect the landmark representation similarly in all directions, resulting in mostly circular shapes. Moreover,
the distribution plots for sensor mounting and host position noises have almost identical shapes, which
permit the assumption that these two types of uncertainties have similar effects on the grid quality.
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Figure 6.5. Distributions of landmark representation areas for different types of sensor
uncertainties. When possible, uncertainty levels were selected manually to align the
mean value of each representation.

6.2.2 Quantitative evaluation of noise types

The second step of the noise type comparison is to measure how the change of noise level influences
the average area of the landmark representation. In order to do that, multiple simulations for different
noise types and levels were prepared. For this analysis, biases in host position and heading were omitted,
because their influence on the landmark representation is negligible. The results of the evaluation are
presented in Figure 6.6.

All analyzed individual uncertainty types present a positive linear correlation with the mean landmark
representation area in the simulated range of uncertainty levels. Nevertheless, not all presented noise
levels are commonly present in the real vehicle. For example, if the sensor is properly mounted on the
vehicle’s body, its high-frequency vibrations cannot reach levels of 10 cm standard deviation. Similarly,
if the host position is filtered out, but some inertial measurement unit oscillations should be much lower
than the reference levels presented in Figure 6.6.d. These uncertainty types will have minimal or even
negligible impact on the occupancy grid quality.

The angular uncertainty types presented in Figure 6.6.b show a lot of similarities with each other,
which means for further analysis they could be simplified into a single uncertainty level.

Linear and angular velocity estimation levels presented in the plots 6.6.e and 6.6.f may be present
in the real vehicle in the cases of quick acceleration or rapid turning. In most of the time, these mea-
surements have to be more accurate, because a lot of downstream components rely on them and their
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reliability. Therefore, the occupancy grid quality can be affected by the host velocity estimation errors in
some cases, but when their values stabilize, the impact on the map should be minimal.

Based on the common levels of uncertainty levels present in real vehicles, the detection and synchro-
nization uncertainty have a major impact on the occupancy grid quality.
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Figure 6.6. Plots showing mean landmark representation area for different noise types and levels.

6.3 Uncertainty filtering assessment

The occupancy grid has four main components which filter the uncertainties in the algorithm: occu-
pancy and free space modeling, decay, and fusion rules (explained in detail in Chapter 5). The current
section analyses the process of filtering noised occupancy grids in order to improve the grid quality.
The evaluation process is a continuation and extension of single pole evaluation, which the results are
published in [Porębski and Kogut, 2021]

The assessment of the uncertainty filtering capabilities of the grid is based on the aforemen-
tioned simulated scenario, with 130 poles instead of a single one as presented in [Porębski and Kogut,
2021]. For simplicity, only the detection uncertainties are allowed for this analysis. Detection uncer-
tainty levels of σr = 0.25 m, σϕ = 0.3◦, correspond to the average levels of the automotive grade
radar [Autonomous Stuff, 2021].

All results presented in this section are based on the same simulated scenario described in Section 6.1.
The example grid pole representations are recorded in the middle of the simulation, when the vehicle is
performing the S-turn. The arrow in the snapshot image points the direction to the current host position on
the map, and the transparent ellipse corresponds to the area of an estimated Gaussian pole representation.

For the analysis, only the landmarks closer than 80 m from the vehicle were considered as valid,
in order to limit new poles with a few detections accumulated. The key performance indicators were
measured using 0.3 evidence and corresponding 0.65 probability thresholds. Values of the threshold
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were selected experimentally to limit the landmark area without discarding any existing landmarks as
false objects. Detailed explanation of the threshold tuning is described in Appendix B.

6.3.1 Inverse sensor model types

The first experiments performed on the grid measure the impact of the sensor modeling on the pole
representation on the occupancy grid. For this test, all decay and free space modeling are disabled to
limit their influence. For the fusion method, the hybrid Dezert-Smarandache rule of combination was
used, however all three fusion rules presented similar results for this case.

For this case, two basic ISMs were tested – the zero-dimensional hit point model, which always
marks only a single cell and the Cartesian 2D model, which approximates the occupancy probability
distribution as 2D Gaussian in Cartesian coordinates. The calibration for the Cartesian 2D ISM is equal
to the sensor uncertainty levels provided by the simulation (σr = 0.25 m, σϕ = 0.3◦).

The sample output pole image for the two types of inverse sensor models is presented in Figure 6.7
and the distribution of all available snapshots areas and consistency values are presented in Figure 6.8 as
violin plots.

Figure 6.7. Grid snapshots of the sample pole representation with different types of ISM and uncer-
tainty levels equal to σr = 0.25 m, σϕ = 0.3◦. Grid is generated using DSmH fusion, decay and free
space filtering are disabled.

The hit point snapshot is particularly important for the analysis, as it represents the baseline noised
occupancy grid level without any filtering except fusion. An example snapshot of the pole representation
shows a lot of irregularities (Figure 6.7) which corresponds to an average consistency of 0.69. The mean
area of this raw representation is equal to 0.5 m2. All further filtering assessments presented in this
section try to improve this initial pole representation.

The Cartesian 2D ISM increases the area of the pole on the occupancy grid which is visible on both
snapshot image 6.7 and on the violin plot 6.8(a). Nevertheless, the main advantage of the Cartesian 2D
ISM over the hit point occupancy modeling is that it significantly improves the consistency value for
almost all assessed poles.

More complex modeling utilized for the two-dimensional distribution can encode more information
in cell occupancy probabilities and may yield better results after further filtering steps. Based on that
observation, for the next parameter’s evaluation, the 2D probability model was selected.
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(a) Area of the pole representation (b) Consistency of the pole representation

Figure 6.8. Distribution of (a) Area and Consistency (b) values depending on the type
of inverse sensor model applied.

6.3.2 Decay filtering

The simulations for the second evaluated filtering method (decay) were performed similarly to the
previous ones. The decay factor is driven by the decay rate

(
1
λ

)
value as described in Section 5.3.3. It is

estimated that the larger the rate 1
λ , the faster the decay, which decreases the probability.

The results for different decay factors show some interesting traits (see Figure 6.9). As the decay
speeds up, the area of the pole representation decrease (Figure 6.10). Decay, however, was only applied to
decrease fusion overconfidence, and higher values may result in object placement instability. This could
be observed by measuring the consistency of the pole representation, which begin to slowly decrease as
the decay rate goes up (Figure 6.10).

Decay filtering can easily counteract the inflation of landmarks’ representation of areas caused by
the usage of Cartesian 2D ISM. Even the smallest presented decay rate of 1

λ = 0.5 s−1 can decrease the
average area of the initial levels of the baseline grid, at the same time preserving the high consistency of
the image.

Figure 6.9. Grid snapshots of the sample pole representation with different decay rates and uncertainty levels
equal to σr = 0.25 m, σϕ = 0.3◦. Grid is generated using DSmH fusion and with Cartesian 2D ISM.
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Figure 6.10. Area and consistency distributions of landmark representation generated with different
decay rates.

6.3.3 Free space modeling

Free space modeling is intended to eliminate mostly false positives and sharpen the vehicle’s immedi-
ate surroundings. The free space gain factor is defined as the maximum value of the free space probability
assigned to cells updated in the free space determination process (see Section 5.3.2 for details).

The simulation of free space was conducted similarly to the decay influence evaluation with DSmH
combination rule for fusion and Cartesian inverse sensor model for occupancy estimation. The free space
modeling provides a second type of evidences for fusion. As the free space evidence, described as the
free space gain, goes up, more rays sweep nearby the stationary evidence reported for the pole. This
new contradicting evidence increases cell state uncertainty measurement, commonly known as sensor
conflict.

The sample pole representations presented in Figure 6.12 present how the landmark area shrinks with
the increasing influence of free space.

Increasing the free space gain slowly decreases the estimated area of the object, but it increases
the maximum entropy measurement for the poles’ representations. The consistency of the landmark
is unaffected by the free space gain as presented in the violin distribution plots in Figure 6.11. It is
worth noting that cells closer to the vehicle are more likely to be affected by the free space modeling,
therefore, some landmarks are filtered faster than the others. It can be observed in the area distribution
plot (Figure 6.11), where for free space gains of 5% and 10% the two modalities are emerging.
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Figure 6.11. Area and entropy distributions of landmark representation generated with different free
space gains.
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Figure 6.12. Grid snapshots of the sample pole representation with different free space gains and un-
certainty levels equal to σr = 0.25 m, σϕ = 0.3◦. Grid is generated using DSmH fusion and with
Cartesian 2D ISM.

6.3.4 Fusion rules comparison

The fourth filtering method of the occupancy grid is fusion. The three evaluated fusion rules are
Bayesian, Dempster and Hybrid Dezert-Smarandache (DSmH) methods, which are described in Chap-
ter 4. Fusion rules cannot address the area or object representation directly, but they can solve sensor
conflicts differently and with different speeds, leading to smaller entropy of the object. In order to fully
utilize the fusion capabilities, all previously mentioned filtering options are enabled for this analysis. The
occupancy grids in this scenario were generated using Cartesian ISM with the decay rate of 1

λ = 1 s−1

and 5% free space gain.
The sample pole representation images are presented in Figure 6.13. For this snapshot, all objects are

visually similar, however, their details and underlying cell uncertainties are significantly different.
The distribution of KPI values presented in Figure 6.14 shows that for every fusion rule the object

area distributions are comparable with a slight advantage of the DSmH combination rule. The consis-
tencies of representations are almost the same for all fusion rules. The major difference is visible in the
maximum entropy value of the poles’ image. Entropy values for the DSmH rule of combination are al-
most two times smaller than for the Dempster fusion. Bayesian grid is not estimating any uncertainty;
therefore, the entropy cannot be measured by this fusion rule.

