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ABSTRACT

On the structure of

general algebras and its applications

Young Joo Seo

Dept. of Mathematics

Graduate School of

Hanyang University

In this thesis, we discuss some structural theory of a d-

algebra which is a generalization of a BCK-algebra, and we

discuss analytic real algebras. We investigate several condi-

tions for analytic real algebras to be d-algebras. Moreover, we

introduce the notion of a Smarandacheness to BCI-algebras,

and obtain several properties on Smarandache fuzzy BCI-

algebras.
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1. Introduction

The notions of BCK-algebras and BCI-algebras were introduced by Y.

Imai and K. Iséki ([5, 6]). The class of BCK-algebras is a proper subclass of

the class of BCI-algebras. We refer useful textbooks for BCK-algebras and

BCI-algebras to ([4, 12, 17]). The notion of a d-algebra which is another useful

generalization of BCK-algebras was introduced by J. Neggers, Y. B. Jun and

H. S. Kim ([14]), and some relations between d-algebras and BCK-algebras as

well as several other relations between d-algebras and oriented digraphs were

investigated. Several aspects on d-algebras were studied ([1, 3, 10, 11, 13, 14]).

Simply, d-algebras can be obtained by deleting two identities as a generalization

of BCK-algebras, but it gives more wide ranges of research areas in algebraic

structures. Also, J. Neggers, Y. B. Jun and H. S. Kim ([14]) discussed the

ideal theory in d-algebras, and introduced the notions of a d-subalgebra, a d-

ideal, a d#-ideal and a d∗-ideal, and investigated relations among them. Also,

a Smarandache structure on a set A means a weak structure W on A such

that there exists a proper subset B of A with a strong structure S which is

embedded in A. In [16], R. Padilla showed that Smarandache semigroups are

very important for the study of congruences. Y. B. Jun ([9]) introduced the

notion of Smarandache BCI-algebras, Smarandache fresh and clean ideals of

Smarandache BCI-algebras, and obtained many interesting results about them.

In Chapter 2, we study basic facts and useful properties of BCK-algebras,

BCI-algebras and d-algebras which are related to the topics. In Chapter 3,
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we discuss structural properties of quotient d-algebras. We obtain several iso-

morphism theorems in quotient d-algebras, and we introduce the notion of an

obstinate ideal in d-algebras, and obtain its equivalent conditions. In Chapter

4, we introduce the notion of an analytic real algebra, and we obtain some

conditions to be a d-algebra. Moreover, we generalize a binary operation on

the set R of real numbers by using real-valued functions, and obtain some con-

ditions to be an edge d-algebra. In Chapter 5, we introduce the notion of a

Smarandache concept to BCI-algebras, and discuss Smarandache fuzzy ideals

in Smarandache BCI-algebras. Moreover, we discuss Smarandache fuzzy clean

ideals and Smarandache fuzzy fresh ideals in Smarandache BCI-algebras.
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2. Preliminaries

In this chapter, we provide several definitions and theorems which are useful

in the study of d-algebras and Smarandache (fuzzy) BCI-algebras.

2.1. d-algebras

Definition 2.1. ([15]) A d-algebra is a non-empty set X with a constant 0 and

a binary operation “ ∗ ” satisfying the following axioms:

(I) x ∗ x = 0,

(II) 0 ∗ x = 0,

(III) x ∗ y = 0 and y ∗ x = 0 imply x = y

for all x, y ∈ X.

For brevity we also call X a d-algebra. In X we can define a binary relation

“ ≤ ” by x ≤ y if and only if x ∗ y = 0.

Definition 2.2. ([3]) An algebra (X, ∗, 0) is said to be a strong d-algebra if it

satisfies (I), (II) and (III∗) for all x, y ∈ X, where

(III∗) x ∗ y = y ∗ x implies x = y.

Obviously, every strong d-algebra is a d-algebra, but the converse need not

be true in general (see [3]).
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Example 2.3. ([3]) Let R be the set of all real numbers and e ∈ R. Define

x∗y := (x−y) · (x− e) + e for all x, y ∈ R where “ ·” and “−” are the ordinary

product and subtraction of real numbers. Then it is easy to see that x ∗ x = e

and e ∗x = e. If x ∗ y = y ∗x = e then (x− y) · (x− e) = 0, (y−x) · (y− e) = 0,

and hence x = y or x = e = y, i.e., x = y, i.e., (R, ∗, e) is a d-algebra.

However, (R, ∗, e) is not a strong d-algebra. We can easily see that

x ∗ y = y ∗ x⇔ (x− y) · (x− e) + e = (y − x) · (y − e) + e

⇔ (x− y) · (x− e) = −(x− y) · (y − e)

⇔ (x− y) · (x− e+ y − e) = 0

⇔ (x− y) · (x+ y − 2e) = 0

⇔ x = y or x+ y = 2e.

If we take x := e + α and y := e − α for some α ∈ R, then x + y = 2e. This

shows that x∗y = y ∗x, but x 6= y. Hence the axiom (III∗) does not hold. This

shows that (R, ∗, e) is a d-algebra, but not a strong d-algebra.

Definition 2.4. ([12]) A BCK-algebra is a d-algebra X satisfying the following

additional axioms:

(IV) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,

(V) (x ∗ (x ∗ y)) ∗ y = 0

for all x, y, z ∈ X.
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Example 2.5. ([14]) Let X := {0, 1, 2, 3, 4} be a set with the following table:

∗ 0 1 2 3 4

0 0 0 0 0 0
1 1 0 1 0 1
2 2 2 0 3 0
3 3 3 2 0 3
4 4 4 1 1 0

Then (X, ∗, 0) is a d-algebra which is not a BCK-algebra, since ((2 ∗ 3) ∗ (2 ∗

4)) ∗ (4 ∗ 3) = (3 ∗ 0) ∗ 1 6= 0.

Let X be a d-algebra and x ∈ X. X is said to be edge if for any x ∈ X,

x ∗X = {x, 0}. It is known that if X is an edge d-algebra, then x ∗ 0 = x for

any x ∈ X (see [14]).

Definition 2.6. ([14]) An algebra (X, ∗, 0) is called a BCI-algebra if it satisfies

(I), (III), (IV) and (V) for all x, y, z ∈ X

Every BCI-algebra X has the following properties:

(a1) x ∗ 0 = x,

(a2) x ≤ y implies x ∗ z ≤ y ∗ z, z ∗ y ≤ z ∗ x

for all x, y, z ∈ X.
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2.2. d-ideals in d-algebras

Definition 2.7. ([14]) Let (X, ∗, 0) be a d-algebra and ∅ 6= I ⊆ X. I is called a

d-subalgebra of X if x∗y ∈ I whenever x ∈ I and y ∈ I. I is called a BCK-ideal

of X if it satisfies the following conditions:

(D0) 0 ∈ I,

(D1) x ∗ y ∈ I, y ∈ I imply x ∈ I for all x, y ∈ X.

A non-empty subset I is called a d-ideal of X if it satisfies (D1) and

(D2) x ∈ I and y ∈ X imply x ∗ y ∈ I for all x, y ∈ X.

A d-ideal I of a d-algebra X is called a d#-ideal of X if for any x, y, z ∈ I,

(D3) x ∗ y ∈ I, y ∗ z ∈ I imply x ∗ z ∈ I.

A d#-ideal I of a d-algebra X is called a d∗-ideal of X if for any x, y, z ∈ X,

(D4) x ∗ y ∈ I and y ∗ x ∈ X imply (x ∗ z) ∗ (y ∗ z) ∈ I and (z ∗ x) ∗ (z ∗ y) ∈ I.

Example 2.8. ([14]) Let X := {0, a, b, c, d} be a d-algebra which is not a

BCK-algebra with the following table:

∗ 0 a b c d

0 0 0 0 0 0
a a 0 a 0 a
b b b 0 c 0
c c c b 0 c
d c c a a 0

Then I := {0, a} is a d-ideal of a d-algebra X.
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Example 2.9. ([14]) Let X := {0, a, b, c} be a d-algebra which is not a BCK-

algebra with the following table:

∗ 0 a b c

0 0 0 0 0
a a 0 0 b
b b c 0 0
c c c c 0

Then I := {0, a, b} is a BCK-ideal which is not a d-subalgebra of X, while

J := {0, c} is a d-subalgebra of X which is not a BCK-ideal of X. Moreover,

K := {0, a} is a d∗-ideal of X.

Clearly, {0} is a d-subalgebra of every d-algebra X and every d-ideal of X

is a d-subalgebra, but the converse need not be true.

Example 2.10. ([14]) Let X := {0, a, b, c} be a d-algebra which is not a BCK-

algebra with the following table:

∗ 0 a b c

0 0 0 0 0
a a 0 0 b
b b b 0 0
c c c c 0

Then I := {0, a} is a d-subalgebra of X, but not a d-ideal of X, since a ∗ c =

b 6∈ I.

Lemma 2.11. ([14]) If I is a d-ideal of a d-algebra X, then 0 ∈ I.

Note that every d-ideal of a d-algebra is a BCK-ideal, but the converse

need not be true. In Example 2.10, I := {0, a} is a BCK-ideal of X, but not a

d-ideal of X.
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Proposition 2.12. ([14]) Let I be a d-ideal of a d-algebra X, If x ∈ I and

y ∗ x = 0, then y ∈ I.

Theorem 2.13. ([14]) In a d∗-algebra, every BCK-ideal is a d-ideal.

Corollary 2.14. ([14]) In a d∗-algebra, every BCK-ideal is a d-subalgebra.

Theorem 2.15. ([11]) If (X, ∗, 0) is a BCK-algebra, then every BCK-ideal of

X is a d∗-ideal of X.

Let (X, ∗, 0X) and (Y, •, 0Y ) be d-algebras. A mapping f : X → Y is

called a homomorphism if f(x ∗ y) = f(x) • f(y) for all x, y ∈ X. In [13], J.

Neggers, A. Dvurečenskij and H. S. Kim used “d-morphism”, but we change

it into “homomorphism” for convenience. Note that f(0X) = 0Y . A d-algebra

(X, ∗, 0X) is said to be d-transitive (see [14]) if x ∗ z = 0X and z ∗ y = 0X imply

x ∗ y = 0X .

Proposition 2.16. ([14]) Let f : X → Y be a homomorphism from a d-algebra

X into a d-transitive d-algebra Y . Then Ker f is a d∗-ideal of X.

Let (X, ∗, 0) be a d-algebra and let I be a d∗-ideal of X. Define a binary

relation “ ∼ ” on X by x ∼ y if and only if x ∗ y, y ∗ x ∈ I. We denote it by

“x ∼ y (mod I)” or simply “x ∼ y”.

We denote a congruence class containing x by [x]I , i.e., [x]I := {y ∈ X|x ∼ y

(mod I)}. We see that x ∼ y if and only if [x]I = [y]I . Denote the set of all

equivalence classes of X by X/I, i.e., X/I := {[x]I |x ∈ X}.
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Lemma 2.17. ([14]) Let I be a d∗-ideal of a d-algebra (X, ∗, 0). Then I = [0]I .

Theorem 2.18. ([14]) Let (X, ∗, 0) be a d-algebra and let I be a d∗-ideal of X.

If we define [x]I ∗ [y]I := [x∗y]I where x, y ∈ X, then (X/I, ∗, 0) is a d-algebra,

called the quotient d-algebra.

Proposition 2.19. ([14]) Let I be a d∗-ideal of a d-algebra (X, ∗, 0). Then the

mapping π : X → X/I defined by π(x) := [x]I is a homomorphism of X onto

the quotient d-algebra X/I and the kernel of π is precisely the set I.

Theorem 2.20. ([14]) If f : X → Y is a homomorphism from a d-algebra X

onto a d-transitive d-algebra Y , then X/Kerf ∼= Y .
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2.3. Smarandache BCI-algebras

An algebra (X, ∗, 0) is called a BCI-algebra if it satisfies the following

conditions:

(BCI-1) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,

(BCI-2) (x ∗ (x ∗ y)) ∗ y = 0,

(BCI-3) x ∗ x = 0,

(BCI-4) x ∗ y = 0 and y ∗ x = 0 imply x = y

for all x, y, z ∈ X.

