PAPER • OPEN ACCESS

On Smarandache Filter of a Smarandache BH-Algebra

To cite this article: Husein Hadi Abbass and Qasim Mohsin Luhaib 2019 J. Phys.: Conf. Ser. 1234012099

View the article online for updates and enhancements.

IOP ebooks"

Bringing you innovative digital publishing with leading voices to create your essential collection of books in STEM research.

Start exploring the collection - download the first chapter of every title for free.

On Smarandache Filter of a Smarandache BH-Algebra

Husein Hadi Abbass ${ }^{1}$, Qasim Mohsin Luhaib ${ }^{2}$
${ }^{1}$ Mathematics Department Faculty of Education for Girls, University of Kufa,Najaf, IRAQ
${ }^{2}$ Thi-Qar General Directorate of Education, Ministry of Education, IRAQ
${ }^{1}$ husseinh.abbas@uokufa.edu.iq
${ }^{2}$ qasmm.alhatime@student.uokufa.edu.iq

Abstract

In this paper, The notion of a Smarandache filter of a Smarandache BHAlgebra is introduced, some theorems and examples are investigated and discussed to explain properties of this notion. A necessary and sufficient condition is derived for every Smarandache filter of a Smarandache BH-Algebra to become a filter. Finally, the relationships between this notion and Smarandache ideal are established

Keywords. BCK-algebra, BCH-algebra, BH-algebra, Smarandache BHalgebra.

1. Introduction

A new algebraic structure called BCK-algebra was introduced by Y.Imai and K.Iseki in 1966[1]. At the same year another algebraic structure called BCI-algebra which was a generalization of a BCK-algebra was given by K.Iseki[2]. In 1983, Q.P.Hu and X.Li introduced the notion of a BCH- algebra which was a generalization of BCK/BCI -algebras [3]. In1991, C. S. Hoo introduced the notions of an ideal, a closed ideal and a filter in a BCI-algebra [4]. A BH- algebra is an algebraic structure introduced by Y.B.Jun et al in 1998 which was a generalization of BCH/BCI/BCK-algebras [5]. The notions of a Smarandache BCIalgebra, Smarandache ideal of a Smarandache BCI-algebra are given by Y.B.Jun in 2005 [6]. A.B.Saeid and A.Namdar introduced the notion of a Smarandache BCH-algebra and Smarandache ideal of Smarandache BCH-algebra in 2009 [7]. In 2012, H.H.Abbass and H.A.Dahham discussed the concept of completely closed filter of a BH-algebra, and completely closed filter with respect to an element of BH-algebra[8]. In 2013, H. H. Abbass and S. J. Mohammed introduced notions of the Smarandache BH-algebra, Smarandache (ideal, closed ideal, fantastic ideal, completely closed ideal) of a Smarandache BH-algebra[9]. In this paper, the notion of Smarandache filter of a Smarandache BH-Algebra is introduced.

2. Preliminaries

In this section, some basic concepts about a BCI-algeba, a BCK-algebra, a BCH-algebra, a BH-algeba, a Smarandache BH-algebra, and a Smarandach ideal of a BH-algebra are viewed.

Definition 2.1. [10]. A BCI-algebra is an algebra ($X, *, 0$), where X is a nonempty set, $*$ is a binary operation and 0 is a constant, satisfying the following axioms:for all $x, y, z \in X$:
i. $((x * y) *(x * z)) *(z * y)=0$,
ii. $(x *(x * y)) * y=0$,
iii. $x * x=0$,
iv. $x * y=0$ and $y * x=0$ imply $x=y$.

Definition 2.2. [10] BCK-algebra is a BCI-algebra satisfying the axiom: $0 * x=0$ for all $x \in X$.
Definition 2.3. [5] A BH-algebra is a nonempty set X with a constant 0 and a binary operation * satisfying the following conditions:
i. $x * x=0, \forall x \in X$.
ii. $x * y=0$ and $y * x=0$ imply $x=y, \forall x, y \in X$.
iii. $x * 0=x, \forall x \in X$.

Remark 2.4. [5]
i. Every BCK-algebra is a BCI-algebra.
ii. Every BCK-algebra is a $B C H \backslash B H$-algebra.

