ccreative

 commons

 commons}
$\begin{array}{lllllllllll}\text { C } & \mathrm{O} & \mathrm{M} & \mathrm{M} & \mathrm{O} & \mathrm{N} & \mathrm{S} & \mathrm{D} & \mathrm{E} & \mathrm{E} & \mathrm{D}\end{array}$

저작자표시-비영리-변경금지 2.0 대한민국
이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

- 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

- 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건 을 명확하게 나타내어야 합니다.
- 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 숩게 요약한 것입니다.

$$
\text { Disclaimer } \square
$$

c)Collection

Thesis for the Doctor of Philosophy

On the structure of general algebras and its applications

Young Joo SEO

Graduate School of Hanyang University

August 2019

Thesis for the Doctor of Philosophy

On the structure of general algebras and its applications

Thesis Supervisor : Hee Sik KIM

A Thesis submitted to the graduate school of Hanyang University in partial fulfillment of the requirements for the degree of Doctor of Philosophy

Young Joo SEO

August 2019

Department of Mathematics
Graduate School of Hanyang University

This thesis, written by Young So Geo, has been approved as a thesis for the Doctor of Philosophy.

August 2019

Committee member : $\begin{array}{lll}7_{2} & 01 \\ 0 & \text { id } \\ \text { (Signature) }\end{array}$
Committee member : of H H (Sibntative)
Committee member : $1 \begin{aligned} & 1 \ddagger 5 \\ & \frac{\lambda}{3} \\ & \lambda\end{aligned}$
Committee member : ≥ 1 Er

Graduate School of Hanyang University

CONTENTS

Contents i
Abstract ii

1. Introduction 1
2. Preliminaries 3
3. Structural properties of quotient d-algebras 14
4. Analytic real algebras and d-algebras 27
5. Smarandache fuzzy ideals in $B C I$-algebras 38
References 51
Published Papers1. Analytic real algebras, SpringerPlus 5 (2016), 1684-1692.
6. Smarandache fuzzy $B C I$-algebras, J. Comput. Anal. Appl. 24(2018), 619-627.
국문요지 53

ABSTRACT

On the structure of general algebras and its applications

Young Joo Seo
Dept. of Mathematics
Graduate School of
Hanyang University

In this thesis, we discuss some structural theory of a d algebra which is a generalization of a $B C K$-algebra, and we discuss analytic real algebras. We investigate several conditions for analytic real algebras to be d-algebras. Moreover, we introduce the notion of a Smarandacheness to $B C I$-algebras, and obtain several properties on Smarandache fuzzy $B C I$ algebras.

1. Introduction

The notions of $B C K$-algebras and $B C I$-algebras were introduced by Y. Imai and K. Iséki ([5, 6]). The class of $B C K$-algebras is a proper subclass of the class of $B C I$-algebras. We refer useful textbooks for $B C K$-algebras and $B C I$-algebras to $([4,12,17])$. The notion of a d-algebra which is another useful generalization of $B C K$-algebras was introduced by J. Neggers, Y. B. Jun and H. S. $\operatorname{Kim}([14])$, and some relations between d-algebras and $B C K$-algebras as well as several other relations between d-algebras and oriented digraphs were investigated. Several aspects on d-algebras were studied ($[1,3,10,11,13,14]$). Simply, d-algebras can be obtained by deleting two identities as a generalization of $B C K$-algebras, but it gives more wide ranges of research areas in algebraic structures. Also, J. Neggers, Y. B. Jun and H. S. Kim ([14]) discussed the ideal theory in d-algebras, and introduced the notions of a d-subalgebra, a d ideal, a $d^{\#}$-ideal and a d^{*}-ideal, and investigated relations among them. Also, a Smarandache structure on a set A means a weak structure W on A such that there exists a proper subset B of A with a strong structure S which is embedded in A. In [16], R. Padilla showed that Smarandache semigroups are very important for the study of congruences. Y. B. Jun ([9]) introduced the notion of Smarandache BCI-algebras, Smarandache fresh and clean ideals of Smarandache $B C I$-algebras, and obtained many interesting results about them.