A non-empty subset I of a BCI-algebra X is called a BCI-ideal of X if it

satisfies the following conditions:

(i) 0 ∈ I,

(ii) x ∗ y ∈ I, y ∈ I imply x ∈ I.

for all x, y ∈ X.

Definition 2.21. ([8]) A BCI-algebra (X, ∗, 0) is said to be a Smarandache

BCI-algebra if it contains a proper subset Q of X such that

(i) 0 ∈ Q and |Q| ≥ 2,

(ii) (Q, ∗, 0) is a BCK-algebra.

By a Smarandache positive implicative (resp., commutative and implicative)

BCI-algebra, we mean a BCI-algebra X which has a proper subset Q of X

such that
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(i) 0 ∈ Q and |Q| ≥ 2,

(ii) Q is a positive implicative (resp., commutative and implicative) BCK-

algebra under the same operation of X.

Let (X, ∗, 0) be a Smarandache BCI-algebra and H be a subset of X such

that 0 ∈ H and |H| ≥ 2. Then H is called a Smarandache subalgebra of X if

(H, ∗, 0) is a Smarandache BCI-algebra (see [14]).

A non-empty subset I of X is called a Smarandache ideal of X related to

Q if it satisfies the following conditions:

(i) 0 ∈ I,

(ii) x ∈ Q , y ∈ I, x ∗ y ∈ I imply x ∈ I,

where Q is a BCK-algebra contained in X (see [9]). If I is a Smarandache

ideal of X related to every BCK-algebra contained in X, we simply say that I

is a Smarandache ideal of X.

In what follows, let X and Q denote a Smarandache BCI-algebra and a

BCK-algebra which is properly contained in X, respectively.

Definition 2.22. ([9]) A non-empty subset I of X is called a Smarandache

ideal of X related to Q (or briefly, a Q-Smarandache ideal) of X if it satisfies:

(c1) 0 ∈ I,

(c2) x ∈ Q , y ∈ I, x ∗ y ∈ I imply x ∈ I.
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If I is a Smarandache ideal of X related to every BCK-algebra contained

in X, we simply say that I is a Smarandache ideal of X.

Definition 2.23. ([9]) A non-empty subset I of X is called a Smarandache

fresh ideal of X related to Q (or briefly, a Q-Smarandache fresh ideal of X) if

it satisfies the conditions (c1) in Definition 2.22 and

(c3) x, y, z ∈ Q , ((x ∗ y) ∗ z) ∈ I and y ∗ z ∈ I imply x ∗ z ∈ I.

Theorem 2.24. ([9]) Every Q-Smarandache fresh ideal which is contained in

Q is a Q-Smarandache ideal.

The converse of Theorem 2.24 need not be true in general.

Theorem 2.25. ([9]) Let I and J be Q-Smarandache ideals of X and I ⊂ J .

If I is a Q-Smarandache fresh ideal of X, then so is J .

Definition 2.26. ([9]) A non-empty subset I of X is called a Smarandache

clean ideal of X related to Q (or briefly, a Q-Smarandache clean ideal of X) if

it satisfies the conditions (c1) in Definition 2.22 and

(c4) x, y ∈ Q , z ∈ I , (x ∗ (y ∗ x)) ∗ z ∈ I imply x ∈ I.

Theorem 2.27. ([9]) EveryQ-Smarandache clean ideal ofX is aQ-Smarandache

ideal.

The converse of Theorem 2.27 need not be true in general.
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Theorem 2.28. ([9]) EveryQ-Smarandache clean ideal ofX is aQ-Smarandache

fresh ideal.

Theorem 2.29. ([95]) Let I and J be Q-Smarandache ideals of X and I ⊂ J .

If I is a Q-Smarandache clean ideal of X, then so is J .

A fuzzy set µ in X is called a fuzzy subalgebra of a BCI-algebra X if

µ(x ∗ y) ≥ min{µ(x), µ(y)} for all x, y ∈ X(see [7]).

A fuzzy set µ in X is called a fuzzy ideal of X if

(F1) µ(0) ≥ µ(x),

(F2) µ(x) ≥ min{µ(x ∗ y), µ(y)}

for all x, y ∈ X (see [7]).

Let µ be a fuzzy set in a set X. For t ∈ [0, 1], the set µt := {x ∈ X|µ(x) ≥ t}

is called a level subset of µ.
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3. Structural properties of quotient d-algebras

3.1. Structures of quotient d-algebras

Let (X, ∗, 0) be a d-algebra and let I1, I2 be d∗-ideals of X with I1 ⊆ I2.

Then X/I1 := { [x]I1 | x ∈ X} is a quotient d-algebra. We define I2/I1 := {

[x]I2I1 | x ∈ I2 }. We claim that each element of I2/I1 is an element of X/I1, i.e.,

[x]I1 = [x]I2I1 for all x ∈ X. In fact,

[x]I2I1 = {α ∈ I2 | α ∼ x (mod I1)}

= {α ∈ I2 | α ∗ x, x ∗ α ∈ I1}

⊆ {α ∈ X | α ∗ x, x ∗ α ∈ I1}

= [x]I1 .

If β ∈ [x]I1 , then β ∼ x (mod I1). It follows that β ∗ x, x ∗ β ∈ I1. Since x ∈ I1

and I1 is a d∗-ideal of X, we obtain β ∈ I1 by (D1). Since I1 ⊆ I2, we have

β ∈ I2. It follows from β ∼ x (mod I1) that β ∈ [x]I2I1 . Hence [x]I1 ⊆ [x]I2I1 .

Therefore [x]I1 = [x]I2I1 .

We give an exact analog of Theorem 2.20 without using the notion of a

“d−transitivity”. Usually it is not get known that the kernel of an epimorphism

of d-algebras forms a d∗-ideal.

Theorem 3.1. If g : (X, ∗, 0X) → (Y, •, 0Y ) is an epimorphism of d-algebras

and Ker(g) is a d∗-ideal of X, then X/Ker(g) ∼= Y .
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Proof. Let I := Ker(g) be a d∗-ideal of X. Define h : X/I → Y by h([x]I) :=

g(x) for any x ∈ X. Suppose [x]I = [y]I . Then x ∼ y (mod I), i.e., x ∗ y,

y ∗ x ∈ I. It follows that g(x) • g(y) = g(x ∗ y) = 0Y and g(y) • g(x) =

g(y ∗ x) = 0Y . Since Y is a d-algebra, we obtain g(x) = g(y). Hence h is

well-defined. For any y ∈ Y , since g is an onto map, there exists x ∈ X such

that g(x) = y. Thus

y = g(x) = h([x]I),

which means that h : X/I → Y is an onto map.

For any [x]I , [y]I ∈ X/I with h([x]I) = h([y]I), we have

g(x) = g(y)⇒ g(x ∗ y) = 0Y , g(y ∗ x) = 0Y

⇒ x ∗ y, y ∗ x ∈ Ker(g) = I

⇒ x ∼ y (mod I)

⇒ [x]I = [y]I .

Therefore h is an one-one map. Since

h([x]I ∗ [y]I) = h([x ∗ y]I) = g(x ∗ y) = g(x) • g(y) = h([x]I) ∗ h([y]I),

we obtain X/Ker(g) ∼= Y .

Theorem 3.2. Let (X, ∗, 0X) be a d-algebra and let I1, I2 be d∗-ideals of X

with I1 ⊆ I2. Then I2/I1 is a d∗-ideal of the quotient d-algebra (X/I1, ∗, I1).

Proof. Suppose [x]I1 ∗ [y]I1 ∈ I2/I1, [y]I1 ∈ I2/I1. Then [x ∗ y]I1 , [y]I1 ∈ I2/I1.

Since x ∗ y, y ∈ I2 and I2 is a d∗-ideal of X, we obtain x ∈ I2. Hence

15



[x]I1 ∈ I2/I1. · · · · · · (D1)

Also, suppose that [x]I1 ∈ I2/I1, [y]I1 ∈ X/I1 where y ∈ X. Then x ∈ I2.

Since I2 is a d∗-ideal of X, we have x ∗ y ∈ I2. It follows that

[x]I1 ∗ [y]I1 = [x ∗ y]I1 ∈ I2/I1. · · · · · · (D2)

If [x]I1 ∗ [y]I1 ∈ I2/I1 and [y]I1 ∗ [z]I1 ∈ I2/I1, then [x ∗ y]I1 , [y ∗ z]I1 ∈ I2/I1.

Since x ∗ y, y ∗ z ∈ I2 and I2 is a d∗-ideal of X, we have x ∗ z ∈ I2. It follows

that

[x]I1 ∗ [z]I1 = [x ∗ z]I1 ∈ I2/I1. · · · · · · (D3)

Let [x]I1 ∗ [y]I1 , [y]I1 ∗ [x]I1 ∈ I2/I1. Then [x ∗ y]I1 , [y ∗ x]I1 ∈ I2/I1. Since

x ∗ y, y ∗ x ∈ I2 and I2 is a d∗-ideal of X, we obtain (x ∗ z) ∗ (y ∗ z) ∈ I2 and

(z ∗ x) ∗ (z ∗ y) ∈ I2 for all z ∈ X. It follows that

[x ∗ z]I1 ∗ [y ∗ z]I1 = [(x ∗ z) ∗ (y ∗ z)]I1 ∈ I2/I1,

[z ∗ x]I1 ∗ [z ∗ y]I1 = [(z ∗ x) ∗ (z ∗ y)]I1 ∈ I2/I1. · · · · · · (D4)

Therefore I2/I1 is a d∗-ideal of (X/I1, ∗, I1).

Corollary 3.3. Let (X, ∗, 0X) be a d-algebra and I1, I2 be d∗-ideals of X. Then

(X/I1) / (I2/I1) is a d-algebra .

Proof. It follows from Theorem 3.1 and Theorem 2.18 that (X/I1) / (I2/I1) is

also a d-algebra.
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In fact, any element of the quotient d-algebra (X/I1)/(I2/I1) can be denoted

by [[x]I1 ]I2/I1 where x ∈ X. It is easy to see that

[[x]I1 ]I2/I1 = {[α]I1 ∈ X/I1 | [α]I1 ∼ [x]I1}

= {[α]I1 ∈ X/I1 | α ∼ x (mod I1)}

= {[α]I1 ∈ X/I1 | α ∗ x, x ∗ α ∈ I1}.

Hence we conclude that

(X/I1)/(I2/I1) = {{[α]I1 ∈ X/I1 | α ∗ x, x ∗ α ∈ I1} | x ∈ X}

= {[[x]I1 ]I2/I1 | x ∈ X}.

Theorem 3.4. Let (X, ∗, 0X) be a d-algebra and I1, I2 be d∗-ideals of X with

I1 ⊆ I2. Then (X/I1)/(I2/I1) ∼= X/I2.

Proof. Define g : X/I1 → X/I2 by g([x]I1) := [x]I2 . Then g is well-defined.

Indeed, for any [x]I1 , [y]I1 ∈ X/I1 with [x]I1 = [y]I1 , we have x ∗ y, y ∗ x ∈ I1.

Since I1 ⊆ I2, we obtain x ∗ y, y ∗ x ∈ I2. It follows that x ∼ y (mod I2), which

shows that g([x]I1) = [x]I2 = [y]I2 = g([y]I1). Hence g is well-defined.

Obviously, g is an epimorphism. Also,

Ker(g) = {[x]I1 ∈ X/I1 | g([x]I1) = [0X ]I2}

= {[x]I1 ∈ X/I1 | [x]I2 = [0X ]I2}

= {[x]I1 ∈ X/I1 | x ∼ 0X (mod I2)}

= {[x]I1 ∈ X/I1 | x ∗ 0X , 0X ∗ x ∈ I2}.
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Since I2 is a d∗-ideal of X, we have x ∈ I2 if and only if x ∗ 0X , 0X ∗ x ∈ I2.

