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Abstract. In this paper, The notion of a Smarandache filter of a Smarandache BH-
Algebra is introduced, some theorems and examples are investigated and discussed to
explain properties of this notion. A necessary and sufficient condition is derived for ev-
ery Smarandache filter of a Smarandache BH-Algebra to become a filter. Finally, the
relationships between this notion and Smarandache ideal are established
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1. Introduction

A new algebraic structure called BCK-algebra was introduced by Y.Imai and K.Iseki in 1966[1]. At the
same year another algebraic structure called BCI-algebra which was a generalization of a BCK-algebra
was given by K.Iseki[2]. In 1983, Q.P.Hu and X.Li introduced the notion of a BCH- algebra which was a
generalization of BCK/BCI -algebras [3]. In1991, C. S. Hoo introduced the notions of an ideal, a closed
ideal and a filter in a BCI-algebra [4]. A BH- algebra is an algebraic structure introduced by Y.B.Jun et al
in 1998 which was a generalization of BCH/BCI/BCK-algebras [5]. The notions of a Smarandache BCI-
algebra, Smarandache ideal of a Smarandache BCI-algebra are given by Y.B.Jun in 2005 [6]. A.B.Saeid and
A.Namdar introduced the notion of a Smarandache BCH-algebra and Smarandache ideal of Smarandache
BCH-algebra in 2009 [7]. In 2012, H.H.Abbass and H.A.Dahham discussed the concept of completely closed
filter of a BH-algebra, and completely closed filter with respect to an element of BH-algebra[8]. In 2013, H.
H. Abbass and S. J. Mohammed introduced notions of the Smarandache BH-algebra, Smarandache (ideal,
closed ideal, fantastic ideal, completely closed ideal) of a Smarandache BH-algebra[9]. In this paper, the
notion of Smarandache filter of a Smarandache BH-Algebra is introduced.

2. Preliminaries

In this section, some basic concepts about a BCI-algeba, a BCK-algebra,a BCH-algebra, a BH-algeba, a
Smarandache BH-algebra, and a Smarandach ideal of a BH-algebra are viewed.

Definition 2.1. [10]. A BCI-algebra is an algebra (X, ∗, 0) , where X is a nonempty set, ∗ is a binary
operation and 0 is a constant, satisfying the following axioms:for all x, y, z ∈ X:



The 1st International Scientific Conference on Pure Science

IOP Conf. Series: Journal of Physics: Conf. Series 1234 (2019) 012099

IOP Publishing

doi:10.1088/1742-6596/1234/1/012099

2

i. ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,

ii. (x ∗ (x ∗ y)) ∗ y = 0,

iii. x ∗ x = 0,

iv. x ∗ y = 0 and y ∗ x = 0 imply x = y.

Definition 2.2. [10] BCK-algebra is a BCI-algebra satisfying the axiom: 0 ∗ x = 0 for all x ∈ X.

Definition 2.3. [5] A BH-algebra is a nonempty set X with a constant 0 and a binary operation *
satisfying the following conditions:

i. x ∗ x = 0, ∀ x ∈ X.

ii. x ∗ y = 0 and y ∗ x = 0 imply x = y, ∀ x, y ∈ X.

iii. x ∗ 0 = x, ∀ x ∈ X.

Remark 2.4. [5]

i. Every BCK-algebra is a BCI-algebra.

ii. Every BCK-algebra is a BCH\ BH-algebra.

Definition 2.5. [12]
A BH-algebra is said to be normal BH-algebra if it satisfying the following
conditions:

i. 0 ∗ (x ∗ y) = (0 ∗ x) ∗ (0 ∗ y), ∀x, y ∈ X

ii. (x ∗ y) ∗ x = 0 ∗ y, ∀x, y ∈ X

iii. (x ∗ (x ∗ y)) ∗ y = 0 ∀x, y ∈ X

Definition 2.6. [13]. A subset R of a BH-algebra X is said to be regular if it satisfies: (∀x ∈ R)(∀y ∈
X)(x ∗ y ∈ R ⇒ y ∈ R)

Definition 2.7. [5]
Let I be a nonempty subset of a BH-algebra X. Then I is called an ideal of X if it satisfies:

(i.) 0 ∈ I.