In Chapter 2, we study basic facts and useful properties of $B C K$-algebras, $B C I$-algebras and d-algebras which are related to the topics. In Chapter 3,
we discuss structural properties of quotient d-algebras. We obtain several isomorphism theorems in quotient d-algebras, and we introduce the notion of an obstinate ideal in d-algebras, and obtain its equivalent conditions. In Chapter 4, we introduce the notion of an analytic real algebra, and we obtain some conditions to be a d-algebra. Moreover, we generalize a binary operation on the set \mathbb{R} of real numbers by using real-valued functions, and obtain some conditions to be an edge d-algebra. In Chapter 5, we introduce the notion of a Smarandache concept to $B C I$-algebras, and discuss Smarandache fuzzy ideals in Smarandache BCI-algebras. Moreover, we discuss Smarandache fuzzy clean ideals and Smarandache fuzzy fresh ideals in Smarandache $B C I$-algebras.

2. Preliminaries

In this chapter, we provide several definitions and theorems which are useful in the study of d-algebras and Smarandache (fuzzy) $B C I$-algebras.

2.1. d-algebras

Definition 2.1. ([15]) A d-algebra is a non-empty set X with a constant 0 and a binary operation "*" satisfying the following axioms:
(I) $x * x=0$,
(II) $0 * x=0$,
(III) $x * y=0$ and $y * x=0$ imply $x=y$
for all $x, y \in X$.
For brevity we also call X a d-algebra. In X we can define a binary relation " $\leq "$ by $x \leq y$ if and only if $x * y=0$.

Definition 2.2. ([3]) An algebra $(X, *, 0)$ is said to be a strong d-algebra if it satisfies (I), (II) and (III*) for all $x, y \in X$, where
(III*) $x * y=y * x$ implies $x=y$.

Obviously, every strong d-algebra is a d-algebra, but the converse need not be true in general (see [3]).

Example 2.3. ([3]) Let \mathbb{R} be the set of all real numbers and $e \in \mathbb{R}$. Define $x * y:=(x-y) \cdot(x-e)+e$ for all $x, y \in \mathbb{R}$ where "." and " - " are the ordinary product and subtraction of real numbers. Then it is easy to see that $x * x=e$ and $e * x=e$. If $x * y=y * x=e$ then $(x-y) \cdot(x-e)=0,(y-x) \cdot(y-e)=0$, and hence $x=y$ or $x=e=y$, i.e., $x=y$, i.e., $(\mathbb{R}, *, e)$ is a d-algebra. However, $(\mathbb{R}, *, e)$ is not a strong d-algebra. We can easily see that

$$
\begin{aligned}
x * y=y * x & \Leftrightarrow(x-y) \cdot(x-e)+e=(y-x) \cdot(y-e)+e \\
& \Leftrightarrow(x-y) \cdot(x-e)=-(x-y) \cdot(y-e) \\
& \Leftrightarrow(x-y) \cdot(x-e+y-e)=0 \\
& \Leftrightarrow(x-y) \cdot(x+y-2 e)=0 \\
& \Leftrightarrow x=y \text { or } x+y=2 e .
\end{aligned}
$$

If we take $x:=e+\alpha$ and $y:=e-\alpha$ for some $\alpha \in \mathbb{R}$, then $x+y=2 e$. This shows that $x * y=y * x$, but $x \neq y$. Hence the axiom (III*) does not hold. This shows that $(\mathbb{R}, *, e)$ is a d-algebra, but not a strong d-algebra.

Definition 2.4. ([12]) A $B C K$-algebra is a d-algebra X satisfying the following additional axioms:
$(\mathrm{IV})((x * y) *(x * z)) *(z * y)=0$,
(V) $(x *(x * y)) * y=0$
for all $x, y, z \in X$.

Example 2.5. ([14]) Let $X:=\{0,1,2,3,4\}$ be a set with the following table:

$*$	0	1	2	3	4
0	0	0	0	0	0
1	1	0	1	0	1
2	2	2	0	3	0
3	3	3	2	0	3
4	4	4	1	1	0

Then $(X, *, 0)$ is a d-algebra which is not a $B C K$-algebra, since $((2 * 3) *(2 *$ 4)) $*(4 * 3)=(3 * 0) * 1 \neq 0$.