This proves that Ker(g)= {[x]I1 ∈ X/I1 | x ∈ I2} = I2/I1.

By applying Theorem 3.1, we obtain

(X/I1)/(I2/I1) = (X/I1)/Ker(g) ∼= X/I2.

Let (X, ∗, 0X) be a d-algebra. Define a relation “ ≤ ” on X by x ≤ y if and

only if x ∗ y = 0X , where x, y ∈ X. Note that every BCK(BCI)-algebra has

a partially ordered set (simply, poset), but d-algebras need not have a poset

structure in general. Consider the following example.

Example 3.5. Let X := {0, 1, 2, 3} be a set with the following table:

∗ 0 1 2 3

0 0 0 0 0
1 1 0 0 1
2 2 2 0 0
3 3 3 3 0

Then (X, ∗, 0) is a d-algebra. Since 1 ∗ 2 = 2 ∗ 3 = 0 and 1 ∗ 3 = 1 6= 0, we have

that 1 ≤ 2 , 2 ≤ 3, but 1 6≤ 3. This shows that (X, ∗, 0) has no poset structure.

Note that if f : (X, ∗, 0X) → (Y , •, 0Y ) is a homomorphism of d-algebras,

then f(0X) = 0Y . And if x ≤ y in X, then f(x) ≤ f(y) in Y .

Theorem 3.6. Let (X, ∗, 0X) and (Y, •, 0Y ) be d-algebras and let f : X → Y

be a homomorphism. If B is a d∗-ideal of Y , then f−1(B) is a d∗-ideal of X.
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Proof. Let B be a d∗-ideal of Y . Since f(0X) = 0Y , we obtain 0X ∈ f−1(B).

If x ∗ y, y ∈ f−1(B), then f(x) • f(y)=f(x ∗ y) ∈ B and f(y) ∈ B. Since B is

a d∗-ideal of X, we obtain f(x) ∈ B, i.e.,

x ∈ f−1(B). · · · · · · (D1)

If x ∈ f−1(B), then f(x) ∈ B. Since B is a d∗-ideal of Y , we have f(x ∗ y) =

f(x) • f(y) ∈ B for any y ∈ X. Hence

x ∗ y ∈ f−1(B). · · · · · · (D2)

If x ∗ y, y ∗ z ∈ f−1(B), then f(x ∗ y), f(y ∗ z) ∈ B and hence f(x) • f(y),

f(y)•f(z) ∈ B. Since B is a d∗-ideal of Y , we obtain f(x∗z) = f(x)•f(z) ∈ B,

i.e.,

x ∗ z ∈ f−1(B). · · · · · · (D3)

If x∗y, y∗x ∈ f−1(B), then f(x)•f(y) = f(x∗y), f(y)•f(x) = f(y)∗f(x) ∈ B.

Since B is a d∗-ideal of Y , we have f((x ∗ z) ∗ (y ∗ z)) = f(x ∗ z) • f(y ∗ z) =

(f(x) • f(z)) • (f(y) • f(z)) ∈ B and f((z ∗ x) ∗ (z ∗ y)) = f(z ∗ x) • f(z ∗ y) =

(f(z) • f(x)) • (f(z) • f(y)) ∈ B for all z ∈ X.

Hence f((x ∗ z) ∗ (y ∗ z)), f((z ∗ x) ∗ (z ∗ y)) ∈ B. It follows that

(x ∗ z) ∗ (y ∗ z), (z ∗ x) ∗ (z ∗ y) ∈ f−1(B). · · · · · · (D4)

Thus f−1(B) is a d∗-ideal of X.

Corollary 3.7. Let (X, ∗, 0X) and (Y, •, 0Y ) be d-algebras and let f : X → Y

be a homomorphism. If B is a d∗-ideal of Y , then X/f−1(B) is a d-algebra.
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Proof. If follows immediately from Theorem 2.18 and Theorem 3.6.

Theorem 3.8. Let g : (X, ∗, 0X) → (Z,�, 0Z) be a homomorphism of d-

algebras and let h : (X, ∗, 0X) → (Y, •, 0Y ) be an epimorphism of d-algebras

such that Ker(h) ⊆ Ker(g). Then there exists a unique homomorphism

f : (Y, •, 0Y ) → (Z,�, 0Z) such that g = f ◦ h, i.e.,

X
h //

g

��

Y

f

zz
Z

the diagram commutes.

Proof. Given y in Y , since h is onto, there exists an x in X such that y = h(x).

Define f : Y → Z by f(h(x)):= g(x). We show that f is well-defined and

the diagram commutes. If h(x1) = h(x2) = y for some x1, x2 ∈ X, then

h(x1) • h(x2) = y • y = 0Y . Since h is an epimorphism, we have h(x1 ∗ x2)

= h(x1) • h(x2) = 0Y , i.e., x1 ∗ x2 ∈ Ker(h) ⊆ Ker(g). It follows that 0Z =

g(x1 ∗ x2) = g(x1)� g(x2). Similarly, g(x2)� g(x1) = 0Z . Since (Z,�, 0Z) is a

d-algebra, we obtain g(x1) = g(x2). This shows that f(h(x1)) = g(x1) = g(x2)

= f(h(x2)). Hence f : Y → Z is well-defined and the diagram commutes.

We claim that f is a homomorphism. If y1, y2 ∈ Y , since h is an epimor-

phism, there exist x1, x2 ∈ X such that g1 = h(x1), g2 = h(x2). It follows

that

f(y1 • y2) = f(h(x1) • h(x2))
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= f(h(x1 ∗ x2))

= g(x1 ∗ x2)

= g(x1) ∗ g(x2)

= f(h(x1))� f(h(x2))

= f(y1)� f(y2).

Hence f : Y → Z is a homomorphism. We show the uniqueness of such a map

f .

Let f̂ : Y → Z be a homomorphism such that f̂ ◦ h=g. For any y ∈ Y , there

exists x ∈ X such that h(x) = y, since h is an epimorphism. It follows that

f̂(y) = f̂(h(x)) = (f̂ ◦ h)(x) = g(x) = (f ◦ h)(x) = f(h(x)) = f(y), i.e., f = f̂ ,

proving the uniqueness.

Theorem 3.9. Let (X, ∗, 0X) be a d-algebra, and let f : (X, ∗, 0X)→ (Y, •, 0Y )

be an epimorphism. If J is a d∗-ideals of Y , then X/f−1(J) ∼= Y/J , i.e.,

Y
πJ // Y/J

X

µ=π◦f

::

f

OO

πKer(µ)
// X/Ker(µ)

∼=

| |

X/f−1(J)
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Proof. Let J be a d∗-ideal of Y and πJ : Y → Y/J be a canonical homomor-

phism of d-algebras. If we define µ := πJ ◦ f , the composition of πJ and f ,

then µ : X → Y/J is an epimorphism of d-algebras. If Ker(µ) is a d∗-ideal of

X, then X/Ker(µ) is isomorphic with Y/J by Theorem 3.1.

In order to show that Ker(µ) is a d∗-ideal of X, we will show that Ker(µ) =

f−1(J). By Theorem 3.6, if J is a d∗-ideal of Y , then f−1(J) is a d∗-ideal of X.

For all x ∈ X, we have

µ(x) = (π ◦ f)(x) = π(f(x)) = [f(x)]J . (3.1)

We claim that f−1(J) ⊆ Ker(µ). In fact, if x ∈ f−1(J), then f(x) ∈ J . We

need to prove that

[f(x)]J = J. (3.2)

If α ∈ [f(x)]J , then α ∼ f(x). It follows that α • f(x), f(x) • α ∈ J . Since

f(x) ∈ J and J is a d∗-ideal of Y , we obtain α ∈ J , i.e., [f(x)]J ⊆ J .

Conversely, if β ∈ J , since f(x) ∈ J and J is a d∗-ideal of Y , we obtain f(x)•β,

β • f(x) ∈ J , and hence β ∈ [f(x)]J , i.e., J ⊆ [f(x)]J . So (3.2) holds.

By applying (3.1) and (3.2), we obtain

µ(x) = (π ◦ f)(x) = π(f(x)) = [f(x)]J = J. (3.3)

Since J is a zero in Y/J , we have x ∈ Ker(µ) for any x ∈ f−1(J). This shows

that f−1(J) ⊆ Ker(µ).

Conversely, if x ∈ Ker(µ), then µ(x) = J in Y/J . By (3.1), we have

J = µ(x) = [f(x)]J . It follows that f(x) ∈ J and x ∈ f−1(J). Thus Ker(µ) ⊆

f−1(J). Hence we obtain Ker(µ) = f−1(J).
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By Theorem 3.6, we know that f−1(J) =Ker(µ) is a d∗-ideal ofX. By Theorem

3.1, we conclude

X/f−1(J) = X/Ker(µ) ∼= Y/J .
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3.2 Obstinate d-ideals of d-algebras

Definition 3.10. Let (X, ∗, 0) be a d-algebra and I be a proper d-ideal of X.

I is said to be obstinate of X if x, y 6∈ I and x 6= y imply x ∗ y, y ∗ x ∈ I.

Example 3.11. Let X := {0, 1, 2, 3} be a d-algebra with the following table:

∗ 0 1 2 3

0 0 0 0 0
1 1 0 0 1
2 3 2 0 3
3 3 2 2 0

Then I:= {0, 1} satisfies the conditions (D1) and (D2), but not (D4) in Defi-

nition 2.7, since 0 ∗ 1 = 0, 1 ∗ 0 = 1 ∈ I, (3 ∗ 0) ∗ (3 ∗ 1) = 3 ∗ 2 = 2 6∈ I1.

Hence I= {0, 1} is a d-ideal of X, but not a d∗-ideal of X. Also, since 3, 2 6∈ I,

3 ∗ 2 = 2, 2 ∗ 3 = 3 6∈ I, we see that I is not an obstinate d-ideal of X.

Example 3.12. Let X := {0, 1, 2, 3} be a d-algebra with the following table:

∗ 0 1 2 3

0 0 0 0 0
1 1 0 0 1
2 3 2 0 0
3 3 3 1 0

Then it is easy to see that I := {0, 1} is a d-ideal of X. Since 2, 3 6∈ I and

2 ∗ 3 = 0, 3 ∗ 2 = 1, i.e., 2 ∗ 3, 3 ∗ 2 ∈ I, I is an obstinate d-ideal of X.

Recall that a d-algebra (X, ∗, 0X) is said to be d-transitive if x∗ z = 0X and

z ∗ y = 0X imply x ∗ y = 0X .
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Let J := {0, 1} be a set with the following table:

• 0 1

0 0 0
1 1 0

Then it is easy to see that (J, •, 0) is a d-transitive d-algebra.

Proposition 3.13. Let (X, ∗, 0X) be a d-algebra and f : (X, ∗, 0X)→ (J, •, 0)

be a homomorphism. Then Ker(f) is an obstinate d∗-ideal of X.

Proof. By applying Proposition 2.16, we see that Ker(f) is a d∗-ideal of X. If

x, y 6∈ Ker(f), x 6= y, then f(x ∗ y) = f(x) • f(y) = 1 • 1 = 0.

Also, f(y ∗ x) = f(y) • f(x) = 1 • 1 = 0. Thus x ∗ y, y ∗ x ∈ Ker(f). Hence

Ker(f) is an obstinate d∗-ideal of X.

Theorem 3.14. Let (X, ∗, 0X) be a d-algebra and let I be a proper d-ideal of

X. Then, given an edge d-algebra (Y, •, 0Y ), there exists a homomorphism f :

X → Y such that Ker(f) = I if and only if I is an obstinate ideal of X.