(ii.) x ∗ y ∈ I and y ∈ I =⇒ x ∈ I, ∀ x ∈ X.

Definition 2.8. [9] A Smarandache BH-algebra is defined to be a BH-algebra X in which there exists a
proper subset Q of X such that

i. 0 ∈ Q and |Q| ≥ 2.

ii. Q is a BCK-algebra under the operation of X.

Definition 2.9. [13]. A Smarandache BH-algebra X is called a Smarandache medial BH-algebra if
x ∗ (x ∗ y) = y, ∀x, y ∈ Q

Definition 2.10. [9]. A nonempty subset I of a Smarandache BH-algebra X is called a Smarandache
ideal of X, if it satisfies:

(J1) 0 ∈ I.
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(J2) ∀ y ∈ Iand x ∗ y ∈ I =⇒ x ∈ I,∀ x ∈ Q.

Definition 2.11. [13]. A subset I of a Smarandache BH-algebra X is called a Smarandache commutative
ideal of X if it satisfies J1 and
(J3). (x ∗ y) ∗ z ∈ I and z ∈ I ⇒ x ∗ (y ∗ (y ∗ x)) ∈ I ∀x, y ∈ Q and z ∈ X

Definition 2.12. [13].A Smarandache ideal I of a Smarandache BH-algebra X is called a Smarandache
normal ideal of X if x ∗ (x ∗ y) ∈ I implies y ∗ (y ∗ x) ∈ I,∀x, y ∈ Q.

Definition 2.13. [8] A filter of a BH-algebra X is a non-empty subset F of X such that:

(F1) If x ∈ F and y ∈ F then y ∗ (y ∗ x) ∈ F and x ∗ (x ∗ y) ∈ F .

(F2) If x ∈ F and x ∗ y = 0 then y ∈ F ∀ y ∈ X

Theorem 2.14. [9]. Let X be a Smarandache BH-algebra and let I be a regular subset of X such that I
is a subset of Q . If I is a Smarandache ideal of X then I is a filter of X.

3. Main results

In this section, the concept of a Smarandache filter of a Smarandache BH-algebra is introduced, some
properties of this concept are studied .

Definition 3.1. A non-empty subset F of a Smarandache BH-algebra X is called a Smarandache filter of
X, if it satisfies (F1) and
(F3) If x ∈ F and x ∗ y = 0 then y ∈ F ∀ y ∈ Q.

Example 3.2. .
Consider the Smarandache BH-algebra X = {0, 1, 2} with the binary operation ′∗′ defined by the following
table:

* 0 1 2
0 0 0 0
1 1 0 2
2 2 0 0

where Q = {0, 2} is a BCK-algebra. The subset F = {1, 2} is Smarandache filter of X

Remark 3.3. If X is a Smarandache BH-algebra. Then {0} and X are Smarandache filters of X, called
trivial Smarandache filters of X. A Smarandache filter F of X is called a proper Smarandache filter of X
if F ̸= X.

Proposition 3.4. Let X be a Smarandache BH-algebra. Then every filter of X is a Smarandache filter
of X.

Proof. Is obvious. Since Q ⊆ X and F is a filter of X.

Example 3.5. The convers of proposition (3.4) is not correct in general as in the following example.
Consider X = {0, 1, 2, 3, 4} with binary operation ′′∗′′ defined by the following table:

* 0 1 2 3 4
0 0 0 0 0 0
1 1 0 1 0 2
2 2 2 0 2 0
3 3 1 3 0 3
4 4 4 4 4 0
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where Q = {0, 2}. The subset F = {0, 1, 2} is a Smarandache filter of X but it is not a filter. Since
0 ∈ F, 3 ∈ X and 0 ∗ 3 = 0 but 3 /∈ F