Let X be a d-algebra and $x \in X . X$ is said to be edge if for any $x \in X$, $x * X=\{x, 0\}$. It is known that if X is an edge d-algebra, then $x * 0=x$ for any $x \in X$ (see [14]).

Definition 2.6. ([14]) An algebra $(X, *, 0)$ is called a $B C I$-algebra if it satisfies (I), (III), (IV) and (V) for all $x, y, z \in X$

Every $B C I$-algebra X has the following properties:
$\left(a_{1}\right) x * 0=x$,
$\left(a_{2}\right) x \leq y$ implies $x * z \leq y * z, z * y \leq z * x$
for all $x, y, z \in X$.

2.2. d-ideals in d-algebras

Definition 2.7. ([14]) Let $(X, *, 0)$ be a d-algebra and $\emptyset \neq I \subseteq X . I$ is called a d-subalgebra of X if $x * y \in I$ whenever $x \in I$ and $y \in I . I$ is called a BCK-ideal of X if it satisfies the following conditions:
$\left(D_{0}\right) 0 \in I$,
$\left(D_{1}\right) x * y \in I, y \in I$ imply $x \in I$ for all $x, y \in X$.

A non-empty subset I is called a d-ideal of X if it satisfies $\left(D_{1}\right)$ and $\left(D_{2}\right) x \in I$ and $y \in X$ imply $x * y \in I$ for all $x, y \in X$.

A d-ideal I of a d-algebra X is called a $d^{\#}$-ideal of X if for any $x, y, z \in I$, $\left(D_{3}\right) x * y \in I, y * z \in I$ imply $x * z \in I$.

A $d^{\#}$-ideal I of a d-algebra X is called a d^{*}-ideal of X if for any $x, y, z \in X$, $\left(D_{4}\right) x * y \in I$ and $y * x \in X$ imply $(x * z) *(y * z) \in I$ and $(z * x) *(z * y) \in I$.

Example 2.8. ([14]) Let $X:=\{0, a, b, c, d\}$ be a d-algebra which is not a $B C K$-algebra with the following table:

$*$	0	a	b	c	d
0	0	0	0	0	0
a	a	0	a	0	a
b	b	b	0	c	0
c	c	c	b	0	c
d	c	c	a	a	0

Then $I:=\{0, a\}$ is a d-ideal of a d-algebra X.

Example 2.9. ([14]) Let $X:=\{0, a, b, c\}$ be a d-algebra which is not a $B C K$ algebra with the following table:

$*$	0	a	b	c
0	0	0	0	0
a	a	0	0	b
b	b	c	0	0
c	c	c	c	0

Then $I:=\{0, a, b\}$ is a $B C K$-ideal which is not a d-subalgebra of X, while $J:=\{0, c\}$ is a d-subalgebra of X which is not a $B C K$-ideal of X. Moreover, $K:=\{0, a\}$ is a d^{*}-ideal of X.

Clearly, $\{0\}$ is a d-subalgebra of every d-algebra X and every d-ideal of X is a d-subalgebra, but the converse need not be true.

Example 2.10. ([14]) Let $X:=\{0, a, b, c\}$ be a d-algebra which is not a $B C K$ algebra with the following table:

$*$	0	a	b	c
0	0	0	0	0
a	a	0	0	b
b	b	b	0	0
c	c	c	c	0

Then $I:=\{0, a\}$ is a d-subalgebra of X, but not a d-ideal of X, since $a * c=$ $b \notin I$.

Lemma 2.11. ([14]) If I is a d-ideal of a d-algebra X, then $0 \in I$.

Note that every d-ideal of a d-algebra is a $B C K$-ideal, but the converse need not be true. In Example 2.10, $I:=\{0, a\}$ is a $B C K$-ideal of X, but not a d-ideal of X.

Proposition 2.12. ([14]) Let I be a d-ideal of a d-algebra X, If $x \in I$ and $y * x=0$, then $y \in I$.

Theorem 2.13. ([14]) In a d^{*}-algebra, every BCK-ideal is a d-ideal.

Corollary 2.14. ([14]) In a d^{*}-algebra, every BCK-ideal is a d-subalgebra.