Figure 6.13. Grid snapshots of the sample pole representation with different combination rules and
uncertainty levels equal to σr = 0.25 m, σϕ = 0.3◦. Grid is generated using Cartesian ISM with the
decay rate of 1 s−1 and 5% free space gain.
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Not

applicable

Figure 6.14. Area, consistency, and entropy distributions of landmark representation generated with
different fusion rules. The occupancy grid used Cartesian ISM with the decay rate of 1 s−1 and 5% free
space gain.
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6.3.5 Combination of filtering methods

The evaluation of the filtering capabilities of the occupancy grid algorithm would not be completed
without measuring how the aforementioned filtering methods cooperate with each other when combined.
This simulation evaluation evaluates all combinations of the two inverse sensor models, three fusion
rules with free space gain and decay rate values. For clarity of the presentation, this section presents
only the average KPI values for every tested combination, but a more detailed presentation with pole
representation snapshots is presented in Appendix B.

For every type of fusion and ISM, a mesh of free space gains and decay rates was tested and evaluated.
The result mean KPIs values are presented in the form of contour plots describing: mean area of the
pole representation – Figure 6.15, consistency of the object – Figure 6.16 and its maximum entropy –
Figure 6.17.

Looking at the combination plots, the impact of the inverse sensor model type is clearly visible on the
mean consistency plots in Figure 6.16. For all tested fusion rules, free space gains and decay rates, only
ISM type changes the solidity of the pole representation. For the hit point ISM, the average consistency
value fluctuates around 0.7, while for the 2D ISM it reaches 0.96. Application of the Cartesian ISM
artificially spreads the evidence values on the occupancy grid, therefore smoothing out any uncertainties
present in the input measurements. On the downside, the application of the 2D ISM increases the mean
area of the occupancy grid.

For the mean pole representation area, the influence of decay and free space gain adds up easily,
limiting the pole object area to less than 0.3 m2. Furthermore, for the 2D ISM with Bayesian and DSmH
fusion rules, the synergy effect between free space and decay amplifies, and the area decrease effect is
bigger than for the decay and free space itself (Figure 6.15).

On the maximum entropy graphs (Figure 6.17) the DSmH fusion rule delivers approximately two
times smaller cell state uncertainty measures than the Dempster rule of combination. As described in
previous sections, free space gain increases entropy levels by introducing contradicting evidences. Nev-
ertheless, the decay may also help in decreasing the maximum entropy rates of the objects’ representa-
tion.
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Figure 6.15. Mean area of the pole representation with different combination rules. Light gray areas
represent better pole representation.
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Figure 6.16. Consistency of the pole representation with different combination rules. Light gray areas
represent better pole consistency, but the average consistency level for the hit point ISM is 0.7, while
in the Cartesian 2D ISM it oscillates around 0.96.
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6.3.6 Grid uncertainty filtering conclusions

The occupancy grid algorithm offers four main ways to decrease uncertainty levels in the output map:
sensor modeling, decay, free space estimation, and data fusion rule. All these procedures can affect the
output grid simultaneously, and their effects can interfere with each other.

Sensor modeling in the occupancy grid mostly affects the consistency of the objects’ representa-
tion. Application of even small uncertainty spread on the input sensor detections improves this factor
significantly. However, if a sensor is accurate or the number of detections is high enough to produce
consistent objects, sensor modeling should be disabled, because it might artificially extend object area
(see Figure 6.8).

From the quality factors’ perspective, decay and free space modeling behave similarly to each other.
Increasing the value of the decay or free space gain parameter decreases the object’s representation area.
These methods can be coupled with each other and their effects will add up affecting the grid quality even
more. Nevertheless, decay and free space modeling should not be abused as they limit the accumulation
capabilities of the algorithm. Too big free space gain or too fast decay leads to an increase in the entropy
of the occupancy grid and may result in instability of the object distribution.

The choice of the fusion rule for the algorithm has no significant effect the visible area of the object
representation. The combination rule, however, can distribute sensor conflicts differently which result in
varying levels of entropy measurement. On the other hand, more sophisticated fusion rules tend to be
computationally more complex. The comparison of fusion rules is continued in the next chapter of this
dissertation.

Eventually, each filtering method in the occupancy grid algorithm has some drawbacks and the pa-
rameter selection for these methods is relative and depends on many conditions. In order to provide
tuning guidelines for the occupancy grid algorithm, this work focused on applying the algorithm in an
experimental environment, and the results are presented in the next chapter of this thesis.
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This chapter presents the experiments that have been carried out in order to evaluate the proposed
implementation of the occupancy grid algorithm based on the actual sensor data. The structure of this
chapter is as follows: the vehicle and test drive setup are described in Section 7.1. Section 7.2 presents
guidelines how to tune radar-based occupancy grids. Real examples of different sensor conflicts are
presented in Section 7.3 and Section 7.4 depict differences between the three proposed fusion rules for
the occupancy grid. The following Section 7.5 describes the implementation details of the presented
algorithm and its real-time computation capabilities and finally Section 7.6 shows how the presented
architecture integrates with heterogeneous sensor measurement sources.

7.1 Experimental setup

The experimental setup consists of a test vehicle mounted with four corner radars, a vehicle po-
sitioning system, and a reference camera. A photo of the vehicle is presented in Figure 7.1. Selected
experimental data samples are collected during test drives on motorway and semi-urban roads in the
usual traffic conditions and good weather.

Figure 7.1. Experimental vehicle Peugeot 3008 used to test capabilities of presented algorithm. Vehicle
is equipped with four corner radars and reference camera system. High resolution LIDAR visible on
the roof was disabled for presented experiments.

The occupancy grid experiments use four corner radars with a 150◦ field of view and a maximum
range of 100 m mounted on the vehicle in a way which covers the whole area around the host as presented
in Figure 7.2.
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Figure 7.2. Sensor coverage of the test vehicle. For readability, only half of the radar range is presented.
Plotted coverage is up to 50 m, while actual radars can detect objects up to 100 m.

All radar sensors used are automotive grade frequency-modulated continuous-wave radar sensors
operating in a millimeter-wave bandwidth. Radars available in the commercial automotive market operate
with around 50 ms update rates and produce on average 60–150 detections (point targets) from the sensed
field of view [Autonomous Stuff, 2021].

Each of the utilized radar sensors can be configured independently in order to match the required
application, however, for the simplicity of the experimental evaluation, all radars are treated uniformly
with the same calibration for every sensor.

Apart from sensor data, the occupancy grid module requires a reliable positioning system which is
able to deliver accurate and actual changes of the vehicle position. For the experimental evaluation, the
motion and position of the ego are obtained using a high precision GPS and an IMU unit, which uses
an online correction method to maintain its accuracy. The positioning data are available with the 100 Hz
frequency.

The experimental vehicle is also equipped with a front reference camera used to record the test drive.
Data from the camera are used only for visualization of the test results, the information provided by the
recorded video does not influence in any way generation of the presented maps.

7.2 Example occupancy grid tuning procedure

The occupancy grid algorithm with a wide range of filtering methods, fusion rules, and sensor model
might be quite complicated to tune in order to achieve good quality results. In this section, the developed
guidelines for tuning the occupancy grid algorithm are presented.

The presented tuning procedure focuses on the quality of the signs and poles representations. For
better visualization, the tuning procedure will be based on analysis of the two signs presented on the
foreground of the camera snapshot displayed in Figure 7.3(a).

7.2.1 Selection of proper grid dimensions

The tuning of the occupancy grids starts from the selection of the general grid parameters such as
map size, cell resolution, and vehicle placement. These requirements are usually well defined by the
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(a) Front camera frame presenting two signs on the edge
of motorway. The third sign visible in the background will
be used at the end of this section.

(b) Occupancy grid representation of the two
poles with hit point ISM and DSmH fusion rule.
Decay and free space filtering are disabled.

Figure 7.3. Presentation of the two motorway’s signs used for the grid tuning guidelines. Im-
age (a) presents the real photo of the signs, and (b) shows the raw occupancy grid image of the poles
without any filtering.

downstream components, which for example, might require constant monitoring of 100 m area in front
of the vehicle. For this tuning scenario, the baseline occupancy grid parameters will be defined as the
same as in the simulation evaluation presented in Section 6.1. Each cell of the occupancy grid has 20 cm
resolution and the total grid size is 100x100 m. The host position on the grid is adjusted to focus on the
front area of the grid by placing the vehicle on the circle with radius of 45 m from the grid center. This
host placement ensures that at least 95 m corridor in front of the vehicle is mapped by the occupancy
grid. The occupancy grid algorithm is executed every 50 ms therefore it operates with 20 Hz frequency.