Proposition 3.6. Consider the Smarandache BH-algebra X=R the set of real number with binary oper-

ation ′′∗′′ defined by x ∗ y =

{ x if x ̸= y and x ∈ Z, y ∈ R+

0 if x = 0 and y ∈ Z−

x− y otherwise

where Q=Z the set of integers is a BCK-algebra. The subset F = Z+
∪
{0} is the set a non negative integers

is a Smarandache filter of X, but it is not a filter of X, since 0 ∈ F,
√
2 ∈ R and 0 ∗

√
2 = 0 but

√
2 /∈ F

Proposition 3.7. Let X be a Smarandache BH-algebra , and Q1, Q2 be a BCK-algebra, which are properly
contained in X, such that Q1 ⊆ Q2. Then every Q2-Smarandache filter is a Q1-Smarandache filter of X.

Proof. Let x, y ∈ F then y ∗ (y ∗ x) ∈ F and x ∗ (x ∗ y) ∈ F by F1 Now,let x ∈ F and x ∗ y = 0, y ∈ Q1.
Since Q1 ⊆ Q2 and F is a Q2-Smarandache filter of X then y ∈ F . Therefore, F is a Q1-Smarandache filter
of X.

Remark 3.8. The convers of proposition (3.7) is not correct in general as in the following example.
Consider the Smarandache BH-algebraX = {0, 1, 2, 3, 4} with binary operation ′′∗′′ defined by the following
table:

* 0 1 2 3 4
0 0 0 0 0 0
1 1 0 1 0 1
2 2 2 0 2 0
3 3 1 3 0 3
4 4 4 4 4 0

where Q1 = {0, 1}, Q2 = {0, 1, 3} are BCK-algebras and Q1 ⊆ Q2. F = {0, 1, 2} is a Q1-Smarandache
filter of X, but it is not Q2-Smarandache filter of X. Since 0 ∈ F, 3 ∈ Q2 and 0 ∗ 3 = 0, but 3 /∈ F

Theorem 3.9. Let X be a Smarandache medial BH-algebra. Then every a non-empty subset A of X is a
Smarandache filter of X.

Proof. Let A be a non-empty subset of X and x, y ∈ A. Then x = y ∗ (y ∗ x) by Definition(2.9). Thus
y ∗ (y ∗ x) ∈ A. Similarly, x ∗ (x ∗ y) ∈ A. Now, let x ∈ A,x ∗ y = 0, y ∈ Q.Since X is a medial BH-algebra
then y = x∗ (x∗y) , imply that y = x∗0,by Definition(2.1)(iii)x∗0 = x. Thus y = x , so y ∈ A. Therefore,
A is a Smarandache filter of X.

Proposition 3.10. Let X be a Smarandache BH-algebra and let {Fi, i ∈ λ} be a family of Smarandache
filter of X.Then

∩
i∈λ

Fi is a Smarandache filter of X.

Proof. Let {Fi, i ∈ λ} be a family of Smarandache filter of X. To prove
∩
i∈λ

Fi is a Smarandache filter

of X. Let x, y ∈
∩
i∈λ

Fi . Then x, y ∈ Fi, ∀i ∈ λ. Since Fi is a Smarandache filter of X, ∀ i ∈ λ. Hence

y ∗ (y ∗ x), x ∗ (x ∗ y) ∈ Fi∀ i ∈ λ by Definition(3.1)(F1). Then y ∗ (y ∗ x), x ∗ (x ∗ y) ∈
∩
i∈λ

Fi. Now, let

x ∈
∩
i∈λ

Fi, x ∗ y = 0 and y ∈ Q. Then x ∈ Fi ∀ i ∈ λ. Since Fi is a Smarandache filter of X,∀ i ∈ λ, then

y ∈ Fi∀ i ∈ λ by Definition(3.1)(F3). This means that y ∈
∩
i∈λ

Fi. Therefore,
∩
i∈λ

Fi is a Smarandache filter

of X.