Theorem 2.15. ([11]) If $(X, *, 0)$ is a BCK-algebra, then every BCK-ideal of X is a d^{*}-ideal of X.

Let $\left(X, *, 0_{X}\right)$ and $\left(Y, \bullet, 0_{Y}\right)$ be d-algebras. A mapping $f: X \rightarrow Y$ is called a homomorphism if $f(x * y)=f(x) \bullet f(y)$ for all $x, y \in X$. In [13], J. Neggers, A. Dvurečenskij and H. S. Kim used "d-morphism", but we change it into "homomorphism" for convenience. Note that $f\left(0_{X}\right)=0_{Y}$. A d-algebra $\left(X, *, 0_{X}\right)$ is said to be d-transitive (see [14]) if $x * z=0_{X}$ and $z * y=0_{X}$ imply $x * y=0_{X}$.

Proposition 2.16. ([14]) Let $f: X \rightarrow Y$ be a homomorphism from a d-algebra X into a d-transitive d-algebra Y. Then $\operatorname{Ker} f$ is a d*-ideal of X.

Let $(X, *, 0)$ be a d-algebra and let I be a d^{*}-ideal of X. Define a binary relation " \sim " on X by $x \sim y$ if and only if $x * y, y * x \in I$. We denote it by " $x \sim y(\bmod I) "$ or simply " $x \sim y "$.

We denote a congruence class containing x by $[x]_{I}$, i.e., $[x]_{I}:=\{y \in X \mid x \sim y$ $(\bmod I)\}$. We see that $x \sim y$ if and only if $[x]_{I}=[y]_{I}$. Denote the set of all equivalence classes of X by X / I, i.e., $X / I:=\left\{[x]_{I} \mid x \in X\right\}$.

Lemma 2.17. ([14]) Let I be a d^{*}-ideal of a d-algebra $(X, *, 0)$. Then $I=[0]_{I}$.

Theorem 2.18. ([14]) Let $(X, *, 0)$ be a d-algebra and let I be a d^{*}-ideal of X. If we define $[x]_{I} *[y]_{I}:=[x * y]_{I}$ where $x, y \in X$, then $(X / I, *, 0)$ is a d-algebra, called the quotient d-algebra.

Proposition 2.19. ([14]) Let I be a d^{*}-ideal of a d-algebra $(X, *, 0)$. Then the mapping $\pi: X \rightarrow X / I$ defined by $\pi(x):=[x]_{I}$ is a homomorphism of X onto the quotient d-algebra X / I and the kernel of π is precisely the set I.

Theorem 2.20. ([14]) If $f: X \rightarrow Y$ is a homomorphism from a d-algebra X onto a d-transitive d-algebra Y, then $X / \operatorname{Ker} f \cong Y$.

2.3. Smarandache $B C I$-algebras

An algebra $(X, *, 0)$ is called a $B C I$-algebra if it satisfies the following conditions:
$(\mathrm{BCI}-1)((x * y) *(x * z)) *(z * y)=0$,
$(\mathrm{BCI}-2)(x *(x * y)) * y=0$,
(BCI-3) $x * x=0$,
(BCI-4) $x * y=0$ and $y * x=0$ imply $x=y$
for all $x, y, z \in X$.
A non-empty subset I of a $B C I$-algebra X is called a $B C I$-ideal of X if it satisfies the following conditions:
(i) $0 \in I$,
(ii) $x * y \in I, y \in I$ imply $x \in I$.
for all $x, y \in X$.
Definition 2.21. ([8]) A BCI-algebra ($X, *, 0$) is said to be a Smarandache $B C I$-algebra if it contains a proper subset Q of X such that
(i) $0 \in Q$ and $|Q| \geq 2$,
(ii) $(Q, *, 0)$ is a $B C K$-algebra.

By a Smarandache positive implicative (resp., commutative and implicative) $B C I$-algebra, we mean a $B C I$-algebra X which has a proper subset Q of X such that
(i) $0 \in Q$ and $|Q| \geq 2$,
(ii) Q is a positive implicative (resp., commutative and implicative) $B C K$ algebra under the same operation of X.