This configuration of the occupancy grid area ensures that even with a host speed of 25 m
s the occu-

pancy grid will accumulate detections for at least 4 s of movement, when each radar sensor can deliver
around 80 measurement scans. Considering the overlapping sensors fields of view, the pole representa-
tions presented in this chapter are accumulated 100− 150 independent sensor detections.

7.2.2 Selection of inverse sensor model parameters

After the selection of the general occupancy grid parameters, following this step, it to observe the
occupancy grid with disabled filtering capabilities of the algorithm. This step allows to sanity check if
the whole system is operating correctly and if all sensors are delivering a constant detection stream. This
kind of raw occupancy grid for the analyzed signs is presented in Figure 7.3(b).

In the same manner as in the simulation evaluation in Chapter 6 raw occupancy grid is a baseline;
all the following filtering capabilities of the algorithm should improve the selected object representation
from the Figure 7.3(b).

The first filtering parameter to tune is the uncertainty level of the inverse sensor model. Unlike in
simulation, the uncertainty levels are unknown in the experimental environment. The immeasurable un-
certainty such as latency or transportation delay has to be approximated by the inverse sensor model of
the occupancy grid. In order to measure the overall uncertainty of the occupancy grid which should be
applied for the ISM, the recorded experimental sensor data are resimulated for different radial and az-
imuth standard deviations. Snapshots of the pole representations for the variable detection uncertainties
of the Cartesian 2D ISM are present in Figure 7.4.
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Figure 7.4. Example sings grid representations produced using different ISM uncertainty levels. For
further processing the values of σr = 0.2 m, σϕ = 0.4◦ were selected.

As identified in the simulation Chapter 6 the inverse sensor model increases the area of the object
representation on the grid, but it is an ideal tool to deliver a highly consistent image of the environment
with solid objects. The approximated values of the uncertainties used for ISM modeling should be the
smallest of the values which already produce a smooth representation. This condition limits the inflation
of signs’ areas and significantly improves their solidity. Based on the results presented in Figure 7.4
uncertainty values of σr = 0.2 m and σϕ = 0.4◦ are selected for further analysis.

7.2.3 Tuning of decay and free space modeling filters

After setting up the ISM to produce consistent grid images, the decay and free space modeling can
be enabled to sharpen the grid representation of the objects. The procedure of tuning the decay rate and
free space gain can be similar to the ISM uncertainty approximation. For the recorded scenario, options
with different values can be tested, and the output grid could be analyzed.
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Figure 7.5 present the pole representations generated using different filtering options for decay rate
and free space modeling gain. In this step, both free space and decay filter the uncertainties and decrease
the area of signs’ representations. As described in the simulation assessment (Section 6.3.5) combina-
tion of both free space modeling and decay filtering might yield better results than each of these methods
alone. This leads to a situation, where different calibrations can produce similar grid qualities. For choos-
ing the filtering option in this step, it is best to balance the impact of decay and free space. For example,
the results of resimulation with decay rate 1.0 s−1 and free space gain of 2% are almost indistinguishable
from the sample with decay rate 2.0 s−1 and free space gain of 5%. In this case, the more balanced
sample is the one with a decay rate 1.0 s−1 and free space gain of 2%; these parameters are selected for
further analysis.

Figure 7.5. Comparison of different filtering options for the pole object. Grid snapshots were generated
using DSmH fusion rule and Cartesian 2D ISM with uncertainties σr = 0.2 m, σϕ = 0.4◦. From the
evaluation, a sample with decay rate 1.0 s−1 and free space gain of 2% was selected for further analysis.
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7.2.4 Occupancy grid before and after tuning

Proper selection of the general grid calibration, ISM uncertainties, decay, and filtering levels does
not conclude the tuning procedure of the occupancy grid. Nevertheless, further parameters’ selection can
be based on the initial approximations delivered by the presented guidelines.

The presented tuning procedure is based on the analysis of a grid representation of the two signs.
After tuning the occupancy grid parameters, it is required to verify if other landmarks and the whole
occupancy grid preserve the tuned capabilities.

On the background of the camera image presented at the beginning of this section (Figure 7.3(a))
there is a third sign indicating a nearby motorway exit. Comparison of the grid representation for this
sign with the raw and tuned occupancy grid is presented in Figure 7.6. Tuning the occupancy grid allows
to clearly distinguish the sign (in the middle) from the vegetation (three smaller objects nearby).

Figure 7.6. Presentation of the grid representation of the sign before and after tuning. Visualized sign
is the third sign in the video frame presented in Figure 7.3(a). Presented grid snapshots depict the sign
as it looks like closer to the vehicle (100 ms after the camera frame).

The overall quality of the occupancy grid is also improved after parameters’ tuning as presented in
Figure 7.7. The dynamic residuals (red) from other road users are effectively removed by free space
modeling and decay. Application of the 2D ISM solidified the vegetation behind the road edge and
cleaned up the guardrail occupancy representation on the opposite side of the road.
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Figure 7.7. Presentation of the grid before and after tuning. All three signs evaluated in this section can
be identified on the right side of the road. Red trail represents dynamic occupancy residuals.

7.3 Sensor conflict on different occupancy grids

The automotive occupancy grid has to deal with the management and combination of uncertain, im-
precise, or highly conflicting sources of information. Different occupancy grid frameworks are developed
to model probabilistic evidence.

The following paragraph presents a single snapshot of the highway radar occupancy grid created
using the Bayesian and Dempster Shafer processing frameworks. The purpose of that example is to
present the visualization capabilities of the occupancy grid and to examine how sensor conflict can be
observed on the occupancy grid.

The presented scenario consists of a selected part of the occupancy grid in a highway scenario. In
this example of three-lane highway, the host vehicle is on the middle lane. The right lane is empty with
a bollard on the road edge, on the left lane another vehicle is overtaking the host. The resolution of the
occupancy grid in both examples is 20 cm, and it is created using four radar setup. Other specific sensor
setup and fusion tuning parameters are not important for this example due to its illustrative purpose.

7.3.1 Bayesian occupancy grid

Each cell in the Bayesian occupancy grid is represented as a single value, which can be visualized
using colormap (4.2.17) as presented on the left in Figure 7.8.

Zoomed fragment of Figure 7.8 resents the dynamic object residual as an example of multisensory
conflict. The Bayesian framework can operate only on a binary state of the cell; therefore, the dynamic
object is resembled as any other occupancy object.
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Figure 7.8. Example highway radar Bayesian occupancy grid presenting the overtaking dynamic object
(zoomed area). The zoomed area presents the grid in form of a charts array.

7.3.2 Dempster-Shafer occupancy grid

Cells in the Dempster-Shafer framework are described as a 7-value BBA (the eight value is always
zero (m(∅) =: 0)). Using colormap (4.2.19) the Dempster occupancy grid can be visualized as an image
(Figure 7.9).

The DST is able to model sensor uncertainty and conflict. On the zoomed in example of the dynamic
object residual (Figure 7.9(b)) cell BBA consists some dynamic evidence (red), but also free (green) and
free or dynamic state (yellow). On the other hand, the bollard presented in Figure 7.9(a) contains mostly
stationary occupancy evidence (blue) with some free space beliefs on the side of the object.
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Figure 7.9. Example highway radar Dempster-Shafer occupancy grid. Top image presents the colormap
grid representation. Zoomed area (a) presents grid representation of a stationary bollard. The dynamic
object and its residual are visible in red in part (b) of the Figure.

7.4 Experimental evaluation of different fusion rules

Simulation evaluation of different fusion rules presents that the type of combination method does
not have significant impact neither on the object’s area nor consistency. Only different ways of handling
contradicting sensor information differentiate the proposed three fusion rules: Bayesian, Dempster and
Dezert-Smarandache Hybrid method.

Each analyzed occupancy grid fusion rule differently measures and handles sensor conflicts. On the
crowded road, the test vehicle captured another road user who is attempting to turn left. As the road clears,
the vehicle starts moving forward in order to perform the left turn. Camera snapshot of this situation is
presented in Figure 7.10.

On the radar occupancy grid, the vehicle is represented by a group of detections which can be clas-
sified into stationary or dynamic ones. As the observed vehicle begins its turning maneuver, the sensor
detections change their classification from stationary to moving. The time lapse of first 500 ms of this
process is presented in Figure 7.11
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Figure 7.10. Front camera video frame presenting a stopped vehicle on the left turn of a crowded
crossroad. As the road clears, the vehicle starts moving forward in order to perform the left turn.

Figure 7.11. Time-lapse of the starting vehicle presented on the occupancy grid. Stationary car wheels
(blue) start moving, and the vehicle will be classified as dynamic (red).
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As soon as the target vehicle starts moving, the fusion on the occupancy grid has to decide if the
underlying cells’ states should contain stationary or dynamic evidences. Detailed look into this case is
presented in Figure 7.12.

Figure 7.12. Comparison of Bayesian, Dempster and DSmH fusion rules based on the starting vehicle
example.

The three grids presented in Figure 7.12 are similar to each other. The shape of the occupancy is
preserved for every fusion type, but the internal cell states are different. In the middle of the left right
wheel of the vehicle, there is a single cell which shows symptoms of sensor conflict.

