On a Smarandache Closed and Completely Filter of a Smarandache BHalgebra

To cite this article: Qasim Mohsin Luhaib and Husein Hadi Abbass 2020 IOP Conf. Ser.: Mater. Sci. Eng. 928042017

View the article online for updates and enhancements

239th ECS Meeting

On a Smarandache Closed and Completely Filter of a Smarandache BH-algebra

Qasim Mohsin Luhaib ${ }^{1}$, Husein Hadi Abbass ${ }^{2}$
${ }^{1,}$,Thi-Qar General Directorate of Education, Ministry of Education, IRAQ
${ }^{2,}$ Mathematics Department, Faculty of Education for Girls, University of Kufa Najaf, IRAQ,
1 qasimmohsinluhaib@gmail.com,
2 hussienh.abbas@uokufa.edu.iq

Abstract

In this paper, the notions of a Smarandache closed filter and Smarandache completely closed filter of a Smarandache BH-Algebra are introduced Also, Some properties of these notions are studied.

Keywords: BCK-algebra, BH-algebra, BH-algebra, Smarandache a filter of Smarandache BH-algebra.

1 Introduction

The notion of BCK-algebras was formulated first in 1966 [1]. At the same year another algebraic structure called BCI-algebra which was a generalization of a BCK-algebra was given by K. Iseki[2]. In 1983, Q.P.Hu and X. Li introduced the notion of a BCH- algebra which was a generalization of BCK/BCI -algebras [3]. In1991, C. S. Hoo introduced the notions of an ideal, a closed ideal and a filter in a BCI-algebra [4]. A BH- algebra is an algebraic structure introduced by Y.B. Jun et al in 1998 which was a generalization of $\mathrm{BCH} / \mathrm{BCI} / \mathrm{BCK}-$ algebras[5]. The notions of a Smarandache BCI-algebra, Smarandache ideal of a Smarandache BCI-algebra are given by Y.B.Jun in 2005 [6]. A.B.Saeid and A.Namdar introduced the notion of a Smarandache BCH-algebra and Smarandache ideal of Smarandache BCH-algebra in 2009 [7]. In 2012, H.H.Abbass and
H.A. Dahham discussed the concept of completely closed filter of a BH-algebra, and completely closed filter with respect to an element of BH-algebra[8]. In 2013, H. H. Abbass and S. J. Mohammed introduced notions of the Smarandache BH-algebra, Smarandache (ideal, closed ideal, completely closed ideal) of a Smarandache BH-algebra[9]. In 2019, H. H. Abbass and Q. M. Luhaib introduced the notion of Smarandache filter of a Smarandache BH-Algebra [10]. In this paper, the notions of Smarandache closed filter and Smarandache completely closed filter of a Smarandache BH-Algebra.

2 Preliminaries

In this section, some basic concepts about a BCI-algebra, a BCK-algebra, a BCH-algebra, a BH-algebra, a Smarandache BH-algebra, and a Smarandache filter of a Smarandache BH-Algebra are viewed.
Definition 2.1. [6]. A BCI-algebra is an algebra ($\mathrm{X}, *, 0$), where X is a nonempty set, $*$ is a binary operation and 0 is a constant, satisfying the following axioms: for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$:
i. $((\mathrm{x} * \mathrm{y}) *(\mathrm{x} * \mathrm{z})) *(\mathrm{z} * \mathrm{y})=0$,
ii. $(x *(x * y)) * y=0$,
iii. $x * x=0$,
iv. $x * y=0$ and $y * x=0$ imply $x=y$.

Definition 2.2. [3]. BCK-algebra is a BCI-algebra satisfying the axiom:
$0 * \mathrm{x}=0$ for all $\mathrm{x} \in \mathrm{X}$.
Definition 2.3. [5]. A BH-algebra is a nonempty set X with a constant 0 and a binary operation $*$ satisfying the following conditions:
i. $x * x=0, \forall x \in X$.
ii. $x * y=0$ and $y * x=0$ imply $x=y, \forall x, y \in X$.
iii. $x * 0=x, \forall x \in X$.