Remark 3.11. The union of Smarandache filter of Smarandache BH-algebra X may be not a Smarandache
filter as in the following example.
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Example 3.12. Consider the Smarandache BH-algebra X = {0, 1, 2, 3, 4} with binary operation ′′∗′′
defined by the following table:

* 0 1 2 3 4
0 0 0 0 0 0
1 1 0 0 0 0
2 2 4 0 0 1
3 3 2 3 0 1
4 4 4 1 4 0

Where Q1 = {0, 2}. F1 = {1, 2} and F2 = {2, 4} are two Smarandache filters of X, the union of the
Smarandache filters is not a Smarandache filter of X. Since 1, 4 ∈ F1

∪
F2, but 4 ∗ (4 ∗ 1) = 0 /∈ F1

∪
F2

Proposition 3.13. Let X be a Smarandache filter and let {Fi, i ∈ λ} be a chain of Smarandache filter
of X.Then

∪
i∈λ

Fi is a Smarandache filter of X.

Proof. Let {Fi, i ∈ λ} be a chain of Smarandache filter of X and x, y ∈
∪
i∈λ

Fi, ∀i ∈ λ. Then there

exist Fj , Fk ∈ {Fi}i∈λ such that x ∈ Fj and y ∈ Fk. So, either Fj ⊆ Fk or Fk ⊆ Fj . If Fj ⊆ Fk, then
x ∈ Fk and y ∈ Fk. Since Fk is a Smarandache filter of X,then y ∗ (y ∗ x) ∈ Fk and x ∗ (x ∗ y) ∈ Fk , by
Definition(3.1)(F1). Similarly, if Fk ⊆ Fj . Then y ∗ (y ∗ x), x ∗ (x ∗ y) ∈

∪
i∈λ

Fi. Now Let x ∈
∪
i∈λ

Fi such

that x ∗ y = 0 and y ∈ Q. Then there exists j ∈ λ such that x ∈ Fj .Since Fj is a Smarandache filter of X,
hence y ∈ Fj by Definition(3.1)(F3). Thus y ∈

∪
i∈λ

Fi. Therefore,
∪
i∈λ

Fi is a Smarandache filter of X.

Theorem 3.14. Let X be a Smarandache BH-algebra, and F be a Smarandache filter of X such that
x ∗ y ̸= 0, for all y /∈ F and x ∈ F . Then F is a filter of X.

Proof. Let F be a Smarandache filter of X such that y ∈ X and x ∈ F,
Let x, y ∈ F Since F is a Smarandache filter of X it follows that y ∗ (y ∗ x), x ∗ (x ∗ y) ∈ F by F1. Now,
let x ∈ F, x ∗ y = 0, Then there are two cases.
Case 1:If y ∈ Q imply then y ∈ Fby F2

Case 2: If y /∈ Q then either y /∈ F or y ∈ F suppose y /∈ F , then x ∗ y ̸= 0,by hypothesis , this a
contradiction. Thus y ∈ F . Therefore , F is a filter of X

Theorem 3.15. Let X be a Smarandache normal BH-algebra, and let I be a regular subset of X. If I is
an ideal, then I is a Smarandache filter of X.

Proof. Let I be an ideal of X and x, y ∈ I. From I1 we have 0 ∈ I. By Definition2.5(iii)(x∗(x∗y))∗y = 0 ∈ I.
So, I2 follows that (x ∗ (x ∗ y)) ∈ I, similarly y ∗ (y ∗ x) ∈ I. Let x ∈ I, x ∗ y = 0, y ∈ Q. Then
x∗y ∈ I, x ∈ I, y ∈ X[Q ⊆ X]. Since I is a regular subset of X. Thus y ∈ I. Therefore, I is a Smarandache
filter of X.

Proposition 3.16. let X be a Smarandache medial BH-algebra X, and let I be a Smarandache ideal of
X, such that Q ⊆ I. Then I is a Smarandache commutative ideal of X if and only if I is a Smarandache
filter of X.