The Bayesian occupancy grid combines stationary and dynamic evidences into a generic occupancy
state. This way, sensor conflict is neglected, as the Bayesian grid relies only on the binary occupied-free
cell state representation.

The Dempster fusion rule identifies the presence of sensor conflict by accumulating both stationary
and dynamic evidences inside the cell. The unknown evidence, denoted as a white segment, is almost
completely depleted, and as a result the cell is also fully occupied. The Dempster fusion describes occu-
pancy for this cell as half stationary, half dynamic using elemental hypotheses’ evidences. This results
in the anomaly that the cell can be at the same time both static and dynamic, which is forbidden by the
definition of exclusive elemental states. Future evidence fusion has to work with the contaminated cell
state, which may give not expected results.

Finally, on the DSmH grid, the whole displayed part has lower confidence that the two grid prede-
cessors. For the conflicting cells, the fusion rule converted ’stationary’ evidence (blue) into ’stationary or
dynamic’ belief (pink). Unlike the other fusion rules, the DSmH method is able to measure the conflict
value and accurately represent it, preserving the exclusivity constrains of the framework. Usage of the
state ’stationary or dynamic’ intuitively provides information about the conflict origin and how this type
of evidence can be handled in the future.
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The subtle differences between Dempster and DSmH fusion rules can be further evaluated by looking
at the entropy of the occupancy grids generated for the whole scenario as presented in Figure 7.13. Visu-
ally, Dempster and DSmH fusion rules are quite similar to each other. The DSmH fusion rule, however,
shows much lower entropy levels for the whole starting vehicle example.

The reason for the lower entropy of the DSmH combination rule depends directly on the different
power sets used in Dempster and Dezert-Smarandache frameworks. Dempster fusion rules distribute the
conflict measure uniformly to already existing evidences inside the occupancy grid cell. If the conflicting
grid cell does not contain even residual ’stationary or dynamic’ evidence, it cannot move the conflict mass
in this hypothesis. As a result, the cell state has to rely only on elemental hypotheses, which increases
the entropy levels.

On the other hand, the DSmH fusion can use a wider variety of intermediate conflicting states. This
allows better redistribution of the conflict mass into conjunctive evidence of ’stationary or dynamic’
hypothesis. Therefore, the proposed DSmH rule of combination is able to detect and properly resolve
sensor conflicts, addressing the conflict origin.

Figure 7.13. Comparison of Dempster and DSmH fusion rules based on the starting vehicle example.
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7.5 Performance evaluation of the algorithm

Vehicle perception system has to operate in real-time to ensure reliability of the overall solution. The
occupancy grid algorithm presented in this thesis has to deliver a new environment with 20 Hz frequency
which corresponds to 50 ms refresh rate.

In order to meet these requirements, the occupancy grid algorithm is implemented in a C++ language
with the help of MATLAB for prototyping and validation of the solution. The application is designed to
operate on a single thread on a medium class CPU.

In the experimental vehicle, the algorithm is running in real time on a proprietary computing unit. In
order to present the algorithm performance, additional tests on an easily accessible CPU were performed.
For the evaluation platform, a minicomputer Raspberry Pi Model 4B was selected. It is equipped with a
quad-core Cortex-A72 CPU with 1.5GHz’s frequency on each core.

Performance evaluation tests were performed using a resimulation technique. A highway scenario
sensor data from four corner radars and a positioning system was collected in a vehicle and replayed as
a time series of data on a Raspberry Pi computer. The occupancy grid algorithm was compiled for the
ARM v8, 32-bit architecture using g++10 compiler. Performance evaluation results: execution time and
memory consumption are presented in Table 7.1.

Table 7.1. Occupancy grid algorithm performance measurements for a highway scenario running on a
single core of Raspberry Pi 4B computer (1.5GHz).

Bayes Dempster-Shafer Dezert-Smarandache
Mean execution time, ms 11.7± 3.9 15.2± 4.35 14.6± 4.14

Memory consumption, MB 10.10 24.40 24.40

The evaluated software implementation was developed mainly as a prototype solution in order to
showcase different occupancy grid capabilities. The application may use only one of the four available
CPU cores; therefore, the computational load of the computer is capped at 25 %. Moreover, the so-
lution is not fully optimized against performance and memory consumption and the actual production
implementation of this algorithm should yield better performance metrics.
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Figure 7.14. Algorithm execution profiling cumulative density function collected for different occu-
pancy grid scans on the Raspberry Pi 4B computer.
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Nevertheless, the application achieved real-time operation throughout the whole tested scenario. The
worst algorithm execution time reached 40 ms from the acceptable 50 ms limit. Detailed distribution of
the execution times of the algorithm is presented in Figure 7.14.

The performance evaluation utilized the same grid calibration as presented in previous sections with
the 100x100 m occupancy grid with 0.2 m resolution, Cartesian 2D ISM, 1.0 s−1 decay rate and 2% free
space gain. The only difference between the presented options was the fusion framework used to deliver
the output occupancy map: Bayesian, Dempster-Shafer and Dezert-Smarandache.

Bayesian occupancy grid has the lowest execution time and memory consumption requirements from
the tested grid frameworks. This is because the Bayesian cell state is represented as a single numeric
parameter and the data fusion equation can be easily optimized. In the presented results, a traditional
version of the Bayesian inference was used (see equation 4.3.1), which can be further optimized using
the log-it version.

Memory consumption for Dempster-Shafer and Dezert-Smarandache frameworks is the same, be-
cause both of them use the same seven Basic Belief Assignments to describe the occupancy grid cell state.
However, the extended cell state implied two times more memory consumption than in Bayesian map.
The Dezert-Smarandache combination rule has slightly better execution time results than the Dempster-
Shafer fusion. This effect can be caused by the specific implementation details of these fusion rules or
by the fact that DSmH combination rule utilizes only addition and multiplication operations, while the
DS combination rule uses a division operation (equations 4.3.14 and 4.3.7).

7.6 Execution on different combinations of automotive sensors

The occupancy grid architecture presented in this thesis is designed to operate with all possible
combinations of automotive sensors sources. Following that, the prepared algorithm implementation can
support radar, vision, free space, and LIDAR sensors. An example of the occupancy grid output generated
using a typical combination of these sensor sources is presented in Figure 7.15.

10m 10m 10m

(a) (b) (c)

(d)

Figure 7.15. Grid output using different sensor sets: four corner radars (a), corner radars and front vision free
space system (b) and LIDAR sensor (c). Reference camera image of the scene is presented at the bottom (d).
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The Figure 7.15(a) presents the radar only occupancy grid. Combination of radar and vision sensors
delivers a better free space estimation visible in the Figure 7.15(b). LIDAR sensor cannot differentiate
stationary and dynamic detections, therefore the occupancy grid consists only of unknown occupancy
evidences depicted in magenta color in Figure 7.15(c).

Occupancy grid environmental modeling for automotive applications J. Porębski
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8 Conclusions and future work

This chapter concludes the presented manuscript. It summarizes the discussed automotive occupancy
grid perception architecture, followed by a conclusion. Insights about perspectives and future works are
listed thereafter.

8.1 Summary

In this manuscript, a modular and scalable architecture for the automotive occupancy grid frame-
work is introduced. The latter enables the application of multiple seminal fusion rules, including Dezert-
Smarandache rule of combination. The presented architecture is assessed against different sensor uncer-
tainty sources. For this purpose, a new occupancy grid quality assessment method was proposed, which
has been tested on both simulation and experimental environments. Respectively, the work presents an
analysis of the occupancy grid filtering capabilities and how these methods interfere with each other. A
grid filtering capabilities investigation allowed preparation of guidelines for tuning the algorithm for a
specific vehicle setup. Lastly, the real-time and multi-sensor domain capabilities of the proposed solution
are described.

8.2 Conclusions

This study aimed to investigate the capabilities of the occupancy grid framework for applications
in automotive perception. Research results indicate that the occupancy grid algorithm is a versatile and
reliable solution for the fusion of various automotive sensors inputs into a single representation of the
environment. Customization and scalability of the algorithm allows it to be used in many vehicle setups
with different automation levels.

Nowadays, car manufacturers have to offer a wide variety of vehicle options, which may differ in
mounted sensors or driving comfort features. The occupancy grid algorithm delivers a single point of
reference for planning and controlling downstream components and can work with almost any set of
sensors. Therefore, the application of the proposed algorithm architecture allows easy and cost-effective
reusability of vehicle features. Car manufacturers need to only tune the occupancy grid to the new con-
ditions, without developing a new solution for a different vehicle option.

Secondary aim of the presented thesis is to provide a detailed description of the occupancy grid algo-
rithm architecture, splitting it into a set of independent components. This way, the presented occupancy
grid algorithm can be reimplemented from the description, enabling further experiments based on the
proposed solution.

The unique part of the presented occupancy grid fusion framework architecture is its modular fusion
approach. Sensor evidences are separated into four streams of independent information. Each evidence
is temporarily stored on an intermediate grid, allowing better resolution of sensor conflicts during fusion.