Let $(X, *, 0)$ be a Smarandache $B C I$-algebra and H be a subset of X such that $0 \in H$ and $|H| \geq 2$. Then H is called a Smarandache subalgebra of X if $(H, *, 0)$ is a Smarandache $B C I$-algebra (see [14]).

A non-empty subset I of X is called a Smarandache ideal of X related to Q if it satisfies the following conditions:
(i) $0 \in I$,
(ii) $x \in Q, y \in I, x * y \in I$ imply $x \in I$,
where Q is a $B C K$-algebra contained in X (see [9]). If I is a Smarandache ideal of X related to every $B C K$-algebra contained in X, we simply say that I is a Smarandache ideal of X.

In what follows, let X and Q denote a Smarandache $B C I$-algebra and a $B C K$-algebra which is properly contained in X, respectively.

Definition 2.22. ([9]) A non-empty subset I of X is called a Smarandache ideal of X related to Q (or briefly, a Q-Smarandache ideal) of X if it satisfies:
($\left.c_{1}\right) 0 \in I$,
(c_{2}) $x \in Q, y \in I, x * y \in I$ imply $x \in I$.

If I is a Smarandache ideal of X related to every $B C K$-algebra contained in X, we simply say that I is a Smarandache ideal of X.

Definition 2.23. ([9]) A non-empty subset I of X is called a Smarandache fresh ideal of X related to Q (or briefly, a Q-Smarandache fresh ideal of X) if it satisfies the conditions $\left(c_{1}\right)$ in Definition 2.22 and

$$
\left(c_{3}\right) x, y, z \in Q,((x * y) * z) \in I \text { and } y * z \in I \text { imply } x * z \in I
$$

Theorem 2.24. ([9]) Every Q-Smarandache fresh ideal which is contained in Q is a Q-Smarandache ideal.

The converse of Theorem 2.24 need not be true in general.

Theorem 2.25. ([9]) Let I and J be Q-Smarandache ideals of X and $I \subset J$. If I is a Q-Smarandache fresh ideal of X, then so is J.

Definition 2.26. ([9]) A non-empty subset I of X is called a Smarandache clean ideal of X related to Q (or briefly, a Q-Smarandache clean ideal of X) if it satisfies the conditions $\left(c_{1}\right)$ in Definition 2.22 and

$$
\left(c_{4}\right) x, y \in Q, z \in I,(x *(y * x)) * z \in I \text { imply } x \in I
$$

Theorem 2.27. ([9]) Every Q-Smarandache clean ideal of X is a Q-Smarandache ideal.

The converse of Theorem 2.27 need not be true in general.

Theorem 2.28. ([9]) Every Q-Smarandache clean ideal of X is a Q-Smarandache fresh ideal.

Theorem 2.29. ([95]) Let I and J be Q-Smarandache ideals of X and $I \subset J$. If I is a Q-Smarandache clean ideal of X, then so is J.

A fuzzy set μ in X is called a fuzzy subalgebra of a $B C I$-algebra X if $\mu(x * y) \geq \min \{\mu(x), \mu(y)\}$ for all $x, y \in X($ see $[7])$.

A fuzzy set μ in X is called a fuzzy ideal of X if $\left(F_{1}\right) \mu(0) \geq \mu(x)$,
$\left(F_{2}\right) \mu(x) \geq \min \{\mu(x * y), \mu(y)\}$
for all $x, y \in X($ see $[7])$.
Let μ be a fuzzy set in a set X. For $t \in[0,1]$, the set $\mu_{t}:=\{x \in X \mid \mu(x) \geq t\}$ is called a level subset of μ.

3. Structural properties of quotient d-algebras

3.1. Structures of quotient d-algebras

Let $(X, *, 0)$ be a d-algebra and let I_{1}, I_{2} be d^{*}-ideals of X with $I_{1} \subseteq I_{2}$. Then $X / I_{1}:=\left\{[x]_{I_{1}} \mid x \in X\right\}$ is a quotient d-algebra. We define $I_{2} / I_{1}:=\{$ $\left.[x]_{I_{1}}^{I_{2}} \mid x \in I_{2}\right\}$. We claim that each element of I_{2} / I_{1} is an element of X / I_{1}, i.e., $[x]_{I_{1}}=[x]_{I_{1}}^{I_{2}}$ for all $x \in X$. In fact,

$$
\begin{aligned}
{[x]_{I_{1}}^{I_{2}} } & =\left\{\alpha \in I_{2} \mid \alpha \sim x\left(\bmod I_{1}\right)\right\} \\
& =\left\{\alpha \in I_{2} \mid \alpha * x, x * \alpha \in I_{1}\right\} \\
& \subseteq\left\{\alpha \in X \mid \alpha * x, x * \alpha \in I_{1}\right\} \\
& =[x]_{I_{1}}
\end{aligned}
$$