Definition 2.4. [13]
A BH-algebra is said to be normal BH-algebra if it satisfying the following conditions:
i. $0 *(\mathrm{x} * \mathrm{y})=(0 * \mathrm{x}) *(0 * \mathrm{y})$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$
ii. $(x * y) * x=0 * y$, for all $x, y \in X$
iii. $(x *(x * y)) * y=0$ for all $x, y \in X$

Definition 2.5. [10] A subset R of a BH-algebra X is said to be regular if
it satisfies: $(\forall x \in R)(\forall y \in X)(x * y \in R \Rightarrow y \in R)$
Definition 2.6. [8] A filter of a BH-algebra X is a non-empty subset F of
X such that:
(F1) If $\mathrm{x} \in \mathrm{F}$, and $\mathrm{y} \in \mathrm{F}$, then $\mathrm{y} *(\mathrm{y} * \mathrm{x}) \in \mathrm{F}$ and $\mathrm{x} *(\mathrm{x} * \mathrm{y}) \in \mathrm{F}$.
(F2) If $x \in F$ and $x * y=0$ then $y \in F$:
Further F is a closed filter if $0 * x \in F$ for all $\mathrm{x} \in \mathrm{F}$. We shall denote $\mathrm{y} *(\mathrm{y} * \mathrm{x})$ by $\mathrm{x} \wedge \mathrm{y}$.
Definition 2.7. [8] Let X be a BH-algebra, and F be a filter. Then F is completely closed filter if $x * y \in F, \forall x ; y \in F$:
Definition 2.8. [10]. A Smarandache BH-algebra is defined to be a BHalgebra X in which there exists a proper subset Q of X such that
i. $0 \in \mathrm{Q}$ and $|\mathrm{Q}| \geq 2$.
ii. Q is a BCK-algebra under the operation of X .

Definition 2.9. [5]
A nonempty subset S of a BH-algebra X is called a sub algebra of X if $x * y \in$
S; $\forall x ; y \in S$:
Definition 2.10. [9] A non-empty subset F of a Smarandache BH-algebra
X is called a Smarandache filter of X , if it satisfies (F1) and
(F3) If $x \in F$ and $x * y=0$ then $y \in F, \forall y \in Q$.
Proposition 2.11. [9] Let X be a Smarandache BH-algebra. Then every filter of X is a Smarandache filter of X .
Theorem 2.12. [9] Let X be a Smarandache BH-algebra, and F be a Smarandache filter of X such that $\mathrm{x} * \mathrm{y} \neq 0$, for all $\mathrm{y} \notin \mathrm{F}$ and $\mathrm{x} \in \mathrm{F}$. Then F is a filter of X .

Theorem 2.13. [8] Every normal subset N of a BH-algebra X is subalgebra of X.

Proposition 2.14. [9] Let X be a Smarandche BH-algebra and let $\left\{\mathrm{F}_{\mathrm{i}}, \mathrm{i} \in \lambda\right\}$ be a family of aSmarandache filter of X Then $\bigcap_{i \in \lambda} F_{i}$ is a Smarandache filter of X .

Proposition 2.15. [9] Let X be a Smarandache filter and let $\left\{\mathrm{F}_{\mathrm{i}}, \mathrm{i} \in\right\}$ be a chain of Smarandache filters of X. Then $\bigcup_{i \in \mathcal{I}} F_{i}$ is a Smarandache filter of X.

3 Main results

In this section, the concepts of a Smarandache closed filter of a Smarandache BH-algebra and Smarandache completely closed filter are introduced, also study some properties of this concept are studied.

Definition 3.1. Smarandache filter of a Smarandache BH-algebra X is called a Smarandache closed filter of X if: $0 * \mathrm{x} \in \mathrm{F}$, for all $\mathrm{x} \in \mathrm{F}$.

Example 3.2. Consider $X=\{0,1,2,3\}$ with binary operation " $*^{\prime \prime}$ defined by the following table:

$*$	0	1	2	3
0	0	0	0	0
1	1	0	1	2
2	2	2	0	1
3	3	2	1	0

where $\mathrm{Q}=\{0,1\}$ is a BCK-algebra. The Smarandache filter $\mathrm{F}=\{0,1,3\}$ is a Smarandache closed filter of X .
Proposition 3.3. Let X be a Smarandache BH-algebra . Then every closed filter of X is a Smarandache closed filter of X .