The fusion methodology presented in this thesis allows usage of the Dezert-Smarandache fusion rule
on the static-dynamic-free space occupancy grid. Dezert-Smarandache theory was invented in 2004, and



124 8.3 Suggestions for future work

it offers better sensor conflict management, which leads to better quality of the occupancy grid maps.
The thesis presents all fusion equations with their derivation in the Appendix A.

Simulations and experiments presented in this thesis deliver a better understanding of the sensor
filtering capabilities of the algorithm. Based on that, the author proposes a tuning procedure with a set
of key performance indicators. Described method helps to obtain a measurable mapping quality which
meets the perception system requirements.

Finally, the solution proposed in this thesis has been successfully deployed in the automated ve-
hicle, where it operates in real-time. Additional execution time evaluation shows that in the analyzed
fusion rules, Bayesian inference is the fastest option, and the Dezert-Smarandache and Dempster-Shafer
frameworks require more computational resources. From the presented options, the Dezert-Smarandache
fusion is the best for sensor conflict redistribution. Depending on the available resources, the customer
can choose the fusion method which matches requirements.

Nevertheless, the occupancy grid has some limitations. Foremost, the algorithm can produce easily
visualized and understandable maps of the environment only if it is provided with meaningful sensor
data. If the measurements are noised or the data quality is bad, the output will contain some irregularities
and uncertain regions. Application of proper tuning of filtering capabilities can decrease the uncertainty
levels, but some residuals might still be present.

Simulation findings show that the algorithm is especially vulnerable to the synchronization of sensor
data. Therefore, the author suggests that the occupancy grid framework should be used only in automated
vehicles, where the vehicle’s communication network is synchronized, and sensors deliver measurements
with correct time stamps.

8.3 Suggestions for future work

The occupancy grid framework is a well-known solution in robotics, with a lot of automotive focus in
recent years. The presented thesis describes the overall architecture of the automotive solution and pro-
poses one of the options how this algorithm can be implemented. Nevertheless, there are some research
areas which can be developed further to improve the proposed algorithm.

This work presents a handful of filtering options for the occupancy grid application. This set of
methods can be extended, and various new capabilities needs further testing. From the sensor model-
ing perspective, the ultrasonic sensor model can be adapted from the robotic occupancy grid applica-
tions [Liu et al., 2018]. The simple segment-based free space estimator can be enhanced using machine
learning methodologies [Bauer et al., 2019]. Available combination rules set can be broadened with the
Probability Conflict Redistribution rules (PCR) [Moras et al., 2015] and the grid decay might be com-
puted using Hidden Markov Models.

Computational evaluation results presented in this thesis describe the overall trend of the algorithm
complexity. In this case, the performance assessment results depend heavily on the development details
and the available in-vehicle hardware specifications. To limit the implementation specific influence, the
computational performance should be measured for each of the occupancy grid components. To fur-
ther improve the algorithm performance and memory consumption, an integer implementation of the
evidences’ fusion should be investigated [Andriamahefa, 2017].

In the end, the dynamic occupancy determined by the proposed framework can be easily extended
with a velocity estimation layer using state-of-the-art random finite set or particle filter solutions [Nuß,
2017; Steyer et al., 2018]. This solution requires a graphical processing unit (GPU), which is not avail-
able in the basic ADAS automated vehicles. However, with the cutting-edge advancements in the field
of artificial intelligence and machine learning, various GPUs are suggested for the new generation of
automated vehicles. This processing unit would enable further refinement of the occupancy grid solution
with an ability to detect and track dynamic road users and their velocities.
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A Fusion matrices and equations

This chapter presents some detailed explanations on the derivation of the fusion rules examples re-
ferred in Section 4.3. Equations presented in this chapter are described in a way that enables the imple-
mentation and deployment of those rules in combination in the automotive perception system.

A.1 Basic definitions

Based on the types of evidences which may be derived from automotive perception sensors, this
thesis investigates the three-element frame of discernment:

Θ = {{S}, {D}, {F}} (A.1.1)

where {S} stands for static evidence, {D} for dynamic occupancy and {F} for free space. For short,
this frame of reference will be called SDF frame from now on.

For the SDF frame, the elemental hypotheses θj : j ∈ {1, 2, 3} are defined as:

θ1 = {S} θ2 = {D} θ3 = {F} (A.1.2)

Combinations of elemental hypotheses form probabilistic propositions which are described in detail in
Chapter 4, Section 4.1.2.

A.1.1 Dempster-Shafer model definition

The Dempster-Shafer power set 2Θ of Θ = {θ1, θ2, θ3}, is given by the set of the following |2Θ| = 8
irreducible propositions:

2Θ = {α0, α1, . . . , α7} (A.1.3)

where each αi : i ∈ {0, . . . , 7} corresponds to a specific subset of hypotheses θj : j ∈ {1, 2, 3}:

α0 :=∅
α1 :=θ1

α2 :=θ2

α3 :=θ3

α4 :=θ1 ∪ θ2

α5 :=θ1 ∪ θ3

α6 :=θ2 ∪ θ3

α7 :=θ1 ∪ θ2 ∪ θ3

(A.1.4)

Applying notation from (A.1.2) the equation (A.1.4) can be rewritten as:

α0 :=∅
α1 :=θ1 = {S}
α2 :=θ2 = {D}
α3 :=θ3 = {F}

α4 :=θ1 ∪ θ2 = {S} ∪ {D}
α5 :=θ1 ∪ θ3 = {S} ∪ {F}
α6 :=θ2 ∪ θ3 = {D} ∪ {F}
α7 :=θ1 ∪ θ2 ∪ θ3 = {S} ∪ {D} ∪ {F}

(A.1.5)
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A.1.2 Dezert-Smarandache model definition

The Dezert-Smarandache hyper-power set DΘ of Θ = {θ1, θ2, θ3}, is given by the set of the follow-
ing |DΘ| = 19 irreducible propositions:

DΘ = {α0, α1, . . . , α18} (A.1.6)

where subsets αi are defined as:

α0 :=∅
α1 :=θ1

α2 :=θ2

α3 :=θ3

α4 :=θ1 ∪ θ2

α5 :=θ1 ∪ θ3

α6 :=θ2 ∪ θ3

α7 :=θ1 ∪ θ2 ∪ θ3

α8 :=(θ1 ∩ θ2) ∪ θ3

α9 :=(θ1 ∩ θ3) ∪ θ2

α10 :=(θ2 ∩ θ3) ∪ θ1

α11 :=θ1 ∩ θ2 ∩ θ3

α12 :=(θ1 ∪ θ2) ∩ θ3

α13 :=(θ1 ∪ θ3) ∩ θ2

α14 :=(θ2 ∪ θ3) ∩ θ1

α15 :=θ1 ∩ θ2

α16 :=θ1 ∩ θ3

α17 :=θ2 ∩ θ3

α18 :=(θ1 ∩ θ2) ∪ (θ1 ∩ θ3) ∪ (θ2 ∩ θ3)

(A.1.7)

In order to apply the DSmT fusion rules on top of the Dempster-Shafer model, the hybrid DSm needs
to be defined with the constrain that all possible elemental hypothesis intersections are empty sets. This
constrained hyper power set is defined in [Smarandache and Dezert, 2004, Chapter 4.] as:

α0 :=∅
α1 :=θ1 6= ∅
α2 :=θ2 6= ∅
α3 :=θ3 6= ∅
α4 :=θ1 ∪ θ2 6= ∅
α5 :=θ1 ∪ θ3 6= ∅
α6 :=θ2 ∪ θ3 6= ∅
α7 :=θ1 ∪ θ2 ∪ θ3 6= ∅
α8 :=(θ1 ∩ θ2) ∪ θ3 = α3 6= ∅
α9 :=(θ1 ∩ θ3) ∪ θ2 = α4 6= ∅

α10 :=(θ2 ∩ θ3) ∪ θ1 = α1 6= ∅
α11 :=θ1 ∩ θ2 ∩ θ3 = ∅
α12 :=(θ1 ∪ θ2) ∩ θ3 = ∅
α13 :=(θ1 ∪ θ3) ∩ θ2 = ∅
α14 :=(θ2 ∪ θ3) ∩ θ1 = ∅
α15 :=θ1 ∩ θ2 = ∅
α16 :=θ1 ∩ θ3 = ∅
α17 :=θ2 ∩ θ3 = ∅
α18 :=(θ1 ∩ θ2) ∪ (θ1 ∩ θ3) ∪ (θ2 ∩ θ3) = ∅

(A.1.8)

The frame DΘ defined with constrains (A.1.8) has now |DΘ| = |2Θ| = 8 has different elements and
corresponds to Shafer’s model. This proposition set definition will be used in the application of the DSm
fusion rules in the occupancy grids in Section A.3.

A.2 Dempster-Shafer conjunctive rule

The Dempster-Shafer conjunctive rule is defined as:

m∩(A) =(m1 ∩©m2)(A) =
∑

X∩Y=A

m1(X)m2(Y ) ∀X,Y ∈ 2Θ (A.2.1)

In the preparation step for the Dempster-Shafer conjunctive rule equation, it is best to prepare a helper
table of all possible set intersections within the power set 2Θ – Table A.1.
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Table A.1. Operator αi ∩ αj for i, j = 0, . . . , 7 for the power set 2Θ.