Definition 2.5. [12]
A BH-algebra is said to be normal BH-algebra if it satisfying the following conditions:
i. $0 *(x * y)=(0 * x) *(0 * y), \quad \forall x, y \in X$
ii. $(x * y) * x=0 * y, \quad \forall x, y \in X$
iii. $(x *(x * y)) * y=0 \quad \forall x, y \in X$

Definition 2.6. [13]. A subset R of a BH-algebra X is said to be regular if it satisfies: $(\forall x \in R)(\forall y \in$ $X)(x * y \in R \Rightarrow y \in R)$

Definition 2.7. [5]
Let I be a nonempty subset of a $B H$-algebra X. Then I is called an ideal of X if it satisfies:
(i.) $0 \in I$.
(ii.) $x * y \in I$ and $y \in I \Longrightarrow x \in I, \forall x \in X$.

Definition 2.8. [9] A Smarandache BH-algebra is defined to be a BH-algebra X in which there exists a proper subset Q of X such that
i. $0 \in Q$ and $|Q| \geq 2$.
ii. Q is a BCK-algebra under the operation of X.

Definition 2.9. [13]. A Smarandache BH-algebra X is called a Smarandache medial $B H$-algebra if $x *(x * y)=y, \forall x, y \in Q$

Definition 2.10. [9]. A nonempty subset I of a Smarandache BH-algebra X is called a Smarandache ideal of X, if it satisfies:
$\left(J_{1}\right) 0 \in I$.
$\left(J_{2}\right) \forall y \in \operatorname{Iand} x * y \in I \Longrightarrow x \in I, \forall x \in Q$.
Definition 2.11. [13]. A subset I of a Smarandache BH-algebra X is called a Smarandache commutative ideal of X if it satisfies J_{1} and
$\left(J_{3}\right) .(x * y) * z \in I$ and $z \in I \Rightarrow x *(y *(y * x)) \in I \forall x, y \in Q$ and $z \in X$
Definition 2.12. [13].A Smarandache ideal I of a Smarandache BH-algebra X is called a Smarandache normal ideal of X if $x *(x * y) \in I$ implies $y *(y * x) \in I, \forall x, y \in Q$.
Definition 2.13. [8] A filter of a BH-algebra X is a non-empty subset F of X such that:
$\left(F_{1}\right)$ If $x \in F$ and $y \in F$ then $y *(y * x) \in F$ and $x *(x * y) \in F$.
(F_{2}) If $x \in F$ and $x * y=0$ then $y \in F \forall y \in X$
Theorem 2.14. [9]. Let X be a Smarandache BH-algebra and let I be a regular subset of X such that I is a subset of Q. If I is a Smarandache ideal of X then I is a filter of X.

3. Main results

In this section, the concept of a Smarandache filter of a Smarandache BH-algebra is introduced, some properties of this concept are studied.

Definition 3.1. A non-empty subset F of a Smarandache BH-algebra X is called a Smarandache filter of X, if it satisfies $\left(F_{1}\right)$ and
(F_{3}) If $x \in F$ and $x * y=0$ then $y \in F \forall y \in Q$.

Example 3.2. .

Consider the Smarandache BH-algebra $X=\{0,1,2\}$ with the binary operation ${ }^{\prime} *^{\prime}$ defined by the following table:

$*$	0	1	2
0	0	0	0
1	1	0	2
2	2	0	0

where $Q=\{0,2\}$ is a BCK-algebra. The subset $F=\{1,2\}$ is Smarandache filter of X
Remark 3.3. If X is a Smarandache BH-algebra. Then $\{0\}$ and X are Smarandache filters of X, called trivial Smarandache filters of X. A Smarandache filter F of X is called a proper Smarandache filter of X if $F \neq X$.
Proposition 3.4. Let X be a Smarandache BH-algebra. Then every filter of X is a Smarandache filter of X.