Proof. Let Directly by Definition 2.6 and Proposition2.11.
Remark 3.4. The convers of proposition 3.4 is not correct in general as in the following example.
Example 3.5. Consider $X=\{0,1,2,3,4\}$ with binary operation " $*$ " define by the following table:

$\boldsymbol{*}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{0}$	0	0	0	0	0
$\mathbf{1}$	1	0	1	0	2
$\mathbf{2}$	2	2	0	2	0
$\mathbf{3}$	3	1	3	0	3
$\mathbf{4}$	4	4	4	4	0

Where $\mathrm{Q}=\{0,2\}$. The subset $\mathrm{F}=\{0,1,2\}$ is a Smarandache closed filter of X but it is not a filter. Since $\mathrm{x}=0, \mathrm{y}=30 * 3=0$, but $3 \notin \mathrm{~F}$
Definition 3.6. Smarandache filter of a Smarandache BH-algebra X is called a Smarandache completely closed filter of X if: $x * y \in F$, for all $x, y \in F$.

Example 3.7. Consider $X=\{0,1,2,3\}$ in Example 3.2, where $Q=\{0,1\}$ is a BCK-algebra. $\mathrm{F}=\{0,1,2\}$ is a Smarandache completely closed filter
Proposition 3.8. Let X be a Smarandache BH-algebra. Then every completely closed filter of X is a Smarandache completely closed filter of X.
Proof. Directly by Proposition 2.11 and by Definition 2.7 .
Example 3.9. Consider $X=\{0,1,2,3\}$ in Example 3.2, where $Q=\{0,1\}$ is a BCK-algebra. $F=\{0,1,2\}$ is a Smarandache completely closed filter of X, but it is not completely closed filter of X. Because F is not filter of X
Proposition 3.10. Let X be a Smarandache BH-algebra, and F be a Smarandche completely closed filter of X. Then $0 \in F$.
Proof. Let F be a Smarandache completely closed filter of X , and let $\mathrm{x} \in \mathrm{F}$ we get $x * x \in F[B y$ Definition3.6]. Therefore, $0 \in F$ [By Definition2.2(i)].
Proposition 3.11. Let X be a a Smarandache BH-algebra. Then every a Smarandache completely closed filter of X is a Smarandache closed filter BH-algebra of X .
Proof. Let F be a Smarandache completely closed filter of X , it follows that F is a Smarandache filter of X [By Definition2.7]
Now, let $x \in F$ imply $x * y \in F$ [Since F is a Smarandache completely closed filter of X , By Definition 2.7] choose $\mathrm{x}=0 \in \mathrm{~F}$ [By Proposition 3.10] thus $0 * y \in F$: Therefore, F is Smarandache closed filter of X [By Definition 3.1]
Example 3.12. Consider $X=\{0,1,2,3\}$ in Example 3.2, where $Q=\{0,1\}$ is a BCK-algebra. $F=\{0,1,3\}$ is a Smarandache closed filter but is not a Smarandache completely closed filter since $x=1, y=3 \in F$ but $1 * 3 \notin F$
Proposition 3.13. Let X be a Smarandache BH-algebra, and let F be a Smarandache completely closed filter of X . Then F is BH-algebra with the same binary operation on X and the constant 0 .

Proof. Let F be a Smarandache completely closed filter of X . (i) Let $\mathrm{x} \in \mathrm{F}$ imply $\mathrm{x} \in \mathrm{X}$; it follows that $\mathrm{x} * \mathrm{x}=0$ [By Definition2.3(i)], (ii) Let $\mathrm{x} \in \mathrm{F}$
we get $x \in X$, then $x * 0=x$ [By Definition2.3(iii)](iii) Let $x, y \in F, x * y=0$ and $y * x=0$, imply $x=y$ [By Definition2.3(ii)] Therefore, F is a BH-algebra.

Proposition 3.14. Let X be a Smarandache $B H$-algebra and let $\left\{\mathrm{F}_{\mathrm{i}}, \mathrm{i} \in \lambda\right\}$ be a family of Smarandache closed filter of X. Then $\bigcap_{i \in \lambda} F_{i}$ is a Smarandache closed filter of X .