∩ α0 α1 α2 α3 α4 α5 α6 α7

α0 α0 α0 α0 α0 α0 α0 α0 α0

α1 α0 α1 α0 α0 α1 α1 α0 α1

α2 α0 α0 α2 α0 α2 α0 α2 α2

α3 α0 α0 α0 α3 α0 α3 α3 α3

α4 α0 α1 α2 α0 α4 α1 α2 α4

α5 α0 α1 α0 α3 α1 α5 α3 α5

α6 α0 α0 α2 α3 α2 α3 α6 α6

α7 α0 α1 α2 α3 α4 α5 α6 α7

Number of the combination of mass multiplication may make it harder to present the fusion rule
equations. For clarity of the presented fusion rules, the following notation is assumed:

mi
1 =m1(αi) mi

2 =m2(αi) (A.2.2)

Using the values stored in Table A.1 the conjunctive rule equation can be easily derived by writing
down the sum of all pairs of masses that produce particular subset αi:

m∩(α0) =m0
1 +m0

2 −m0
1m

0
2 +m1

1(m2
2 +m3

2 +m6
2) +m1

2(m2
1 +m3

1 +m6
1)+

+m2
1m

3
2 +m3

1m
2
2 +m2

1m
5
2 +m5

1m
2
2 +m3

1m
4
2 +m4

1m
3
2

m∩(α1) =m1
1(m1

2 +m4
2 +m5

2 +m7
2) +m1

2(m4
1 +m5

1 +m7
1) +m4

1m
5
2 +m5

1m
4
2

m∩(α2) =m2
1(m2

2 +m4
2 +m6

2 +m7
2) +m2

2(m4
1 +m6

1 +m7
1) +m4

1m
6
2 +m6

1m
4
2

m∩(α3) =m3
1(m3

2 +m5
2 +m6

2 +m7
2) +m3

2(m5
1 +m6

1 +m7
1) +m5

1m
6
2 +m6

1m
5
2

m∩(α4) =m4
1m

4
2 +m4

1m
7
2 +m7

1m
4
2

m∩(α5) =m5
1m

5
2 +m5

1m
7
2 +m7

1m
5
2

m∩(α6) =m6
1m

6
2 +m6

1m
7
2 +m7

1m
6
2

m∩(α7) =m7
1m

7
2

(A.2.3)

Assuming that the initial state m1(init) is a VBA:

∀i∈{0,...,6}mi
1(init) =0 m7

1(init) =1 (A.2.4)

And all IG BBAs defined as (4.2.2) m2 are fused with constrains:

∀i∈{1,2,3,4,7}mi
2 ≥0 ∀i∈{0,5,6}mi

2 =0 (A.2.5)

The simplified conjunctive rule equation can be derived:

m∩(α0) =m0
1 +m1

1(m2
2 +m3

2) +m2
1(m1

2 +m3
2) +m3

1(m1
2 +m2

2 +m4
2) +m4

1m
3
2

m∩(α1) =m1
1(m1

2 +m4
2 +m7

2) +m1
2(m4

1 +m7
1)

m∩(α2) =m2
1(m2

2 +m4
2 +m7

2) +m2
2(m4

1 +m7
1)

m∩(α3) =m3
1(m3

2 +m7
2) +m7

1m
3
2

m∩(α4) =m4
1(m4

2 +m7
2) +m7

1m
4
2

m∩(α5) =0

m∩(α6) =0

m∩(α7) =m7
1m

7
2

(A.2.6)
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A.3 DSm common rule of combination for free-DSm models

The common DSm rule of combination is defined similarly to the DS conjunctive rule, but on the
body of the hyper-power set:

m∩(A) =(m1 ∩©m2)(A) =
∑

X∩Y=A

m1(X)m2(Y ) ∀X,Y ∈ DΘ (A.3.1)

The procedure for deriving an equation for this fusion rule is the same. First, it is needed to draw a
table of all possible set intersections (αi ∩ αj for i, j = 0, . . . , 18) in the hyper-power set DΘ. Using the
classical intersection operator on sets, the results can be summarized in the symmetric table A.2.

Table A.2. Operator αi ∩ αj for i, j = 0, . . . , 18 for the hyper-power set DΘ

∩ α0 α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 α11 α12 α13 α14 α15 α16 α17 α18

α0 α0 α0 α0 α0 α0 α0 α0 α0 α0 α0 α0 α0 α0 α0 α0 α0 α0 α0 α0

α1 α0 α1 α15 α16 α1 α1 α14 α1 α14 α14 α1 α11 α16 α15 α14 α15 α16 α11 α14

α2 α0 α15 α2 α17 α2 α13 α2 α2 α13 α2 α13 α11 α17 α13 α15 α15 α11 α17 α13

α3 α0 α16 α17 α3 α12 α3 α3 α3 α3 α12 α12 α11 α12 α17 α16 α11 α16 α17 α12

α4 α0 α1 α2 α12 α4 α10 α9 α4 α18 α9 α10 α11 α12 α13 α14 α15 α16 α17 α18

α5 α0 α1 α13 α3 α10 α5 α8 α5 α8 α18 α10 α11 α12 α13 α14 α15 α16 α17 α18

α6 α0 α14 α2 α3 α9 α8 α6 α6 α8 α9 α18 α11 α12 α13 α14 α15 α16 α17 α18

α7 α0 α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 α11 α12 α13 α14 α15 α16 α17 α18

α8 α0 α14 α13 α3 α18 α8 α8 α8 α8 α18 α18 α11 α12 α13 α14 α15 α16 α17 α18

α9 α0 α14 α2 α12 α9 α18 α9 α9 α18 α9 α18 α11 α12 α13 α14 α15 α16 α17 α18

α10 α0 α1 α13 α12 α10 α10 α18 α10 α18 α18 α10 α11 α12 α13 α14 α15 α16 α17 α18

α11 α0 α11 α11 α11 α11 α11 α11 α11 α11 α11 α11 α11 α11 α11 α11 α11 α11 α11 α11

α12 α0 α16 α17 α12 α12 α12 α12 α12 α12 α12 α12 α11 α12 α17 α16 α11 α16 α17 α12

α13 α0 α15 α13 α17 α13 α13 α13 α13 α13 α13 α13 α11 α17 α13 α15 α15 α11 α17 α13

α14 α0 α14 α15 α16 α14 α14 α14 α14 α14 α14 α14 α11 α16 α15 α14 α15 α16 α11 α14

α15 α0 α15 α15 α11 α15 α15 α15 α15 α15 α15 α15 α11 α11 α15 α15 α15 α11 α11 α15

α16 α0 α16 α11 α16 α16 α16 α16 α16 α16 α16 α16 α11 α16 α11 α16 α11 α16 α11 α16

α17 α0 α11 α17 α17 α17 α17 α17 α17 α17 α17 α17 α11 α17 α17 α11 α11 α11 α17 α17

α18 α0 α14 α13 α12 α18 α18 α18 α18 α18 α18 α18 α11 α12 α13 α14 α15 α16 α17 α18

Writing down the full equation of the DSm classic (DSmC) fusion rule will produce complicated and
long results. Although, for the fusion architecture presented in Section 4.3 this fusion rule is applied for
the fusion of constrained intermediate grid BBAs (Equations (4.2.2)), which allow the supposition of the
following two prepositions.

Firstly, the initial cell state is a VBA, which for hyper-power set takes form:

∀i∈{0,...,18}\{7}m
i
1(init) =0 m7

1(init) =1 (A.3.2)

Secondly, the fused IG BBAs (m2) have constrains:

∀i∈{1,2,3,4,7}mi
2 ≥0 ∀i∈{0,5,6,8,9,...,18}m

i
2 =0 (A.3.3)
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Based on these assumptions, a simplified equation for the DSmC rule of combination can be obtained:

mDSmC(α0) =0
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1m

1
2 +m1

1m
4
2 +m1

2m
4
1 +m1

1m
7
2 +m1

2m
7
1

mDSmC(α2) =m2
1m

2
2 +m2

1m
4
2 +m2

2m
4
1 +m2

1m
7
2 +m2

2m
7
1

mDSmC(α3) =m3
1m

3
2 +m3

1m
7
2 +m3

2m
7
1

mDSmC(α4) =m4
1m

4
2 +m4

1m
7
2 +m4

2m
7
1

mDSmC(α5) =0

mDSmC(α6) =0

mDSmC(α7) =m7
1m

7
2

mDSmC(α8) =0

mDSmC(α9) =0

mDSmC(α10) =0

mDSmC(α11) =m11
1 (m1

2 +m2
2 +m3

2 +m4
2 +m7

2) +m3
2m

15
1 +m2

2m
16
1 +m1

2m
17
1

mDSmC(α12) =m12
1 m

3
2 +m12

1 m
4
2 +m12

1 m
7
2 +m3

1m
4
2 +m3

2m
4
1

mDSmC(α13) =0

mDSmC(α14) =0

mDSmC(α15) =m15
1 m

1
2 +m15

1 m
2
2 +m15

1 m
4
2 +m15

1 m
7
2 +m1

1m
2
2 +m1

2m
2
1

mDSmC(α16) =m16
1 m

1
2 +m16

1 m
3
2 +m16

1 m
4
2 +m16

1 m
7
2 +m1

1m
3
2 +m1

2m
3
1 +m1

2m
12
1

mDSmC(α17) =m17
1 m

2
2 +m17

1 m
3
2 +m17

1 m
4
2 +m17

1 m
7
2 +m2

1m
3
2 +m2

2m
3
1 +m2

2m
12
1

mDSmC(α18) =0

(A.3.4)

As presented in the equation A.3.4 only 10 subsets from the hyper-power set are used in the defined
free DSm model. This allows some further optimization and reduces significantly the complexity of the
following DSmH fusion rule.