Proof. Let I be a Smarandache commutative ideal of X and x, y ∈ I . Since X is a Smarandache medial
BH-algebra , by Definition(2.9) we get y = y ∗ (y ∗ x) ∈ I and y = x ∗ (x ∗ y) ∈ I. Now, Let x ∈ I, x ∗ y =
0, and y ∈ Q. X is a Smarandache medial BH-algebrait follows that y = x ∗ (x ∗ y) = x ∗ 0 implies that
y = x. Hence y ∈ I Therefore, I is a Smarandache filter of X. Conversely, let I be a Smarandache filter of
X. From Definition 2.8(i) 0 ∈ Q . Since Q ⊆ I then 0 ∈ I. Now, let x, y ∈ Q, z ∈ I,such that (x∗y)∗z ∈ I,
Since x ∗ x = 0, it follows that x ∗ (y ∗ (y ∗ x)) = 0 ∈ I [Since X is a Smarandache medial BH-algebra ].
Therefore, I is a Smarandache commutative ideal of X.
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Corollary 3.16.1. Let X be a Smarandache BH-algebra and let I be a regular subset of X such that I is
a subset of Q . If I is a Smarandache ideal of X, then I is a Smarandache filter of X.

Proof. It is directly from Theorem 2.14 and proposition3.4. Smarandache filter of X.

Proposition 3.17. Let X be a Smarandache BH-algebra, and let F be a Smarandache filter of X, such
that Q ⊆ I. Then F is Smarandache normal ideal of X.

Proof. Let F be a Smarandache filter of X, since 0 ∈ Q andQ ⊆ F , implies that 0 ∈ F . Now, let x ∗ y ∈ F
and y ∈ F, x ∈ Q[Since Q ⊆ F ] we get x ∈ F , [ By Definition 2.10(ii)]it follows that F is a Smarandache
ideal of X.
Now, let x, y ∈ Q such that x ∗ (x ∗ y) ∈ F [Since Q ⊆ F and F is a Smarandache filter of X by
Definition3.1(i)]we get y ∗ (y ∗ x) ∈ F . Therefore, F is a Smarandache normal ideal of X.

References

[1] Imai Y and Iseki K 1966 On Axiom System of Propositional Calculi XIV Proc Japan Acad Vol 42 pp
19-20

[2] Iseki K An 1966 algebra related with a propositional calculus Proc Japan Acad Vol 42 pp 26-29

[3] Hu Q P and Li X 1983 On BCH-algebras Math Seminar Notes Vol 11 pp 313-320

[4] Hoo C S 1991 Filters and ideals in BCI-algebra Math Japonica Vol 36 pp 987-997

[5] Jun Y B Roh E H and Kim H S 1998 On BH-algebras Scientiae Mathematicae Vol 1(1) pp 347-354

[6] JUN Y B 2005 Smarandache BCC-algebras International Journal of Mathematical and Mathematical
Sciences Vol 18 pp 2855-2861

[7] Saeid A B and Namdar A 2009 Smarandache BCH-algebras World Applied Sciences Journal Vol 7
(no11) pp 77-83

[8] Abbass H H and Dahham H A 2016 A Competiy Closed Ideal of a BG-algebra First Edition Scholar’s
Press Germany ISBN 978-3-659-84103-3

[9] Abbass H H and Mohammed S J 2013 On a Q-Samarandach Fuzzy Completely Closed ideal with
Respect to an Element of a BH-algebra Journal of Kerbala university vol 11 no 3 pp 147-157

[10] Meng J and Jun Y B BCK-algebras Kyung Moon SA Seoul 1994

[11] Deeba E Y and Thaheem A B 1990 On Filters in BCK-algebra Math Japon Vol 35 no 3 pp 409-415.

[12] Zhang Q Jun Y B and Roh E H 2001 On the Branch of BH-algebras Scientiae Mathematicae Japonicae
Vol 54(2) pp 363-367

[13] Abbass H H and Gatea H K 2016 A Q- Smarandache Implicative Ideal of Q-Smarandache BH-algebra
First Edition Scholar’s PressGermany ISBN 978-3-659-83923-8