Proof. Since F_{i} is a Smarandache closed filter of $\mathrm{X} \forall \mathrm{i} \in \lambda$, Since Fi is a Smarandache filter $\forall \mathrm{i} \in \lambda$ [By Definition3.1]imply $\bigcap_{i \in \lambda} F_{i}$, is a Smarandache filter of X.[By Proposition2.14].Now, let $x \in \bigcap_{i \in \lambda} F_{i}$ since $\mathrm{x} \in \mathrm{F}_{\mathrm{i}} \forall \mathrm{i} \in \lambda$. then $0 * \mathrm{x} \in \mathrm{Fi} \forall \mathrm{i} \in \lambda$ [By Definition3.1]imply $0 * \mathrm{x} \in \bigcap_{i \in \lambda} F_{i}$. Therefore, $\bigcap_{i \in \lambda} F_{i}$ is a Smarandache closed filter of X.
Proposition 3.15. Let X be a Smarandache $B H$-algebra and let $\left\{\mathrm{F}_{\mathrm{i}}, \mathrm{i} \in \lambda\right\}$ be a family of Smarandache completely closed filter of X. Then $\bigcap_{i \in \lambda} F_{i}$ is a Smarandache completely closed filter of X .

Proof. Since F_{i} is a Smarandache completely closed filter of $X \forall i \in \lambda$, then F_{i} is a Smarandache filter $\forall \mathrm{i} \in \lambda$ [By Definition3.6]imply $\bigcap_{i \in \lambda} F_{i}$ is a Smarandache filter of X.[By Proposition2.14]. Now, let $x \in \bigcap_{i \in \lambda} F_{i}$ since $x \in F_{i} \forall i \in \lambda$. then $\mathrm{x} * \mathrm{y} \in \mathrm{F}_{\mathrm{i}} \forall \mathrm{i} \in \lambda$ [By Definition3.6] imply $\mathrm{x} * \mathrm{y} \in \bigcap_{i \in \lambda} F_{i}$. Therefore, $\bigcap_{i \in \lambda} F_{i}$ is a Smarandache completely closed filter of X.
Proposition 3.16. Let X be a Smarandache filter and let $\left\{\mathrm{F}_{\mathrm{i}}, \mathrm{i} \in\right\}$ be a chain of Smarandache closed filter of X. Then $\bigcup_{i \in \lambda} F_{i}$ is a Smarandache closed filter of X .

Proof. Let $\left\{\mathrm{F}_{\mathrm{i}}, \mathrm{i} \in\right\}$ be a chain of Smarandache closed filter of X then F_{i} is a Smarandache filter $\forall \mathrm{i} \in \lambda$ [By Definition3.1]then $\bigcup_{i \in \lambda} F_{i}$ is a Smarandache filter [By Proposition2.15]. Now let $\mathrm{x} \in \bigcup_{i \in \lambda} F_{i}$ it follows that $\mathrm{i} \in \lambda$ such that $\mathrm{x} \in \mathrm{F}_{\mathrm{i}}$ then $0 * \mathrm{x} \in \mathrm{F}_{\mathrm{i}}$ $\forall \mathrm{i} \in$ [By Definition3.1]imply $0 * \mathrm{x} \in \bigcup_{i \in \lambda} F_{i}$. Therefore, $\bigcup_{i \in \lambda} F_{i}$ is a Smarandache closed filter of X .