A.4 DSm rule of combination for hybrid-DSm models

Hybrid DSmT fusion rule is defined as:

mDSmH(X) = φ(X) [S1(X) + S2(X) + S3(X)] (A.4.1)

where φ(X) is a characteristic non-emptiness function of a setX , i.e., φ(X) = 1 ifX /∈ ∅ and φ(X) = 0
otherwise.
For two fusion sources components S1(A), S2(A) and S3(A) are defined as:

S1(A) =mDSmC(X) =
∑

X∩Y=A

m1(X)m2(Y ) ∀X,Y ∈ DΘ (A.4.2)

S2(A) =
∑

[(u(X)∪u(Y ))=A]∨
[(u(X)∪u(Y ))∈∅∧A=Θ]

m1(X)m2(Y ) ∀X,Y ∈ ∅ (A.4.3)

S3(A) =
∑

X∪Y=A,X∩Y=∅

m1(X)m2(Y ) ∀X,Y ∈ DΘ (A.4.4)
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Let us consider the Dempster frame of reference as presented in Chapter 4, Section 4.1.3. In this
frame, the characteristic non-emptiness function is defined as:

φ(X) =

{
1, for X ∈ {α1, . . . , α10}
0, for X ∈ {α0, α11, . . . , α18}

(A.4.5)

Based on that, calculations of values of S1(A), S2(A) and S3(A) for subsets {α0, α11, . . . , α18} are not
needed. For the non-zero subsets {α1, . . . , α10} direct equations of the components S1(A), S2(A) and
S3(A) have to be computed.

A.4.1 Component S1

The component S1(·) can be computed similarly as themDSmC , based on the values from Table A.2.
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(A.4.6)

The DSmH fusion rule is applied to fuse the output of the DSmC rule m1 together with the Dempster
BBA m2. Based on that information, the following constrains apply:

∀i∈{1,2,3,4,7,11,12,15,16,17}m
i
1 ≥0 ∀i∈{0,5,6,8,9,10,13,14,18}m

i
1 =0 (A.4.7)

∀i∈{1,2,3,4,5,6,7}mi
2 ≥0 ∀i∈{0,8,9,...,18}m

i
2 =0 (A.4.8)

After applying the aforementioned constraints, the component S1 simplifies into:

S1(α1) =m1
1m

1
2 +m1

1m
4
2 +m1
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4
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1m
5
2 +m1
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7
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1m
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5
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6
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7
2 +m3
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7
1

S1(α4) =m4
1m

4
2 +m4

1m
7
2 +m4

2m
7
1

S1(α5) =m5
2m

7
1

S1(α6) =m6
2m

7
1

S1(α7) =m7
1m

7
2

S1(α8) =0

S1(α9) =m4
1m

6
2

S1(α10) =m4
1m

5
2

(A.4.9)
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A.4.2 Component S2

The component S2(A) represents the mass of all relatively and absolutely empty sets. In order to
compute, it is helpful to define the union of all singletons θj that compose αi:

u(α0) =∅ = α0

u(α1) =θ1 = α1

u(α2) =θ2 = α2

u(α3) =θ3 = α3

u(α4) =θ1 ∪ θ2 = α4

u(α5) =θ1 ∪ θ3 = α5

u(α6) =θ2 ∪ θ3 = α6

u(α7) =θ1 ∪ θ2 ∪ θ3 = α7

u(α8) =θ1 ∪ θ2 ∪ θ3 = α7

u(α9) =θ1 ∪ θ2 ∪ θ3 = α7

u(α10) =θ1 ∪ θ2 ∪ θ3 = α7

u(α11) =θ1 ∪ θ2 ∪ θ3 = α7

u(α12) =θ1 ∪ θ2 ∪ θ3 = α7

u(α13) =θ1 ∪ θ2 ∪ θ3 = α7

u(α14) =θ1 ∪ θ2 ∪ θ3 = α7

u(α15) =θ1 ∪ θ2 = α4

u(α16) =θ1 ∪ θ3 = α5

u(α17) =θ2 ∪ θ3 = α6

u(α18) =θ1 ∪ θ2 ∪ θ3 = α7

(A.4.10)

Having defined u(α), the next helper table of u(αi) ∪ u(αj) for the empty sets can be created (Ta-
ble A.3).

Table A.3. Operator u(αi) ∪ u(αj) for i, j = 0, 11, . . . , 18 for the hyper-power set DΘ

∪ u(α0) u(α11) u(α12) u(α13) u(α14) u(α15) u(α16) u(α17) u(α18)

u(α0) α0 α7 α7 α7 α7 α4 α5 α6 α7

u(α11) α7 α7 α7 α7 α7 α7 α7 α7 α7

u(α12) α7 α7 α7 α7 α7 α7 α7 α7 α7

u(α13) α7 α7 α7 α7 α7 α7 α7 α7 α7

u(α14) α7 α7 α7 α7 α7 α7 α7 α7 α7

u(α15) α4 α7 α7 α7 α7 α4 α7 α7 α7

u(α16) α5 α7 α7 α7 α7 α7 α5 α7 α7

u(α17) α6 α7 α7 α7 α7 α7 α7 α6 α7

u(α18) α7 α7 α7 α7 α7 α7 α7 α7 α7

For the set of constraints A.4.7 and A.4.8 the component S2(·) is defined as:

S2(α1) =0

S2(α2) =0

S2(α3) =0

S2(α4) =0

S2(α5) =0

S2(α6) =0

S2(α7) =0

S2(α8) =0

S2(α9) =0

S2(α10) =0

(A.4.11)

Component S2 corresponds to complete conflict states from the input data such as disjoint frames of
discernment. In the defined Dempster frame of discernment, all unions of elemental hypotheses are
allowed, therefore the state S2 is always zero and can be omitted.

A.4.3 Component S3

The component S3(·) describes the hybrid fusion conflict redistribution mechanism. This part of
DSmH equation defines how the resulting belief mismatch should be divided into existing states in the
hybrid model.
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In order to create this fusion rule equation, two conditions have to be met. Firstly, the component
S3(·) considers only the constrained/forbidden beliefs of the hybrid model. This condition is met when
the intersection of two subsets αi and αj is empty (Table A.4).

The second condition defines where the conflict should be redistributed. This set can be obtained by
taking into consideration only the union of subsets αi and αj which are equal to the evaluated preposi-
tions. This step can be defined using (Table A.5).

Table A.4. Operator αi ∩ αj for i, j = 0, . . . , 18 for the hyper-power set DΘ with Smets constrains.

∩ α0 α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 α11 α12 α13 α14 α15 α16 α17 α18

α0 ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
α1 ∅ α1 ∅ ∅ α1 α1 ∅ α1 ∅ ∅ α1 ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
α2 ∅ ∅ α2 ∅ α2 ∅ α2 α2 ∅ α2 ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
α3 ∅ ∅ ∅ α3 ∅ α3 α3 α3 α3 ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
α4 ∅ α1 α2 ∅ α4 α10 α9 α4 ∅ α9 α10 ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
α5 ∅ α1 ∅ α3 α10 α5 α8 α5 α8 ∅ α10 ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
α6 ∅ ∅ α2 α3 α9 α8 α6 α6 α8 α9 ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
α7 ∅ α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
α8 ∅ ∅ ∅ α3 ∅ α8 α8 α8 α8 ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
α9 ∅ ∅ α2 ∅ α9 ∅ α9 α9 ∅ α9 ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
α10 ∅ α1 ∅ ∅ α10 α10 ∅ α10 ∅ ∅ α10 ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
α11 ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
α12 ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
α13 ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
α14 ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
α15 ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
α16 ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
α17 ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
α18 ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
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Table A.5. Operator αi ∪ αj for i, j = 0, . . . , 18 for the hyper-power set DΘ

∪ α0 α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 α11 α12 α13 α14 α15 α16 α17 α18

α0 α0 α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 α11 α12 α13 α14 α15 α16 α17 α18