Proof. Is obvious. Since $Q \subseteq X$ and F is a filter of X.
Example 3.5. The convers of proposition (3.4) is not correct in general as in the following example. Consider $X=\{0,1,2,3,4\}$ with binary operation " $*^{\prime \prime}$ defined by the following table:

$*$	0	1	2	3	4
0	0	0	0	0	0
1	1	0	1	0	2
2	2	2	0	2	0
3	3	1	3	0	3
4	4	4	4	4	0

where $Q=\{0,2\}$. The subset $F=\{0,1,2\}$ is a Smarandache filter of X but it is not a filter. Since $0 \in F, 3 \in X$ and $0 * 3=0$ but $3 \notin F$

Proposition 3.6. Consider the Smarandache $B H$-algebra $X=R$ the set of real number with binary oper$\left\{\begin{array}{ccc}x & \text { if } x \neq \quad y \quad \text { and } \quad x \in Z, \quad y \in R^{+}\end{array}\right.$ ation " $*^{\prime \prime}$ defined by $x * y=\left\{\begin{array}{lll}x & \text { if } & x=0 \text { and } y \in Z^{-} \\ x-y & \text { otherwise }\end{array}\right.$
where $Q=Z$ the set of integers is a BCK-algebra. The subset $F=Z^{+} \bigcup\{0\}$ is the set a non negative integers is a Smarandache filter of X, but it is not a filter of X, since $0 \in F, \sqrt{2} \in R$ and $0 * \sqrt{2}=0$ but $\sqrt{2} \notin F$

Proposition 3.7. Let X be a Smarandache $B H$-algebra, and Q_{1}, Q_{2} be a BCK-algebra, which are properly contained in X, such that $Q_{1} \subseteq Q_{2}$. Then every Q_{2}-Smarandache filter is a Q_{1}-Smarandache filter of X.

Proof. Let $x, y \in F$ then $y *(y * x) \in F$ and $x *(x * y) \in F$ by F_{1} Now, let $x \in F$ and $x * y=0, y \in Q_{1}$. Since $Q_{1} \subseteq Q_{2}$ and F is a Q_{2}-Smarandache filter of X then $y \in F$. Therefore, F is a Q_{1}-Smarandache filter of X.

Remark 3.8. The convers of proposition (3.7) is not correct in general as in the following example. Consider the Smarandache BH-algebra $X=\{0,1,2,3,4\}$ with binary operation " $*$ " defined by the following table:

$*$	0	1	2	3	4
0	0	0	0	0	0
1	1	0	1	0	1
2	2	2	0	2	0
3	3	1	3	0	3
4	4	4	4	4	0

where $Q_{1}=\{0,1\}, Q_{2}=\{0,1,3\}$ are BCK-algebras and $Q_{1} \subseteq Q_{2} . F=\{0,1,2\}$ is a Q_{1}-Smarandache filter of X, but it is not Q_{2}-Smarandache filter of X. Since $0 \in F, \quad 3 \in Q_{2}$ and $0 * 3=0$, but $3 \notin F$

Theorem 3.9. Let X be a Smarandache medial BH-algebra. Then every a non-empty subset A of X is a Smarandache filter of X.

Proof. Let A be a non-empty subset of X and $x, y \in A$. Then $x=y *(y * x)$ by Definition(2.9). Thus $y *(y * x) \in A$. Similarly, $x *(x * y) \in A$. Now, let $x \in A, x * y=0, y \in Q$. Since X is a medial BH-algebra then $y=x *(x * y)$, imply that $y=x * 0$, by Definition(2.1)(iii) $x * 0=x$. Thus $y=x$, so $y \in A$. Therefore, A is a Smarandache filter of X.

Proposition 3.10. Let X be a Smarandache BH-algebra and let $\left\{F_{i}, i \in \lambda\right\}$ be a family of Smarandache filter of X. Then $\bigcap_{i \in \lambda} F_{i}$ is a Smarandache filter of X.

Proof. Let $\left\{F_{i}, i \in \lambda\right\}$ be a family of Smarandache filter of X. To prove $\bigcap_{i \in \lambda} F_{i}$ is a Smarandache filter of X. Let $x, y \in \bigcap_{i \in \lambda} F_{i}$. Then $x, y \in F_{i}, \forall i \in \lambda$. Since F_{i} is a Smarandache filter of $\mathrm{X}, \forall i \in \lambda$. Hence $y *(y * x), x *(x * y) \in F_{i} \forall i \in \lambda$ by Definition(3.1)(F_{1}). Then $y *(y * x), x *(x * y) \in \bigcap_{i \in \lambda} F_{i}$. Now, let $x \in \bigcap_{i \in \lambda} F_{i}, x * y=0$ and $y \in Q$. Then $x \in F_{i} \forall i \in \lambda$. Since F_{i} is a Smarandache filter of $\mathrm{X}, \forall i \in \lambda$, then $y \in F_{i} \forall i \in \lambda$ by Definition $(3.1)\left(F_{3}\right)$. This means that $y \in \bigcap_{i \in \lambda} F_{i}$. Therefore, $\bigcap_{i \in \lambda} F_{i}$ is a Smarandache filter of X.