Proof. Let I be an obstinate ideal of X. We define a map f : X → Y by

f(x) :=

{
0Y (x ∈ I)

a (x ∈ X \ I)

where a is a fixed element of Y with a 6= 0Y . We show that f is a homomorphism

from X to Y . We consider 4 cases :

Case 1. If x, y ∈ I, then x ∗ y ∈ I by (D2) in Definition 2.7. It follows that

f(x ∗ y) = 0Y = 0Y • 0Y = f(x) • f(y).
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Case 2. If x, y 6∈ I, x 6= y, since I is obstinate, we obtain x ∗ y ∈ I. It follows

that

f(x ∗ y) = 0Y = a • a = f(x) • f(y).

Case 3. If x 6∈ I and y ∈ I, then x ∗ y 6∈ I. In fact, if we assume x ∗ y ∈ I, since

y ∈ I and (D1) in Definition 2.7, we obtain x ∈ I, a contradiction. Since Y is

an edge d-algebra, we obtain

f(x ∗ y) = a = a • 0Y = f(x) • f(y).

Case 4. If x ∈ I and y 6∈ I, then x ∗ y ∈ I by (D2) in Definition 2.7. It follows

that

f(x ∗ y) = 0Y = 0Y • a = f(x) • f(y).

This shows that f : X → Y is a homomorphism. Clearly, we have Ker(f) = I.

Conversely, let Y := {0Y , a} be a set with the following table:

• 0Y a

0Y 0Y 0Y
a a 0Y

Then (Y, •, 0Y ) is an edge d-algebra. By assumption, there exists a homo-

morphism f : X → Y such that Ker(f) = I. We claim that I is an ob-

stinate ideal of X. If x, y 6∈ I, x 6= y, then f(x) = f(y) = a, and hence

f(x ∗ y) = f(x) • f(y) = a • a = 0Y and f(y ∗ x) = f(y) • f(x) = a • a = 0Y . It

follows that x ∗ y, y ∗ x ∈ Ker(f) =I. Hence I is an obstinate ideal of X.
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4. Analytic real algebras and d-algebras

Let R be the set of all real numbers and let “∗” be a binary operation on

R. Define a map λ : R × R → R . We define x ∗ y := λ(x, y) for all x, y ∈ R.

Such a groupoid (R, ∗) is said to be an analytic real algebra.

4.1. Analytic real algebras

Given an analytic real algebra (R, ∗), we define

tr(∗, λ) :=
∫∞
−∞ λ(x, x) dx

We call tr(∗, λ) a trace of λ. Note that the trace tr(∗, λ) may or may not

converge. Given an analytic real algebra (R, ∗), where x ∗ y := λ(x, y), if

x ∗ x = 0 for all x ∈ R, then tr(∗, λ) = 0, but the converse need not be true in

general.

Example 4.1. Let x0 ∈ R. Define

λ(x, x) =

{
0 if x 6= x0,

1 otherwise.

Then tr(∗, λ) =
∫∞
−∞ λ(x, x) dx = 0, but λ(x0, x0) = 1 6= 0, i.e., x0 ∗ x0 6= 0.

Proposition 4.2. Let (R, ∗) be an analytic real algebra and let a, b, c ∈ R,

where x ∗ y := ax + by + c for all x, y ∈ R. If |tr(∗, λ)| < ∞, then tr(∗, λ) = 0

and x ∗ y = a(x− y) for all x, y ∈ R.

Proof. Given x ∈ R, we have x ∗ x = (a + b)x + c. Since |tr(∗, λ)| < ∞, we

have |
∫∞
−∞ [(a+ b)x+ c] dx| <∞. Now

∫ A
0 [(a+ b)x+ c] dx = (a+ b)A

2

2 + cA =
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A
[
a+b
2 A+ c

]
for a large number A, so that if |tr(∗, λ)| < ∞, then a + b = 0

and c = 0, i.e., we have x ∗ y = a(x− y), and thus x ∗ x = 0 for all x ∈ R.

Theorem 4.3. Let a, b, c, d, e, f ∈ R. Define a binary operation “∗” on R by

x ∗ y := ax2 + bxy + cy2 + dx+ ey + f

for all x, y ∈ R. If |tr(∗, λ)| < ∞ and 0 ∗ x = 0 for all x ∈ R, then x ∗ y =

ax(x− y) for all x, y ∈ R.

Proof. Given x ∈ R, we have x∗x = (a+b+c)x2+(d+e)x+f . Let A := a+b+c,

B := d + e. If we assume |tr(∗, λ)| < ∞, then |
∫∞
−∞(Ax2 + Bx + f) dx| < ∞.

Now
∫ L
0 (Ax2 +Bx+ f) dx = A

3 L
3 + B

2 L
2 + fL = L

(
A
3 L

2 + B
2 + f

)
for a large

number L so that |tr(∗, λ)| < ∞ implies A = B = f = 0, i.e., a + b + c =

0, d+ e = 0, f = 0. It follows that

x ∗ y = (ax− cy + d)(x− y). (4.1)

If we assume 0 ∗ x = 0 for all x ∈ R, then, by (4.1), we have

0 = 0 ∗ x

= (a0− cx+ d)(0− x)

= cx2 − dx

for all x ∈ R. This shows that c = d = 0. Hence x ∗ y = ax(x − y) for all

x, y ∈ R.
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Corollary 4.4. Let a, b, c, d, e, f ∈ R. Define a binary operation “∗” on R by

x ∗ y := ax2 + bxy + cy2 + dx+ ey + f

for all x, y ∈ R. If x ∗ x = 0 and 0 ∗ x = 0 for all x ∈ R, then x ∗ y = ax(x− y)

for all x, y ∈ R.

Proof. The condition, x ∗ x = 0 for all x ∈ R, implies |tr(∗, λ)| < ∞. The

conclusion follows from Theorem 4.3.

Proposition 4.5. Let a, b, c, d, e, f ∈ R. Define a binary operation “∗” on R

by

x ∗ y := ax2 + bxy + cy2 + dx+ ey + f

for all x, y ∈ R. If |tr(∗, λ)| <∞ and the anti-symmetry law holds for “∗”, then

(ax− cy + d)2 + (ay − cx+ d)2 > 0 for x 6= y.

Proof. If |tr(∗, λ)| < ∞, then by (4.1) we obtain x ∗ y = (ax − cy + d)(x − y).

Assume the anti-symmetry law holds for “∗”. Then either x∗y 6= 0 or y ∗x 6= 0

for x 6= y. It follows that (x ∗ y)2 > 0 or (y ∗ x)2 > 0, and hence (x ∗ y)2 +

(y ∗ x)2 > 0. This shows that (ax− cy + d)2 + (ay − cx+ d)2 > 0.

Note that in Proposition 4.5 it is clear that if (ax−cy+d)2+(ay−cx+d)2 > 0

for x 6= y, then the anti-symmetry law holds.

Corollary 4.6. If we define x ∗ y := ax(x − y) for all x, y ∈ R where a 6= 0,

then (R, ∗) is a d-algebra.
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Proof. It is easy to see that x ∗ x = 0 = 0 ∗ x for all x ∈ R. Assume that x 6= y.

Since x ∗ y = ax(x − y) = ax2 − axy, by applying Proposition 4.5, we obtain

b = −a, c = 0, d = e = f = 0. It follows that (ax− 0y + 0)2 + (ay − 0x+ 0)2 =

a2x2 + a2y2 = a2(x2 + y2) > 0 when a 6= 0. By Proposition 4.5, (R, ∗) is a

d-algebra.

Proposition 4.7. Let a, b, c, d, e, f ∈ R. Define a binary operation “∗” on R

by

x ∗ y := ax2 + bxy + cy2 + dx+ ey + f

for all x, y ∈ R. If |tr(∗, λ)| < ∞ and x ∗ 0 = x for all x ∈ R, then x ∗ y =

(1− cy)(x− y) for all x, y ∈ R.

Proof. If |tr(∗, λ)| < ∞, then by (4.1) we obtain x ∗ y = (ax − cy + d)(x − y)

for all x, y ∈ R. If we let y := 0, then x = x ∗ 0 = (ax + d)x. It follows

that ax2 + (d − 1)x = 0 for all x ∈ R. This shows that a = 0, d = 1. Hence

x ∗ y = (1− cy)(x− y) for all x, y ∈ R.

Theorem 4.8. If we define x ∗ y := (ax− cy+ d)(x− y) for all x, y ∈ R where

a, c, d ∈ R with a+ c 6= 0, then the anti-symmetry law holds.

Proof. Assume that there exist x 6= y in R such that x ∗ y = 0 = y ∗ x. Then

(ax− cy + d)(x− y) = 0 and (ay − cx+ d)(y − x) = 0. Since x 6= y, we have

ax− cy + d = 0 = ay − cx+ d. (4.2)

It follows that (a + c)(x − y) = 0. Since a + c 6= 0, we obtain x = y, a

contradiction.
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Remark 4.9. The analytic algebra (R, ∗), x ∗ y = ax(x − y) for all x, y ∈ R,

was proved to be a d-algebra in Corollary 4.6 by using Proposition 4.5. Since

x ∗ y = ax(x− y) = (ax− 0y + 0)(x− y), we know that a+ 0 = a 6= 0. Hence

the algebra (R, ∗) can be proved by using Theorem 4.8 also.

Note that the analytic real algebra (R, ∗) discussed in Corollary 4.6 need not

be an edge d-algebra, since x ∗ 0 = ax(x− 0) = ax2 6= x.
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4.2 Analytic real algebras with functions

Let α, β : R → R be real-valued functions. Define a binary operation “?”

on R by

x ? y := α(x)x+ β(y)y + c (4.3)

where c ∈ R.

Proposition 4.10. Let (R, ?) be an analytic real algebra defined by (4.3). If

x ? x = 0 = 0 ? x for all x ∈ R, then x ? y = 0 for all x, y ∈ R.

Proof. Assume that x ? x = 0 for all x ∈ R. Then

0 = x ? x

= α(x)x+ β(x)x+ c

= [α(x) + β(x)]x+ c.

If we let x := 0, then c = 0. If x 6= 0, then α(x) + β(x) = 0, i.e., β(x) = −α(x)

for all x 6= 0 in R. It follows that

x ? y = α(x)x− α(y)y. (4.4)

Assume 0 ? x = 0 for all x ∈ R. Then

0 = 0 ? x

= α(0)0 + β(x)x+ c

= β(x)x.

It follows that β(x) = 0 for all x 6= 0 in R. Hence we have x ? y = 0 for all

x, y ∈ R.
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Proposition 4.11. Let (R, ?) be an analytic real algebra defined by (4.3). If

x ? x = 0 and x ? 0 = x for all x ∈ R, then x ? y = x− y for all x, y ∈ R.

Proof. If we assume x ? x = 0 for all x ∈ R, then by (4.4) we obtain x ? y =

α(x)x − α(y)y. Assume that x ? 0 = x for all x ∈ R. Then x = x ? 0 =

α(x)x − α(0)0 = α(x)x. This shows that α(x) = 1 for any x 6= 0 in R. Hence

x ? y = x− y for all x, y ∈ R.

Let a, b1, b2, c, d, e : R→ R be real-valued functions and let f ∈ R. Define a

binary operation “?” on R by

x ? y := a(x)x2 + b1(x)b2(y)xy + c(y)y2 + d(x)x+ e(y)y + f (4.5)

for all x, y ∈ R. Assume 0 ? x = 0 for all x ∈ R. Then

0 = 0 ? x

= c(x)x2 + e(x)x+ f

= [c(x)x+ e(x)]x+ f

for all x ∈ R. It follows that f = 0 and c(x)x + e(x) = 0 for all x 6= 0 in R.

Hence c(y)y2 + e(y)y = 0 for all y ∈ R. Hence

x ? y = a(x)x2 + b1(x)b2(y)xy + d(x)x. (4.6)

Assume x ? x = 0 for all x ∈ R. Then by (4.6) we obtain

0 = x ? x

= a(x)x2 + b1(x)b2(x)x2 + d(x)x.
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It follows that d(x)x = −[a(x)x2 + b1(x)b2(x)x2]. By (4.6) we obtain

x ? y = b1(x)x[b2(y)y − b2(x)x]. (4.7)

Theorem 4.12. Let b1, b2 : R → R be real-valued functions. Define a binary

operation “?” on R as in (4.7). If we assume b2(x)x 6= b2(y)y and b21(x)x2 +

b21(y)y2 > 0 for any x 6= y in R, then (R, ?) is a d-algebra.