Proposition 3.17. Let X be a Smarandache filter and let $\left\{\mathrm{Fi}_{\mathrm{i}} ; \mathrm{i} \in \lambda\right\}$ be a chain of Smarandache completely closed filter of X . Then $\bigcup_{i \in \lambda} F_{i}$ is a Smarandache completely closed filter of X.
Proof. Let $\left\{\mathrm{F}_{\mathrm{i}}, \mathrm{i} \in \lambda\right\}$ be a chain of Smarandache completely closed filter of X then F_{i} is a Smarandache filter $\forall \mathrm{i} \in \lambda$ [By Definition3.6] then $\bigcup_{i \in \lambda} F_{i}$ is a Smarandache filter [By Proposition2.15]. Now let $\mathrm{x}, \mathrm{y} \in \bigcup_{i \in \mathcal{\lambda}} F_{i} \mathrm{~F}_{\mathrm{i}} \exists \mathrm{i}, \mathrm{j} \in$ such that $x \in F_{i}$ and $y \in F_{j}$, since $\left\{F_{i}, i \in \lambda\right\}$ is a chain ether $F_{i} \subseteq F_{j}$ or $F_{j} \subseteq F_{i}$ Suppose $\mathrm{Fi}_{\mathrm{i}} \subseteq \mathrm{F}_{\mathrm{j}}$ imply $\mathrm{x} * \mathrm{y} \in \mathrm{F}_{\mathrm{i}} \forall \mathrm{i} \in \lambda\left[\right.$ By Definition 3.6]imply $\mathrm{x} * \mathrm{y} \in \bigcup_{i \in \mathcal{A}} F_{i}$ Therefore, $\bigcup_{i \in \lambda} F_{i}$ is a Smarandache closed filter of X .

Proposition 3.18. Let X be a Smarandache BH-algebra and F be a Smarandache closed filter of X such that $x * y \neq 0 \forall y \notin F$ and $x \in F$ Then F is a closed filter of X.
Proof. let F be a Smarandache closed filter of X and let $\mathrm{y} \in \mathrm{X}, \mathrm{x} \in \mathrm{F}$, imply F be a Smarandache filter of X [By Definition 3.1] F is a filter of X [By Theorem2.12]. Now let $\mathrm{x} \in \mathrm{F}$ then $0 * \mathrm{x} \in \mathrm{F}$ [Since F is Smarandache closed filter of X, By Definition 3.1]. Therefore, F is a closed filter of X
Proposition 3.19. Let X be a Smarandache BH-algebra and F be a Smarandache closed filter of X such that $x * y \neq 0 \forall y \notin F$ and $x \in F$. Then F is a completely closed filter of X .
Proof. let F be a Smarandache completely closed filter of X and let $\mathrm{y} \in \mathrm{X}, \mathrm{x} \in$ F, imply F be a Smarandache filter of X [By Definition 3.6]F is a filter of X [By Theorem2.12]. Now let $x, y \in F$ we get $x * y \in F[$ Since F is Smarandache closed filter of X, By Definition 3.6]. Therefore, F is a completely closed filter of X.

References

[1] Imai Y and Iseki K 1966 "On Axiom System of Propositional Calculi" XIV Proc Japan Acad vol 42 pp 19-20
[2] Iseki K An 1966 "algebra related with a propositional calculus" Proc Japan Acad Vol 42 pp 26-29
[3] Hu Q P and Li X 1983 "On BCH-algebras" Math Seminar Notes vol 11 pp
[4] Hoo C S 1991" Filters and ideals in BCI-algebra" Math Japonica vol 36 pp 987-997
[5] Jun Y B Roh E H and Kim H S 1998" On BH-algebras" Scientiae Mathematicae vol 1(1) pp 347-354
[6] JUN Y B 2005 "Smarandache BCC-algebras" International Journal of Mathematical and Mathematical Sciences vol 18 pp 2855-2861
[7] Saeid A B and Namdar A 2009 "Smarandache BCH-algebras" World Applied Sciences Journal vol 7 (no11) pp 77-83
[8] Abbass H H and Dahham H A 2016 "A Competiy Closed Ideal of a BGAlgebra" First Edition Scholar's Press Germany ISBN 978-3-659-84103-3
[9] Abbass H H and Mohammed S J 2013 "On a Q-Samarandach Fuzzy Completely Closed ideal with Respect to an Element of a BH-algebra" Journal of Kerbala university vol 11 no 3 pp 147-157
[10] Abbass H H and Luhaib Q M, "On Smarandache Filter of a Smarandache BH-Algebra", in Journal of Physics: Conference Series, vol. 1234, no. 1, p. 12099. (2019)
[11] Meng J and Jun Y B "BCK-algebras" Kyung Moon SA Seoul 1994
[12] Deeba E Y and Thaheem A B 1990 "On Filters in BCK-algebra" Math Japon vol 35 no 3 pp 409-415.
[13] Zhang Q Jun Y B and Roh E H 2001 "On the Branch of BH-algebras" Scientiae Mathematicae Japonicae vol 54(2) pp 363-367