Remark 3.11. The union of Smarandache filter of Smarandache BH-algebra X may be not a Smarandache filter as in the following example.

Example 3.12. Consider the Smarandache BH-algebra $X=\{0,1,2,3,4\}$ with binary operation " $*^{\prime \prime}$ defined by the following table:

$*$	0	1	2	3	4
0	0	0	0	0	0
1	1	0	0	0	0
2	2	4	0	0	1
3	3	2	3	0	1
4	4	4	1	4	0

Where $Q_{1}=\{0,2\} . F_{1}=\{1,2\}$ and $F_{2}=\{2,4\}$ are two Smarandache filters of X, the union of the Smarandache filters is not a Smarandache filter of X. Since $1,4 \in F_{1} \bigcup F_{2}$, but $4 *(4 * 1)=0 \notin F_{1} \bigcup F_{2}$

Proposition 3.13. Let X be a Smarandache filter and let $\left\{F_{i}, i \in \lambda\right\}$ be a chain of Smarandache filter of X. Then $\bigcup_{i \in \lambda} F_{i}$ is a Smarandache filter of X.

Proof. Let $\left\{F_{i}, i \in \lambda\right\}$ be a chain of Smarandache filter of X and $x, y \in \bigcup_{i \in \lambda} F_{i}, \forall i \in \lambda$. Then there exist $F_{j}, F_{k} \in\left\{F_{i}\right\}_{i \in \lambda}$ such that $x \in F_{j}$ and $y \in F_{k}$. So, either $F_{j} \subseteq F_{k}$ or $F_{k} \subseteq F_{j}$. If $F_{j} \subseteq F_{k}$, then $x \in F_{k}$ and $y \in F_{k}$. Since F_{k} is a Smarandache filter of X , then $y *(y * x) \in F_{k}$ and $x *(x * y) \in F_{k}$, by Definition $(3.1)\left(F_{1}\right)$. Similarly, if $F_{k} \subseteq F_{j}$. Then $y *(y * x), x *(x * y) \in \bigcup_{i \in \lambda} F_{i}$. Now Let $x \in \bigcup_{i \in \lambda} F_{i}$ such that $x * y=0$ and $y \in Q$. Then there exists $j \in \lambda$ such that $x \in F_{j}$.Since F_{j} is a Smarandache filter of X, hence $y \in F_{j}$ by Definition $(3.1)\left(F_{3}\right)$. Thus $y \in \bigcup_{i \in \lambda} F_{i}$. Therefore, $\bigcup_{i \in \lambda} F_{i}$ is a Smarandache filter of X.

Theorem 3.14. Let X be a Smarandache BH-algebra, and F be a Smarandache filter of X such that $x * y \neq 0$, for all $y \notin F$ and $x \in F$. Then F is a filter of X.

Proof. Let F be a Smarandache filter of X such that $y \in X$ and $x \in F$,
Let $x, y \in F$ Since F is a Smarandache filter of X it follows that $y *(y * x), x *(x * y) \in F$ by F_{1}. Now, let $x \in F, x * y=0$, Then there are two cases.
Case 1:If $y \in Q$ imply then $y \in F$ by F_{2}
Case 2: If $y \notin Q$ then either $y \notin F$ or $y \in F$ suppose $y \notin F$, then $x * y \neq 0$, by hypothesis , this a contradiction. Thus $y \in F$. Therefore, F is a filter of X

Theorem 3.15. Let X be a Smarandache normal $B H$-algebra, and let I be a regular subset of X. If I is an ideal, then I is a Smarandache filter of X.

Proof. Let I be an ideal of X and $x, y \in I$. From I_{1} we have $0 \in I$. By Definition2.5(iii) $(x *(x * y)) * y=0 \in I$. $S o, I_{2}$ follows that $(x *(x * y)) \in I$, similarly $y *(y * x) \in I$. Let $x \in I, x * y=0, y \in Q$. Then $x * y \in I, x \in I, y \in X[Q \subseteq X]$. Since I is a regular subset of X . Thus $y \in I$. Therefore, I is a Smarandache filter of X.