Proof. Assume the anti-symmetry law holds. Then it is equivalent to that if

x 6= y then x ? y 6= 0 or y ? x 6= 0, i.e., if x 6= y then (x ? y)2 + (y ? x)2 > 0.

Since x ? y is defined by (4.7), we obtain that if x 6= y then

(b21(x)x2 + b21(y)y2)(b2(x)x− b2(y)y)2 > 0.

By assumption, we obtain that (R, ?) is a d-algebra.

Example 4.13. Consider x ? y := ax(x− y) for all x, y ∈ R. If we compare it

with (4.7), then we have b1(x) = a, b2(y) = −1 and b2(x) = −1 for all x ∈ R.

This shows that b2(x)x − b2(y)y = (−1)x − (−1)y = y − x 6= 0 when x 6= y.

Moreover, b21(x)x2 + b21(y)y2 = a2x2 + b21(y)y2 > 0 since a 6= 0. By applying

Theorem 4.12, we see that an analytic real algebra (R, ?) where x?y := ax(x−y),

a 6= 0 is a d-algebra.
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Example 4.14. Consider x ? y := x tan 2x[eyy − exx] for all x, y ∈ R. By

comparing it with (4.7), we obtain b1(x) = tan 2x, b2(y) = ey and b2(x) =

ex. If x 6= y, then it is easy to see that xex 6= yey and b21(x)x2 + b21(y)y2 =

(tan 2x)2x2+(tan 2y)2y2 > 0 when x 6= y. Hence an analytic real algebra (R, ?)

where x ? y := x tan 2x[eyy − exx] is a d-algebra by Theorem 4.12.

In Theorem 4.12, we obtained some conditions for analytic real algebras to

be d-algebras. In addition, we construct an edge d-algebra from Theorem 4.12

as follows.

Theorem 4.15. If define a binary operation “?” on R by

x ? y :=

{
x
[
1− b1(x)

b1(y)

]
if y 6= 0,

x otherwise,

where b1(x) is a real-valued function such that b1(y) 6= 0 if y 6= 0, then (R, ?) is

an edge d-algebra.

Proof. Define a binary operation “?” on R as in (4.7) with additional conditions:

b2(x)x 6= b2(y)y and b21(x)x2+b21(y)y2 > 0 for any x 6= y in R. Assume x?0 = x

for all x ∈ R. Then

x = x ? 0

= b1(x)x[b2(0)0− b2(x)x]

= −b1(x)b2(x)x2.

Combining with (4.7) we obtain

x ? y = b1(x)b2(y)xy − b1(x)b2(x)x2
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= b1(x)b2(y)xy + x

= x[b1(x)b2(y)y + 1].

If we let xy 6= 0, then

x ? y = x

[
b1(x)(− 1

b1(y)
) + 1

]
= x

[
1− b1(x)

b1(y)

]
.

If we let x ? y := x when y = 0, then (R, ?) is an edge d-algebra.

Example 4.16. Define a map b1(x) := eλx for all x ∈ R. Then x ? y =

x
[
1− eλx

eλy

]
= x

(
1− eλ(x−y)

)
when y 6= 0. If we define a binary operation “?”

on R by

x ? y :=

{
x
[
1− eλ(x−y)

]
if y 6= 0,

x otherwise,

then (R, ?) is an edge d-algebra.

Proposition 4.17. Suppose that we define a binary operation “?” on R by

x ? y :=

{
x
[
1− b1(x)

b1(y)

]
if y 6= 0,

x otherwise,

where b1(x) is a real-valued function such that b1(y) 6= 0 if y 6= 0. Assume that

if x 6= y, then either b1(x ? y) = b1(x) or b1(x ? (x ? y)) = b1(y). Then

(x ? (x ? y)) ? y = 0 (4.8)

for all x, y ∈ R.
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Proof. By Theorem 4.15 (R, ?) is an edge d-algebra and hence (4.8) holds for

x ? y = 0 or y = 0. Assume x ? y 6= 0 and y 6= 0. Then

x ? (x ? y) = x

[
1− b1(x)

b1(x ? y)

]
.

It follows that

(x ? (x ? y)) ? y = [x ? (x ? y)]

[
1− b1(x ? (x ? y))

b1(y)

]
= x

[
1− b1(x)

b1(x ? y)

] [
1− b1(x ? (x ? y))

b1(y)

]
= 0,

proving the proposition.
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5. Smarandache fuzzy ideals in BCI-algebras

In this chapter, we discuss a Smarandache fuzzy structure on BCI-algebras

and introduce the notion of a Smarandache fuzzy subalgebra (ideal) of a Smaran-

dache BCI-algebra, a Smarandache fuzzy clean (fresh) ideal of a Smarandache

BCI-algebra are introduced, and we investigate their properties.

5.1 Smarandache fuzzy ideals

Definition 5.1. Let X be a Smarandache BCI-algebra. A map µ : X → [0, 1]

is called a Smarandache fuzzy subalgebra of X if it satisfies

(SF1) µ(0) ≥ µ(x) for all x ∈ P ,

(SF2) µ(x ∗ y) ≥ min{µ(x), µ(y)} for all x, y ∈ P ,

where P ( X, P is a BCK-algebra with |P | ≥ 2. A map µ : X → [0, 1] is

called a Smarandache fuzzy ideal of X if it satisfies (SF1) and (F2) µ(x) ≥

min{µ(x ∗ y), µ(y)} for all x, y ∈ P , where P ( X, P is a BCK-algebra with

|P | ≥ 2. This Smarandache fuzzy subalgebra (ideal) is denoted by µP , i.e.,

µP : P → [0, 1] is a fuzzy subalgebra (ideal) of X.
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Example 5.2. ([8]) Let X := {0, 1, 2, 3, 4, 5} be a Smarandache BCI-algebra

with the following table:

∗ 0 1 2 3 4 5

0 0 0 0 3 3 3
1 1 0 1 3 3 3
2 2 2 0 3 3 3
3 3 3 3 0 0 0
4 4 3 4 1 0 0
5 5 3 5 1 1 0

Define a map µ : X → [0, 1] by

µ(x) :=

{
0.5 if x ∈ {0, 1, 2, 3},
0.7 otherwise.

Clearly µ is a Smarandache fuzzy subalgebra of X. It is verified that µ restricted

to a subset {0, 1, 2, 3} which is a subalgebra of X is a fuzzy subalgebra of X, i.e.,

µ{0,1,2,3} : {0, 1, 2, 3} → [0, 1] is a fuzzy subalgebra of X. Thus µ : X → [0, 1] is

a Smarandache fuzzy subalgebra of X. Note that µ : X → [0, 1] is not a fuzzy

subalgebra of X, since µ(5 ∗ 4) = µ(1) = 0.5 ≯ min{µ(5), µ(4)} = 0.7.

Example 5.3. ([8]) Let X := {0, 1, 2, 3, 4, 5} be a Smarandache BCI-algebra

with the following table:

∗ 0 1 2 3 4 5

0 0 0 0 0 4 4
1 1 0 0 1 4 4
2 2 2 0 2 4 4
3 3 3 3 0 4 4
4 4 4 4 4 0 0
5 5 4 4 5 1 0

Define a map µ : X → [0, 1] by

µ(x) :=

{
0.5 if x ∈ {0, 1, 2},
0.7 otherwise.
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Clearly µ is a Smarandache fuzzy ideal of X. It is verified that µ restricted

to a subset {0, 1, 2} which is an ideal of X is a fuzzy ideal of X, i.e., µ{0,1,2} :

{0, 1, 2} → [0, 1] is a fuzzy ideal of X. Thus µ : X → [0, 1] is a Smarandache

fuzzy ideal of X. Note that µ : X → [0, 1] is not a fuzzy ideal of X, since

µ(2) = 0.5 ≯ min{µ(2 ∗ 4) = µ(4), µ(4)} = µ(4) = 0.7.

Lemma 5.4. Every Smarandache fuzzy ideal µP of a Smarandache BCI-

algebra X is order reversing.

Proof. Let P be aBCI-algebra with P ( X and |P | ≥ 2. If x, y ∈ P with x ≤ y,

then x ∗ y = 0. Hence we have µ(x) ≥ min{µ(x ∗ y), µ(y)} = min{µ(0), µ(y)} =

µ(y).

Theorem 5.5. Every Smarandache fuzzy ideal µP of a Smarandache BCI-

algebra X is a Smarandache fuzzy subalgebra of X.

Proof. Let P be a BCI-algebra with P ( X and |P | ≥ 2. Since x ∗ y ≤ x for

any x, y ∈ P , it follows from Lemma 5.4 that µ(x) ≤ µ(x ∗ y), so by (SF2) we

obtain µ(x ∗ y) ≥ µ(x) ≥ min{µ(x ∗ y), µ(y)} ≥ min{µ(x), µ(y)}. This shows

that µ is a Smarandache fuzzy subalgebra of X, proving the theorem.

Proposition 5.6. Let µP be a Smarandache fuzzy ideal of a Smarandache

BCI-algebra X. If the inequality x ∗ y ≤ z holds in P where BCI-algebra P

with P ( X and |P | ≥ 2, then µ(x) ≥ min{µ(x), µ(z)} for all x, y, z ∈ P.
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Proof. If x ∗ y ≤ z in P , then (x ∗ y) ∗ z = 0. Hence we have µ(x ∗ y) ≥

min{µ((x ∗ y) ∗ z), µ(z)} = min{µ(0), µ(z)} = µ(z). It follows that µ(x) ≥

min{µ(x ∗ y), µ(y)} ≥ min{µ(y), µ(z)}.

Theorem 5.7. Let X be a Smarandache BCI-algebra. A Smarandache fuzzy

subalgebra µP of X is a Smarandache fuzzy ideal of X if and only if for all

x, y ∈ P where BCI-algebra P with P ( X and |P | ≥ 2, the inequality

x ∗ y ≤ z implies µ(x) ≥ min{µ(y), µ(z)}.

Proof. Suppose that µP is a Smarandache fuzzy subalgebra of X satisfying the

condition x ∗ y ≤ z implies µ(x) ≥ min{µ(y), µ(z)}. Since x ∗ (x ∗ y) ≤ y

for all x, y ∈ P , it follows that µ(x) ≥ min{µ(x ∗ y), µ(y)}. Hence µP is a

Smarandache fuzzy ideal of X. The converse follows from Proposition 5.6.
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5.2 Smarandache fuzzy clean ideals

Definition 5.8. Let X be a Smarandache BCI-algebra. A map µ : X → [0, 1]

is called a Smarandache fuzzy clean ideal of X if it satisfies (SF1) and

(SF3) µ(x) ≥ min{µ(x ∗ (y ∗ x)) ∗ z), µ(z)} for all x, y, z ∈ P ,

where P ( X and P is a BCK-algebra with |P | ≥ 2. This Smarandache fuzzy

clean ideal is denoted by µP , i.e., µP : P → [0, 1] is a Smarandache fuzzy clean

ideal of X.

Example 5.9. ([9]) Let X := {0, 1, 2, 3, 4, 5} be a Smarandache BCI-algebra

with the following table:

∗ 0 1 2 3 4 5

0 0 0 0 0 0 5
1 1 0 0 0 0 5
2 2 1 0 1 0 5
3 3 4 4 4 0 5
4 4 4 4 4 0 5
5 5 5 5 5 5 0

Define a map µ : X → [0, 1] by

µ(x) :=

{
0.4 if x ∈ {0, 1, 2, 3},
0.8 otherwise.