α1 α1 α1 α4 α5 α4 α5 α7 α7 α5 α4 α10 α1 α10 α10 α1 α1 α1 α10 α10

α2 α2 α4 α2 α6 α4 α7 α6 α7 α6 α9 α4 α2 α9 α2 α9 α2 α9 α2 α9

α3 α3 α5 α6 α3 α7 α5 α6 α7 α8 α6 α5 α3 α3 α8 α8 α8 α3 α3 α8

α4 α4 α4 α4 α7 α4 α7 α7 α7 α7 α4 α4 α4 α4 α4 α4 α4 α4 α4 α4

α5 α5 α5 α7 α5 α7 α5 α7 α7 α5 α7 α5 α5 α5 α5 α5 α5 α5 α5 α5

α6 α6 α7 α6 α6 α7 α7 α6 α7 α6 α6 α7 α6 α6 α6 α6 α6 α6 α6 α6

α7 α7 α7 α7 α7 α7 α7 α7 α7 α7 α7 α7 α7 α7 α7 α7 α7 α7 α7 α7

α8 α8 α5 α6 α8 α7 α5 α6 α7 α8 α6 α5 α8 α8 α8 α8 α8 α8 α8 α8

α9 α9 α4 α9 α6 α4 α7 α6 α7 α6 α9 α4 α9 α9 α9 α9 α9 α9 α9 α9

α10 α10 α10 α4 α5 α4 α5 α7 α7 α5 α4 α10 α10 α10 α10 α10 α10 α10 α10 α10

α11 α11 α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 α11 α12 α13 α14 α15 α16 α17 α18

α12 α12 α10 α9 α3 α4 α5 α6 α7 α8 α9 α10 α12 α12 α18 α18 α18 α12 α12 α18

α13 α13 α10 α2 α8 α4 α5 α6 α7 α8 α9 α10 α13 α18 α13 α18 α13 α18 α13 α18

α14 α14 α1 α9 α8 α4 α5 α6 α7 α8 α9 α10 α14 α18 α18 α14 α14 α14 α18 α18

α15 α15 α1 α2 α8 α4 α5 α6 α7 α8 α9 α10 α15 α18 α13 α14 α15 α14 α13 α18

α16 α16 α1 α9 α3 α4 α5 α6 α7 α8 α9 α10 α16 α12 α18 α14 α14 α16 α12 α18

α17 α17 α10 α2 α3 α4 α5 α6 α7 α8 α9 α10 α17 α12 α13 α18 α13 α12 α17 α18

α18 α18 α10 α9 α8 α4 α5 α6 α7 α8 α9 α10 α18 α18 α18 α18 α18 α18 α18 α18

For the set of constraints A.4.7 and A.4.8 the component S3(·) is defined as:
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(A.4.12)

A.4.4 Compression to non-empty propositions

By application of constraints A.4.7 and A.4.8 the component S2(·) can be ruled out as defined in
Section A.4.2.

Therefore, the hybrid DSm combination rule can be defined as:

m∗DSmH(X) =

{
S1(X) + S3(X), for X ∈ {α1, . . . , α10}
0, for X ∈ {α0, α11, . . . , α18}

(A.4.13)
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Computed masses for each equivalent proposition have to be compressed after fusion to reduce the power
set DΘ to 2Θ:

mDSmH(α0) =0

mDSmH(α1) =mDSmH(α1) +mDSmH(α10)

mDSmH(α2) =mDSmH(α2) +mDSmH(α9)

mDSmH(α3) =mDSmH(α3) +mDSmH(α8)

mDSmH(α4) =mDSmH(α4)

mDSmH(α5) =mDSmH(α5)

mDSmH(α6) =mDSmH(α6)

mDSmH(α7) =mDSmH(α7)

(A.4.15)

Which delivers the final equation for the DSmH fusion rule in the Dempster model of evidences:
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J. Porębski Occupancy grid environmental modeling for automotive applications



B Additional simulation evaluation results

Simulation evaluation results presented in Chapter 6 represent only a small group of performed sim-
ulations and evaluations of the occupancy grid algorithm. This Appendix chapter presents some supple-
mentary grid representations for different types of fusion and inverse sensor models.

Section B.1 present the sequence of simulations which allowed to tune the optimal threshold level
for the automatic landmark extraction procedure used in KPI calculation. Section B.2 present sample
occupancy grid snapshots for all combinations of fusion rules, ISM types, decay and free space rates.
This presentation can be useful in case of application of the DSmH fusion framework is prohibited by
the existing occupancy grid architecture.

B.1 Threshold dependency

The decision-making process, which extracts binary information from the occupancy grid, is crucial
for the downstream components to perform correct actions and apply control to the vehicle. In order
to automatically label and evaluate landmark representations, the occupancy grid has to be binarized
and then clustered into a list of objects. The binarization process should focus on the extraction of the
stationary objects from the occupancy grid. Depending on the grid type, the threshold levels applied for
evaluation apply to:
◦ Bayesian occupancy grid — probability p
◦ Evidential occupancy grid — stationary evidence e = m(α1) = m({S})
Independently of the grid type, the threshold levels should be comparable, therefore the equation

used to convert intermediate grid evidences into Bayesian probabilities can be applied:

p = 0.5 · e+ 0.5 (B.1.1)

In order to determine the best threshold levels which could be used for the decision-making process,
simulations with different threshold levels for all types of fusion were performed. Presentations of a
sample grid snapshot with the extracted ellipse representation are presented in Figure B.1. Snapshots
presented in Figure B.1 clearly shows that the ellipse area strongly depends on the threshold level. In
order to present this dependency, the average area for all detected snapshots is measured and is presented
in Figure B.2(a).

Increasing the threshold level decreases the estimated landmark areas, but on the other hand, land-
marks with low evidences might be missed in the process. Percentage of missed poles closer than 80 m
from the vehicle is presented in Figure B.2(b). Occupancy grid used for the simulation scenario has a
dimension of 100 × 100 m and the maximum sensor range is also equal to 100 m. The occupancy grid
accumulation process requires at least a couple of scans in order to display the landmark evidences prop-
erly, therefore the maximum range of landmark evaluation is limited to 80 m discarding landmarks with
small evidence levels.



138 B.1 Threshold dependency

Figure B.1. Ellipse snapshots for different threshold values. For generation of the occupancy grid,
Cartesian ISM was used with decay rate 1.0 s−1 and 2% free space gain.
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(b) Percentage of missed poles closer that 80 m from
the vehicle as a function of threshold value.

Figure B.2. Plots showing mean area of pole representation and percentage of missed poles as a func-
tion of binarization threshold.

The percent of missed poles starts is almost 0% up to the threshold level of 0.3. Binarization thresh-
olds above 0.3 characterizes with growing missed landmark rate. Based on that, the borderline value of
0.3 was selected for the binarization threshold for the whole simulation evaluation presented in Chap-
ter 6. The value of evidence threshold e = 0.3 has its equivalent in a probability values as p = 0.65
based on equation (B.1.1).
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B.2 Additional results for the combination of filtering methods

Combination of filtering methods used to improve the occupancy grid quality might result in different
shapes of the pole object representation. This section is an extension of Section 6.3.5, where example
snapshots of the grid pole representation are presented for different fusion rules, types of ISM, decay
rates and free space gains.

B.2.1 Bayesian grid fusion with hit point inverse sensor model

Figure B.3. Snapshots of the example landmark representation on the occupancy grid, generated using
Bayesian fusion and the hit point inverse sensor model.
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B.2.2 Bayesian grid fusion with two-dimensional inverse sensor model

Figure B.4. Snapshots of the example landmark representation on the occupancy grid, generated using
Bayesian fusion and the two-dimensional inverse sensor model.
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B.2.3 Dempster combination rule with hit point inverse sensor model

Figure B.5. Snapshots of the example landmark representation on the occupancy grid, generated using
Dempster combination rule and the hit point inverse sensor model.
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B.2.4 Dempster combination rule with two-dimensional inverse sensor model

Figure B.6. Snapshots of the example landmark representation on the occupancy grid, generated using
Dempster combination rule and the two-dimensional inverse sensor model.
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B.2.5 Hybrid Dezert-Smarandache combination rule with hit point inverse sensor
model

Figure B.7. Snapshots of the example landmark representation on the occupancy grid, generated using
Hybrid Dezert-Smarandache combination rule and the hit point inverse sensor model.
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B.2.6 Hybrid Dezert-Smarandache combination rule with two-dimensional inverse
sensor model

Figure B.8. Snapshots of the example landmark representation on the occupancy grid, generated using
Hybrid Dezert-Smarandache combination rule and the two-dimensional inverse sensor model.
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152 BIBLIOGRAPHY

L. Zheng, B. Li, B. Yang, H. Song, and Z. Lu. Lane-level road network generation techniques for
lane-level maps of autonomous vehicles: A survey. Sustainability, 11(16):4511, Aug 2019. ISSN
2071-1050. doi: 10.3390/su11164511.

J. Ziegler, P. Bender, M. Schreiber, H. Lategahn, T. Strauss, C. Stiller, T. Dang, U. Franke, N. Appenrodt,
C. G. Keller, E. Kaus, R. G. Herrtwich, C. Rabe, D. Pfeiffer, F. Lindner, F. Stein, F. Erbs, M. Enzweiler,
C. Knoppel, J. Hipp, M. Haueis, M. Trepte, C. Brenk, A. Tamke, M. Ghanaat, M. Braun, A. Joos,
H. Fritz, H. Mock, M. Hein, and E. Zeeb. Making bertha drive—an autonomous journey on a historic
route. IEEE Intelligent Transportation Systems Magazine, 6(2):8–20, Summer 2014. ISSN 1939-1390.
doi: 10.1109/MITS.2014.2306552.
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