Proposition 3.16. let X be a Smarandache medial BH-algebra X, and let I be a Smarandache ideal of X, such that $Q \subseteq I$. Then I is a Smarandache commutative ideal of X if and only if I is a Smarandache filter of X.

Proof. Let I be a Smarandache commutative ideal of X and $x, y \in I$. Since X is a Smarandache medial BH-algebra, by Definition(2.9) we get $y=y *(y * x) \in I$ and $y=x *(x * y) \in I$. Now, Let $x \in I, x * y=$ 0 , and $y \in Q . X$ is a Smarandache medial BH-algebrait follows that $y=x *(x * y)=x * 0$ implies that $y=x$. Hence $y \in I$ Therefore, I is a Smarandache filter of X. Conversely, let I be a Smarandache filter of X. From Definition 2.8(i) $0 \in Q$. Since $Q \subseteq I$ then $0 \in I$. Now, let $x, y \in Q, z \in I$,such that $(x * y) * z \in I$, Since $x * x=0$, it follows that $x *(y *(y * x))=0 \in I$ [Since X is a Smarandache medial BH-algebra]. Therefore, I is a Smarandache commutative ideal of X.

Corollary 3.16.1. Let X be a Smarandache $B H$-algebra and let I be a regular subset of X such that I is a subset of Q. If I is a Smarandache ideal of X, then I is a Smarandache filter of X.

Proof. It is directly from Theorem 2.14 and proposition3.4. Smarandache filter of X.

Proposition 3.17. Let X be a Smarandache BH-algebra, and let F be a Smarandache filter of X, such that $Q \subseteq I$. Then F is Smarandache normal ideal of X.

Proof. Let F be a Smarandache filter of X , since $0 \in Q$ and $Q \subseteq F$, implies that $0 \in F$. Now, let $x * y \in F$ and $y \in F, x \in Q[$ Since $Q \subseteq F]$ we get $x \in F$, [By Definition 2.10(ii)]it follows that F is a Smarandache ideal of X.
Now, let $x, y \in Q$ such that $x *(x * y) \in F[$ Since $Q \subseteq F$ and F is a Smarandache filter of X by Definition3.1(i)]we get $y *(y * x) \in F$. Therefore, F is a Smarandache normal ideal of X.

References

[1] Imai Y and Iseki K 1966 On Axiom System of Propositional Calculi XIV Proc Japan Acad Vol 42 pp 19-20
[2] Iseki K An 1966 algebra related with a propositional calculus Proc Japan Acad Vol 42 pp 26-29
[3] Hu Q P and Li X 1983 On BCH-algebras Math Seminar Notes Vol 11 pp 313-320
[4] Hoo C S 1991 Filters and ideals in BCI-algebra Math Japonica Vol 36 pp 987-997
[5] Jun Y B Roh E H and Kim H S 1998 On BH-algebras Scientiae Mathematicae Vol 1(1) pp 347-354
[6] JUN Y B 2005 Smarandache BCC-algebras International Journal of Mathematical and Mathematical Sciences Vol 18 pp 2855-2861
[7] Saeid A B and Namdar A 2009 Smarandache BCH-algebras World Applied Sciences Journal Vol 7 (no11) pp 77-83
[8] Abbass H H and Dahham H A 2016 A Competiy Closed Ideal of a BG-algebra First Edition Scholar's Press Germany ISBN 978-3-659-84103-3
[9] Abbass H H and Mohammed S J 2013 On a Q-Samarandach Fuzzy Completely Closed ideal with Respect to an Element of a BH-algebra Journal of Kerbala university vol 11 no 3 pp 147-157
[10] Meng J and Jun Y B BCK-algebras Kyung Moon SA Seoul 1994
[11] Deeba E Y and Thaheem A B 1990 On Filters in BCK-algebra Math Japon Vol 35 no 3 pp 409-415.
[12] Zhang Q Jun Y B and Roh E H 2001 On the Branch of BH-algebras Scientiae Mathematicae Japonicae Vol 54(2) pp 363-367
[13] Abbass H H and Gatea H K 2016 A Q- Smarandache Implicative Ideal of Q-Smarandache BH-algebra First Edition Scholar's PressGermany ISBN 978-3-659-83923-8