Clearly µ is a Smarandache fuzzy clean ideal of X, but µ is not a fuzzy clean

ideal of X, since µ(3) = 0.4 ≯ min{µ((3∗(0∗3))∗5), µ(5)} = min{µ(5), µ(5)} =

µ(5) = 0.8.
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Theorem 5.10. Let X be a Smarandache BCI-algebra. Every Smarandache

fuzzy clean ideal µP of X is a Smarandache fuzzy ideal of X.

Proof. Let X be a BCI-algebra with P ( X and |P | ≥ 2. Let µP : P → [0, 1]

be a Smarandache fuzzy clean ideal of X. If we let y := x in (SF3), then µ(x) ≥

min{µ((x ∗ (x ∗x)) ∗ z), µ(z)} = min{µ((x ∗ 0) ∗ z), µ(z)} = min{µ(x ∗ z), µ(z)},

for all x, y, z ∈ P . This shows that µ satisfies (SF2). Combining (SF1), we get

µP is a Smarandache fuzzy ideal of X, proving the theorem.

Corollary 5.11. Every Smarandache fuzzy clean ideal µP of a Smarandache

BCI-algebra X is a Smarandache fuzzy subalgebra of X.

Proof. It follows from Theorem 5.5 and Theorem 5.10.

Example 5.12. Let X := {0, 1, 2, 3, 4, 5} be a Smarandache BCI-algebra with

the following table:
∗ 0 1 2 3 4 5

0 0 0 0 0 0 5
1 1 0 1 0 0 5
2 2 2 0 0 0 5
3 3 3 3 0 0 5
4 4 3 4 1 0 5
5 5 5 5 5 5 0

Let µP be a fuzzy set in P = {0, 1, 2, 3, 4} defined by µ(0) = µ(2) = 0.8 and

µ(1) = µ(3) = µ(4) = 0.3. It is easy to check that µP is a fuzzy ideal of

X. Hence µ : X → [0, 1] is a Smarandache fuzzy ideal of X. But it is not a

Smarandache fuzzy clean ideal of X since µ(1) = 0.3 ≯ min{µ((1 ∗ (3 ∗ 1)) ∗

2), µ(2)} = min{µ(0), µ(2)} = 0.8.
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Theorem 5.13. Let X be a Smarandache implicative BCI-algebra. Every

Smarandache fuzzy ideal µP of X is a Smarandache fuzzy clean ideal of X.

Proof. Let P be a BCI-algebra with P ( X and |P | ≥ 2. Since X is a

Smarandache implicative BCI-algebra, we have x = x ∗ (y ∗ x) for all x, y ∈ P .

Let µP be a Smarandache fuzzy ideal of X. It follows from (SF2) that µ(x) ≥

min{µ(x ∗ z), µ(z)} ≥ min{µ((x ∗ (y ∗ x)) ∗ z), µ(z)}, for all x, y, z ∈ P . Hence

µP is a Smarandache clean ideal of X. The proof is complete.

In what follows, we give characterizations of fuzzy implicative ideals.

Theorem 5.14. Let X be a Smarandache BCI-algebra. Suppose that µP is a

Smarandache fuzzy ideal of X. Then the following equivalent:

(i) µP is Smarandache fuzzy clean,

(ii) µ(x) ≥ µ(x ∗ (y ∗ x)) for all x, y ∈ P ,

(iii) µ(x) = µ(x ∗ (y ∗ x)) for all x, y ∈ P .

Proof. (i) ⇒ (ii): Let µP be a Smarandache fuzzy clean ideal of X. It follows

from (SF3) that µ(x) ≥ min{µ((x ∗ (y ∗ x)) ∗ 0), µ(0)} = min{µ(x ∗ (y ∗

x)), µ(0)} = µ(x ∗ (y ∗ x)), for all x, y ∈ P. Hence the condition (ii) holds.

(ii) ⇒ (iii): Since X is a Smarandache BCI-algebra, we have x ∗ (y ∗ x) ≤ x

for all x, y ∈ P . It follows from Lemma 5.4 that µ(x) ≤ µ(x ∗ (y ∗ x)). By (ii),

µ(x) ≥ µ(x ∗ (y ∗ x)). Thus the condition (iii) holds.
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(iii) ⇒ (i): Suppose that the condition (iii) holds. Since µP is a Smarandache

fuzzy ideal, by (SF2), we have µ(x ∗ (y ∗ x)) ≥ min{µ((x ∗ (y ∗ x)) ∗ z), µ(z)}.

By assumption, we obtain µ(x) ≥ min{µ((x∗(y∗x))∗z), µ(z)}. Hence µ satisfies

the condition (SF3). Obviously, µ satisfies (SF1). Therefore µ is a fuzzy clean

ideal of X. Hence the condition (i) holds. The proof is complete.

For any fuzzy sets µ and ν in X, we write µ ≤ ν if and only if µ(x) ≤ ν(x)

for any x ∈ X.

Definition 5.15. LetX be a Smarandache BCI-algebra and let µP : P → [0, 1]

be a Smarandache fuzzy BCI-algebra of X. For t ≤ µ(0), the set µt := {x ∈

P |µ(x) ≥ t} is called a level subset of µP .

Theorem 5.16. A fuzzy set µ in P is a Smarandache fuzzy clean ideal of X if

and only if, for all t ∈ [0, 1], µt is either empty or a Smarandache clean ideal of

X.

Proof. Suppose that µP is a Smarandache fuzzy clean ideal of X and µt 6= ∅ for

any t ∈ [0, 1]. It is clear that 0 ∈ µt since µ(0) ≥ t. Let µ((x ∗ (y ∗ x)) ∗ z) ≥ t

and µ(z) ≥ t. It follows from (SF3) that µ(x) ≥ min{µ((x ∗ (y ∗ x)) ∗ z),

µ(z)} ≥ t, namely, x ∈ µt. This shows that µt is a Smarandache clean ideal of

X.

Conversely, assume that for each t ∈ [0, 1], µt is either empty or a Smaran-

dache clean ideal of X. For any x ∈ P , let µ(x) = t. Then x ∈ µt. Since

µt( 6= ∅) is a Smarandache clean ideal of X, 0 ∈ µt and hence µ(0) ≥ µ(x) = t.

Thus µ(0) ≥ µ(x) for all x ∈ P . Now we show that µ satisfies (SF3). If not,
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then there exist x′, y′, z′ ∈ P such that µ(x′) < min{µ((x′ ∗ (y′ ∗z′))∗z′), µ(z′)}.

Taking t0 := 1
2{µ(x′) + min{µ((x′ ∗ (y′ ∗ z′)) ∗ z′), µ(z′)}}, we have µ(x′) < t0 <

min{µ((x′ ∗ (y′ ∗ z′)) ∗ z′), µ(z′)}. Hence x′ /∈ µt0 , (x′ ∗ (y′ ∗ x′)) ∗ z ∈ µt0 , and

z′ ∈ µt0 , i.e., µt0 is not a Smarandache clean of X, which is a contradiction.

Therefore, µP is a Smarandache fuzzy clean ideal, completing the proof.

Theorem 5.17. ([9]) (Extension Property) Let X be a Smarandache BCI-

algebra. Let I and J be Q-Smarandache ideals of X and I ⊆ J ⊆ Q. If I is a

Q-Smarandache clean ideal of X, then so is J .

Next we give the extension theorem of Smarandache fuzzy clean ideals.

Theorem 5.18. Let X be a Smarandache BCI-algebra. Let µ and ν be

Smarandache fuzzy ideals of X such that µ ≤ ν and µ(0) = ν(0). If µ is a

Smarandache fuzzy clean ideal of X, then so is ν.

Proof. It suffices to show that for any t ∈ [0, 1], νt is either empty or a Smaran-

dache clean ideal of X. If the level subset νt is non-empty, then µt 6= ∅ and

µt ⊆ νt. In fact, if x ∈ µt, then t ≤ µ(x); hence t ≤ ν(x), i.e, x ∈ νt. So µt ⊆ νt.

By the hypothesis, since µ is a Smarandache fuzzy clean ideal of X, µt is a

Smarandache clean of X by Theorem 5.16. It follows from Theorem 5.17 that

νt is a Smarandache clean ideal of X. Hence ν is a Smarandache fuzzy clean of

X. The proof is complete.
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5.3 Smarandache fuzzy fresh ideals

Definition 5.19. Let X be a Smarandache BCI-algebra. A map µ : X → [0, 1]

is called a Smarandache fuzzy fresh ideal of X if it satisfies (SF1) and

(SF4) µ(x ∗ z) ≥ min{µ((x ∗ y) ∗ z), µ(y ∗ z)} for all x, y, z ∈ P ,

where P is a BCK-algebra with P ( X and |P | ≥ 2. This Smarandache fuzzy

ideal is denoted by µP , i.e., µP : P → [0, 1] is a Smarandache fuzzy fresh ideal

of X.

Example 5.20. ([9]) Let X := {0, 1, 2, 3, 4, 5} be a Smarandache BCI-algebra

with the following table:

∗ 0 1 2 3 4 5

0 0 0 0 0 0 5
1 1 0 1 0 1 5
2 2 2 0 2 0 5
3 3 1 3 0 3 5
4 4 4 4 4 0 5
5 5 5 5 5 5 0

Define a map µ : X → [0, 1] by

µ(x) :=

{
0.5 if x ∈ {0, 1, 3},
0.9 otherwise.

Clearly µ is a Smarandache fuzzy fresh ideal of X. But it is not a fuzzy fresh

ideal of X, since µ(2 ∗ 4) = µ(0) = 0.5 ≯ min{µ( (2 ∗ 5) ∗ 4), µ(5 ∗ 4)} = µ(5) =

0.9.
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Theorem 5.21. Every Smarandache fuzzy fresh ideal of a Smarandache BCI-

algebra X is a Smarandache fuzzy ideal of X.

Proof. Taking z := 0 in (SF4) and x ∗ 0 = x, we have µ(x ∗ 0) ≥ min{µ((x ∗

y) ∗ 0), µ(y ∗ 0)}. Hence µ(x) ≥ min{µ(x ∗ y), µ(y)}. Thus (SF2) holds.

The converse of Theorem 5.21 need not be true in general.

Example 5.22. ([9]) Let X := {0, 1, 2, 3, 4, 5} be a Smarandache BCI-algebra

with the following table:

∗ 0 1 2 3 4 5

0 0 0 0 0 0 5
1 1 0 0 0 1 5
2 2 1 0 1 2 5
3 3 1 1 0 3 5
4 4 4 4 4 0 5
5 5 5 5 5 5 0

Define a map µ : X → [0, 1] by

µ(x) :=

{
0.5 if x ∈ {0, 4},
0.4 otherwise.

Clearly µ(x) is a Smarandache fuzzy ideal of X. But µ(x) is not a Smarandache

fuzzy fresh ideal of X, since µ(2 ∗ 3) = µ(1) = 0.4 ≯ min {µ((2 ∗ 1) ∗ 3),

µ(1 ∗ 3)} = min{µ(1 ∗ 3), µ(0)} = µ(0) = 0.5.

Proposition 5.23. Let X be a Smarandache BCI-algebra. A Smarandache

fuzzy ideal µP of X is a Smarandache fuzzy fresh ideal of X if and only if it

satisfies the condition µ(x ∗ y) ≥ µ((x ∗ y) ∗ y) for all x, y ∈ P .
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Proof. Assume that µP is a Smarandache fuzzy fresh ideal of X. Putting z := y

in (SF4), we have µ(x ∗ y) ≥ min{µ((x ∗ y) ∗ y), µ(y ∗ y)} = min{µ((x ∗ y) ∗

y), µ(0)} = µ((x ∗ y) ∗ y), for all x, y ∈ P.

Conversely, let µP be a Smarandache fuzzy ideal of X such that µ(x ∗ y) ≥

µ((x ∗ y) ∗ y). Since, for all x, y, z ∈ P , ((x ∗ z) ∗ z) ∗ (y ∗ z) ≤ (x ∗ z) ∗ y =

(x ∗ y) ∗ z, we have µ((x ∗ y) ∗ z) ≤ µ(((x ∗ z) ∗ z) ∗ (y ∗ z)). Hence µ(x ∗ z) ≥

µ((x ∗ z) ∗ z) ≥ min{µ(((x ∗ z) ∗ z) ∗ (y ∗ z)), µ (y ∗ z)} ≥ min{µ((x ∗ y) ∗ z),

µ(y ∗ z)}. This completes the proof.

Since (x∗y)∗y ≤ x∗y, it follows from Lemma 5.4 that µ(x∗y) ≤ µ((x∗y)∗y).

Thus we have the following theorem.

Theorem 5.24. Let X be a Smarandache BCI-algebra. A Smarandache fuzzy

ideal µP of X is Smarandache fuzzy fresh if and only if it satisfies the equality

µ(x ∗ y) = µ((x ∗ y) ∗ y), for all x, y ∈ X.

We give an equivalent condition for which a Smarandache fuzzy subalgebra

of a Smarandache BCI-algebra to be a Smarandache fuzzy clean ideal of X.

Theorem 5.25. A Smarandache fuzzy subalgebra µP of X is a Smarandache

fuzzy clean ideal of X if and only if it satisfies

(x ∗ (y ∗ x)) ∗ z ≤ u implies µ(x) ≥ min{µ(z), µ(u)} for all x, y, z, u ∈ P. (∗∗)
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Proof. Assume that µP is a Smarandache fuzzy clean ideal of X. Let x, y, z, u ∈

P be such that (x ∗ (y ∗ x)) ∗ z ≤ u. Since µ is a Smarandache fuzzy ideal of

X, we have µ(x ∗ (y ∗x)) ≥ min{µ(z), µ(u)} by Theorem 5.7. By Theorem 5.14

(iii), we obtain µ(x) ≥ min{µ(z), µ(u)}.

Conversely, suppose that µP satisfies (∗∗). Obviously, µP satisfies (SF1),

since (x ∗ (y ∗ x)) ∗ ((x ∗ (y ∗ x)) ∗ z) ≤ z, by (†), we obtain µ(x) ≥

min{µ ((x ∗ (y ∗x)) ∗ z), µ(z)}, which shows that µP satisfies (SF3). Hence µP

is a Smarandache fuzzy clean ideal of X. The proof is complete.
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Analytic real algebras
Young Joo Seo1 and Young Hee Kim2*

Background
The notions of BCK-algebras and BCI-algebras were introduced by Iséki and Iséki and 
Tanaka (1980, 1978). The class of BCK-algebras is a proper subclass of the class of BCI-
algebras. We refer useful textbooks for BCK-algebras and BCI-algebras (Lorgulescu 
2008); Meng and Jun (1994); Yisheng (2006). The notion of d-algebras which is another 
useful generalization of BCK-algebras was introduced by Neggers and Kim (1999), and 
some relations between d-algebras and BCK-algebras as well as several other relations 
between d-algebras and oriented digraphs were investigated. Several aspects on d-alge-
bras were studied (Allen et al. 2007; Han et al. 2010; Kim et al. 2012; Lee and Kim 1999; 
Neggers et al. 1999, 2000). Simply d-algebras can be obtained by deleting two identities 
as a generalization of BCK-algebras, but it gives more wide ranges of research areas in 
algebraic structures. Allen et al. (2007) developed a theory of companion d-algebras in 
sufficient detail to demonstrate considerable parallelism with the theory of BCK-alge-
bras as well as obtaining a collection of results of a novel type. Han et al. (2010) defined 
several special varieties of d-algebras, such as strong d-algebras, (weakly) selective 
d-algebras and pre-d-algebras, and they showed that the squared algebra (X ,�, 0) of a 
pre-d-algebra (X , ∗, 0) is a strong d-algebra if and only if (X , ∗, 0) is strong. Allen et al. 
(2011) introduced the notion of deformations in d / BCK-algebras. Using such deforma-
tions, d-algebras were constructed from BCK-algebras. Kim et al. (2012) studied proper-
ties of d-units in d-algebras, and they showed that the d-unit is the greatest element in 
bounded BCK-algebras, and it is equivalent to the greatest element in bounded commu-
tative BCK-algebras. They obtained several properties related with the notions of weakly 
associativity, d-integral domain, left injective in d-algebras also.

In this paper we construct some real algebras by using elementary functions, and dis-
cuss some relations between several axioms and its related conditions for such func-
tions. We obtain some conditions for real-valued functions to be a (edge) d-algebra.

Abstract 

In this paper we construct some real algebras by using elementary functions, and 
discuss some relations between several axioms and its related conditions for such func-
tions. We obtain some conditions for real-valued functions to be a (edge) d-algebra.
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Preliminaries
A d-algebra  (Neggers and Kim 1999) is a non-empty set X with a constant 0 and a binary 
operation "∗" satisfying the following axioms:

(I)		 x ∗ x = 0,
(II)	 0 ∗ x = 0,
(III)	 x ∗ y = 0 and y ∗ x = 0 imply x = y for all x, y ∈ X.

For brevity we also call X a d-algebra. In X we can define a binary relation "≤" by x ≤ y if 
and only if x ∗ y = 0.

An algebra (X , ∗, 0) of type (2,0) is said to be a strong d-algebra (Han et al. 2010) if it 
satisfies (I), (II) and (III∗) hold for all x, y ∈ X, where

(III∗) 	x ∗ y = y ∗ x implies x = y.

Obviously, every strong d-algebra is a d-algebra, but the converse need not be true (Han 
et al. 2010).

Example 1  (Han et  al. 2010) Let R be the set of all real numbers and e ∈ R. Define 
x ∗ y := (x − y) · (x − e)+ e for all x, y ∈ R where "·" and "−" are the ordinary prod-
uct and subtraction of real numbers. Then x ∗ x = e; e ∗ x = e; x ∗ y = y ∗ x = e yields 
(x − y) · (x − e) = 0, (y− x) · (y− e) = 0 and x = y or x = e = y, i.e., x = y, i.e., (R, ∗, e) 
is a d-algebra.

However, (R, ∗, e) is not a strong d-algebra. If x ∗ y = y ∗ x ⇔ (x − y) · (x − e)+ e 
= (y− x) · (y− e)+ e ⇔ (x − y)·(x − e) = −(x − y)·(y− e) ⇔ (x − y)·(x − e + y− e)

= 0 ⇔ (x − y) · (x + y− 2e) = 0 ⇔ (x = y or x + y = 2e), then there exist x = e + α 
and y = e − α such that x + y = 2e, i.e., x ∗ y = y ∗ x and x �= y. Hence, axiom (III∗) fails 
and thus the d-algebra (R, ∗, e) is not a strong d-algebra.

A BCK-algebra is a d-algebra X satisfying the following additional axioms:

(IV)	 ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,
(V)	 (x ∗ (x ∗ y)) ∗ y = 0 for all x, y, z ∈ X.

Example 2  (Neggers et al. 1999) Let X := {0, 1, 2, 3, 4} be a set with the following table: 

* 0 1 2 3 4

0 0 0 0 0 0

1 1 0 1 0 1

2 2 2 0 3 0

3 3 3 2 0 3

4 4 4 1 1 0

 Then (X , ∗, 0) is a d-algebra which is not a BCK-algebra.

Let X be a d-algebra and x ∈ X. X is said to be edge if for any x ∈ X, x ∗ X = {x, 0}. It is 
known that if X is an edge d-algebra, then x ∗ 0 = x for any x ∈ X (Neggers et al. 1999).
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Analytic real algebras
Let R be the set of all real numbers and let “∗” be a binary operation on R. Define a map 
� : R × R → R. If we define x ∗ y := �(x, y) for all x, y ∈ R, then we call such a groupoid 
(R, ∗) an analytic real algebra.

Given an analytic groupoid (R, ∗), we define

We call tr(∗, �) a trace of �. Note that the trace tr(∗, �) may or may not converge. Given an 
analytic groupoid (R, ∗), where x ∗ y := �(x, y), if x ∗ x = 0 for all x ∈ R, then tr(∗, �) = 0, 
but the converse need not be true in general.

Example 3  Let x0 ∈ R. Define

Then tr(∗, �) =
∫∞

−∞
�(x, x) dx = 0, but �(x0, x0) = 1 �= 0, i.e., x0 ∗ x0 �= 0.

Proposition 4  Let (R, ∗) be an analytic real algebra and let a, b, c ∈ R, where 
x ∗ y := ax + by+ c for all x, y ∈ R. If |tr(∗, �)| < ∞, then tr(∗, �) = 0 and 
x ∗ y = a(x − y) for all x, y ∈ R.

Proof  Given x ∈ R, we have x ∗ x = (a+ b)x + c . Since |tr(∗, �)| < ∞, we have  
|
∫∞

−∞
[(a+ b)x + c]dx| < ∞. Now 

∫ A
0
[(a+ b)x + c] dx = (a+ b)A

2

2
+ cA = A[ a+b

2
A+ c]  

for a large number A, so that if |tr(∗, �)| < ∞, then a+ b = 0 and c = 0, i.e., we have 
x ∗ y = a(x − y), and thus x ∗ x = 0 for all x ∈ R. � �

Theorem 5  Let a, b, c, d, e, f ∈ R. Define a binary operation "∗" on R by

for all x, y ∈ R. If |tr(∗, �)| < ∞ and 0 ∗ x = 0 for all x ∈ R, then x ∗ y = ax(x − y) for all 
x, y ∈ R.

Proof  Given x ∈ R, we have x ∗ x = (a+ b+ c)x2 + (d + e)x + f . Let A := a+ b+ c , 
B := d + e. If we assume |tr(∗, �)| < ∞, then |

∫∞

−∞
(Ax2 + Bx + f ) dx| < ∞. Now 

∫ L
0
(Ax2 + Bx + f ) dx = A

3
L3 + B

2
L2 + fL = L(A

3
L2 + B

2
+ f ) for a large number L so that 

|tr(∗, �)| < ∞ implies A = B = f = 0, i.e., a+ b+ c = 0, d + e = 0, f = 0. It follows that

If we assume 0 ∗ x = 0 for all x ∈ R, then, by (1), we have

for all x ∈ R. This shows that c = d = 0. Hence x ∗ y = ax(x − y) for all x, y ∈ R. �

tr(∗, �) :=

∫ ∞

−∞

�(x, x) dx

�(x, x) =

{

0 if x �= x0,
1 otherwise

x ∗ y := ax2 + bxy+ cy2 + dx + ey+ f

(1)x ∗ y = (ax − cy+ d)(x − y)

0 = 0 ∗ x

= (a0− cx + d)(0− x)

= cx2 − dx,
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Corollary 6  Let a, b, c, d, e, f ∈ R. Define a binary operation “∗” on R by

for all x, y ∈ R. If  x ∗ x = 0 and 0 ∗ x = 0 for all x ∈ R, then x ∗ y = ax(x − y) for all 
x, y ∈ R.

Proof  The condition, x ∗ x = 0 for all x ∈ R, implies |tr(∗, �)| < ∞. The conclusion fol-
lows from Theorem 5. � �

Proposition 7  Let a, b, c, d, e, f ∈ R. Define a binary operation “∗” on R by

for all x, y ∈ R. If |tr(∗, �)| < ∞ and the anti-symmetry law holds for “∗”, then 
(ax − cy+ d)2 + (ay− cx + d)2 > 0 for x �= y.

Proof  If |tr(∗, �)| < ∞, then by (1) we obtain x ∗ y = (ax − cy+ d)(x − y). Assume 
the anti-symmetry law holds for “∗”. Then either x ∗ y �= 0 or y ∗ x �= 0 for x �= y. It fol-
lows that (x ∗ y)2 > 0 or (y ∗ x)2 > 0, and hence (x ∗ y)2 + (y ∗ x)2 > 0. This shows that 
(ax − cy+ d)2 + (ay− cx + d)2 > 0. � �

Note that in Proposition  7 it is clear that if (ax − cy+ d)2 + (ay− cx + d)2 > 0 for 
x �= y, then the anti-symmetry law holds.

Corollary 8  If we define x ∗ y := ax(x − y) for all x, y ∈ R where a �= 0, then (R, ∗) is a 
d-algebra.

Proof  It is easy to see that x ∗ x = 0 = 0 ∗ x for all x ∈ R . Assume that x �= y. Since  
x ∗ y = ax(x − y) = ax2 − axy, by applying Proposition  7, we obtain b = −a, c = 0, 
d = e = f = 0. It follows that (ax − 0y+ 0)2 + (ay− 0x + 0)2 = a2x2 + a2y2

= a2(x2 + y2) > 0 when a �= 0. By Proposition 7, (R, ∗) is a d-algebra. � �

Proposition 9  Let a, b, c, d, e, f ∈ R. Define a binary operation “∗” on R by

for all x, y ∈ R. If |tr(∗, �)| < ∞ and x ∗ 0 = x for all x ∈ R, then x ∗ y = (1− cy)(x − y) 
for all x, y ∈ R.

Proof  If |tr(∗, �)| < ∞, then by (1) we obtain x ∗ y = (ax − cy+ d)(x − y) for all 
x, y ∈ R. If we let y := 0, then x = x ∗ 0 = (ax + d)x. It follows that ax2 + (d − 1)x = 0 
for all x ∈ R. This shows that a = 0, d = 1. Hence x ∗ y = (1− cy)(x − y) for all x, y ∈ R . 
� �

Theorem 10  If we define x ∗ y := (ax − cy+ d)(x − y) for all x, y ∈ R where a, c, d ∈ R 
with a+ c �= 0, then the anti-symmetry law holds.

x ∗ y := ax2 + bxy+ cy2 + dx + ey+ f

x ∗ y := ax2 + bxy+ cy2 + dx + ey+ f

x ∗ y := ax2 + bxy+ cy2 + dx + ey+ f
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Proof  Assume that there exist x �= y in R such that x ∗ y = 0 = y ∗ x. Then 
(ax − cy+ d)(x − y) = 0 and (ay− cx + d)(y− x) = 0. Since x �= y, we have

It follows that (a+ c)(x − y) = 0. Since a+ c �= 0, we obtain x = y, a contradiction. � �

Remark  The analytic algebra (R, ∗), x ∗ y = ax(x − y) for all x, y ∈ R , 
was proved to be a d-algebra in Corollary  8 by using Proposition  7. Since 
x ∗ y = ax(x − y) = (ax − 0y+ 0)(x − y), we know that a+ 0 = a �= 0. Hence the alge-
bra (R, ∗) can be proved by using Theorem 10 also.

Note that the analytic real algebra (R, ∗) discussed in Corollary 8 need not be an edge 
d-algebra, since x ∗ 0 = ax(x − 0) = ax2 �= x.

Analytic real algebras with functions
Let α,β : R → R be real-valued functions. Define a binary operation “∗” on R by

where c ∈ R.

Proposition 11  Let (R, ∗) be an analytic real algebra defined by (3). If x ∗ x = 0 = 0 ∗ x 
for all x ∈ R, then x ∗ y = 0 for all x, y ∈ R.

Proof  Assume that x ∗ x = 0 for all x ∈ R. Then

If we let x := 0, then c = 0. If x �= 0, then α(x)+ β(x) = 0, i.e., β(x) = −α(x) for all 
x �= 0 in R. It follows that

Assume 0 ∗ x = 0 for all x ∈ R. Then

It follows that β(x) = 0 for all x �= 0 in R. Hence we have x ∗ y = 0 for all x, y ∈ R. � �

Proposition 12  Let (R, ∗) be an analytic real algebra defined by (3). If x ∗ x = 0 and 
x ∗ 0 = x for all x ∈ R, then x ∗ y = x − y for all x, y ∈ R.

(2)ax − cy+ d = 0 = ay− cx + d

(3)x ∗ y := α(x)x + β(y)y+ c

0 = x ∗ x

= α(x)x + β(x)x + c

= [α(x)+ β(x)]x + c

(4)x ∗ y = α(x)x − α(y)y

0 = 0 ∗ x

= α(0)0+ β(x)x + c

= β(x)x
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Proof  If we assume x ∗ x = 0 for all x ∈ R, then by (4) we obtain x ∗ y = α(x)x − α(y)y . 
Assume that x ∗ 0 = x for all x ∈ R. Then x = x ∗ 0 = α(x)x − α(0)0 = α(x)x. This 
shows that α(x) = 1 for any x �= 0 in R. Hence x ∗ y = x − y for all x, y ∈ R.�  �

Let a, b1, b2, c, d, e : R → R be real-valued functions and let f ∈ R. Define a binary 
operation “∗” on R by

for all x, y ∈ R. Assume 0 ∗ x = 0 for all x ∈ R. Then

for all x ∈ R. It follows that f = 0 and c(x)x + e(x) = 0 for all x �= 0 in R. Hence 
c(y)y2 + e(y)y = 0 for all y ∈ R. Hence

Assume x ∗ x = 0 for all x ∈ R. Then by (6) we obtain

It follows that d(x)x = −[a(x)x2 + b1(x)b2(x)x
2]. By (6) we obtain

Theorem 13  Let b1, b2 : R → R be real-valued functions. Define a binary operation “∗”  
on R as in (7). If we assume b2(x)x �= b2(y)y and b21(x)x

2 + b21(y)y
2 > 0 for any x �= y in 

R , then (R, ∗) is a d-algebra.

Proof  Assume the anti-symmetry law holds. Then it is equivalent to that if x �= y then 
x ∗ y �= 0 or y ∗ x �= 0, i.e., if x �= y then (x ∗ y)2 + (y ∗ x)2 > 0. Since x ∗ y is defined by 
(7), we obtain that if x �= y then

By assumption, we obtain that (R, ∗) is a d-algebra. � �

Example 14  Consider x ∗ y := ax(x − y) for all x, y ∈ R. If we compare it with 
(7), then we have b1(x) = a, b2(y) = −1 and b2(x) = −1 for all x ∈ R. This shows 
that b2(x)x − b2(y)y = (−1)x − (−1)y = y− x �= 0 when x �= y. Moreover, 
b21(x)x

2 + b21(y)y
2 = a2x2 + b21(y)y

2 > 0 since a �= 0. By applying Theorem  13, we see 
that an analytic real algebra (R, ∗) where x ∗ y := ax(x − y), a �= 0 is a d-algebra.

Example 15  Consider x ∗ y := x tan 2x[eyy− exx] for all x, y ∈ R. By comparing it 
with (7), we obtain b1(x) = tan 2x, b2(y) = ey and b2(x) = ex. If x �= y, then it is easy to 
see that xex �= yey and b21(x)x

2 + b21(y)y
2 = (tan 2x)2x2 + (tan 2y)2y2 > 0 when x �= y. 

(5)x ∗ y := a(x)x2 + b1(x)b2(y)xy+ c(y)y2 + d(x)x + e(y)y+ f

0 = 0 ∗ x

= c(x)x2 + e(x)x + f

= [c(x)x + e(x)]x + f

(6)x ∗ y = a(x)x2 + b1(x)b2(y)xy+ d(x)x

0 = x ∗ x

= a(x)x2 + b1(x)b2(x)x
2 + d(x)x

(7)x ∗ y = b1(x)x[b2(y)y− b2(x)x]

(b21(x)x
2 + b21(y)y

2)(b2(x)x − b2(y)y)
2 > 0
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Hence an analytic real algebra (R, ∗) where x ∗ y := x tan 2x[eyy− exx] is a d-algebra by 
Theorem 13.

In Theorem 13, we obtained some conditions for analytic real algebras to be d-alge-
bras. In addition, we construct an edge d-algebra from Theorem 13 as follows.

Theorem 16  If we define a binary operation “∗” on R by

where b1(x) is a real-valued function such that b1(y) �= 0 if y �= 0. Then (R, ∗) is an edge 
d-algebra.

Proof  Define a binary operation “∗” on R as in (7) with additional conditions: 
b2(x)x �= b2(y)y and b21(x)x

2 + b21(y)y
2 > 0 for any x �= y in R. Assume x ∗ 0 = x for all 

x ∈ R. Then

Combining with (7) we obtain

If we let xy �= 0, then

If we let x ∗ y := x when y = 0, then (R, ∗) is an edge d-algebra.�  �

Example 17  Define a map b1(x) := e�x for all x ∈ R. Then x ∗ y = x[1− e�x

e�y
]

= x(1− e�(x−y)) when y �= 0. If we define a binary operation “∗” on R by

then (R, ∗) is an edge d-algebra.

x ∗ y :=

{

x[1− b1(x)
b1(y)

] if y �= 0,

x otherwise

x = x ∗ 0

= b1(x)x[b2(0)0− b2(x)x]

= − b1(x)b2(x)x
2

x ∗ y = b1(x)b2(y)xy− b1(x)b2(x)x
2

= b1(x)b2(y)xy+ x

= x[b1(x)b2(y)y+ 1]

x ∗ y = x

[

b1(x)(−
1

b1(y)
)+ 1

]

= x

[

1−
b1(x)

b1(y)

]

x ∗ y :=

{

x(1− e�(x−y)) if y �= 0,

x otherwise,
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Proposition 18  If we define a binary operation “∗” on R by

where b1(x) is a real-valued function such that b1(y) �= 0 if y �= 0. Assume that if x �= y, 
then either b1(x ∗ y) = b1(x) or b1(x ∗ (x ∗ y)) = b1(y). Then

for all x, y ∈ R.

Proof  By Theorem 16, (R, ∗) is an edge d-algebra and hence (8) holds for x ∗ y = 0 or 
y = 0. Assume x ∗ y �= 0 and y �= 0. Then

It follows that

proving the proposition. � �

Conclusions
We constructed some algebras on the set of real numbers by using elementary functions. 
The notions of (edge) d-algebras were developed from BCK-algebras, and widened the 
range of research areas. It is useful to find linear (quadratic) polynomial real algebras 
by using the real functions. In "Analytic real algebras" section, we obtained some linear 
(quadratic) algebras related to some algebraic axioms, and found suitable binary opera-
tions for (edge) d-algebras. In "Analytic real algebras with functions" section, we devel-
oped the idea of analytic methods, and obtained necessary conditions for the real valued 
function so that the real algebra is an edge d-algebra. We may apply the analytic method 
discussed here to several algebraic structures, and it may useful for find suitable condi-
tions to construct several algebraic structures and many examples.
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x ∗ y :=

{

x[1− b1(x)
b1(y)

] if y �= 0,

x otherwise

(8)(x ∗ (x ∗ y)) ∗ y = 0

x ∗ (x ∗ y) = x

[

1−
b1(x)

b1(x ∗ y)

]

(x ∗ (x ∗ y)) ⋆ y = [x ∗ (x ∗ y)]

[

1−
b1(x ∗ (x ∗ y))

b1(y)

]

= x

[

1−
b1(x)

b1(x ∗ y)

][

1−
b1(x ∗ (x ∗ y))

b1(y)

]

= 0,
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국 문 요 지

대수구조와 그 응용에 관한 연구
(On the structure of general

algebras and its applications)

한양대학교 대학원

수학과

서 영 주

본논문에서는 BCK-대수의일반화된대수구조인 d-대수의구조적

이해와해석적실대수가 d-대수가되는과정을규명하였으며, BCI-대

수 상에서 Smarandache 개념을 도입하여 퍼지이론을 전개하였다. 먼

저,상 d-대수에서두가지동형정리를증명하고, obstinate d-이데알의

개념을 도입하여, 그 동치조건을 구하였다. 또한, 실공간 위에서 함수

로서정의되는이항연산을정의하여,그것이 d-대수가될수있는조건

들을 구하였다. 마지막으로 Smarandache BCI-대수 위에 Smarandache

퍼지부분대수(이데알)의개념을도입하여여러동치가되는조건들을

구하였고, 기존 퍼지 개념을 재정립 하였다.
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