If $\beta \in[x]_{I_{1}}$, then $\beta \sim x\left(\bmod I_{1}\right)$. It follows that $\beta * x, x * \beta \in I_{1}$. Since $x \in I_{1}$ and I_{1} is a d^{*}-ideal of X, we obtain $\beta \in I_{1}$ by $\left(D_{1}\right)$. Since $I_{1} \subseteq I_{2}$, we have $\beta \in I_{2}$. It follows from $\beta \sim x\left(\bmod I_{1}\right)$ that $\beta \in[x]_{I_{1}}^{I_{2}}$. Hence $[x]_{I_{1}} \subseteq[x]_{I_{1}}^{I_{2}}$. Therefore $[x]_{I_{1}}=[x]_{I_{1}}^{I_{2}}$.

We give an exact analog of Theorem 2.20 without using the notion of a "d-transitivity". Usually it is not get known that the kernel of an epimorphism of d-algebras forms a d^{*}-ideal.

Theorem 3.1. If $g:\left(X, *, 0_{X}\right) \rightarrow\left(Y, \bullet, 0_{Y}\right)$ is an epimorphism of d-algebras and $\operatorname{Ker}(g)$ is a d^{*}-ideal of X, then $X / \operatorname{Ker}(g) \cong Y$.

Proof. Let $I:=\operatorname{Ker}(g)$ be a d^{*}-ideal of X. Define $h: X / I \rightarrow Y$ by $h\left([x]_{I}\right):=$ $g(x)$ for any $x \in X$. Suppose $[x]_{I}=[y]_{I}$. Then $x \sim y(\bmod I)$, i.e., $x * y$, $y * x \in I$. It follows that $g(x) \bullet g(y)=g(x * y)=0_{Y}$ and $g(y) \bullet g(x)=$ $g(y * x)=0_{Y}$. Since Y is a d-algebra, we obtain $g(x)=g(y)$. Hence h is well-defined. For any $y \in Y$, since g is an onto map, there exists $x \in X$ such that $g(x)=y$. Thus

$$
y=g(x)=h\left([x]_{I}\right)
$$

which means that $h: X / I \rightarrow Y$ is an onto map.
For any $[x]_{I},[y]_{I} \in X / I$ with $h\left([x]_{I}\right)=h\left([y]_{I}\right)$, we have

$$
\begin{aligned}
g(x)=g(y) & \Rightarrow g(x * y)=0_{Y}, g(y * x)=0_{Y} \\
& \Rightarrow x * y, y * x \in \operatorname{Ker}(g)=I \\
& \Rightarrow x \sim y(\bmod I) \\
& \Rightarrow[x]_{I}=[y]_{I} .
\end{aligned}
$$

Therefore h is an one-one map. Since

$$
h\left([x]_{I} *[y]_{I}\right)=h\left([x * y]_{I}\right)=g(x * y)=g(x) \bullet g(y)=h\left([x]_{I}\right) * h\left([y]_{I}\right)
$$

we obtain $X / \operatorname{Ker}(g) \cong Y$.

Theorem 3.2. Let $\left(X, *, 0_{X}\right)$ be a d-algebra and let I_{1}, I_{2} be d^{*}-ideals of X with $I_{1} \subseteq I_{2}$. Then I_{2} / I_{1} is a d^{*}-ideal of the quotient d-algebra $\left(X / I_{1}, *, I_{1}\right)$.

Proof. Suppose $[x]_{I_{1}} *[y]_{I_{1}} \in I_{2} / I_{1},[y]_{I_{1}} \in I_{2} / I_{1}$. Then $[x * y]_{I_{1}},[y]_{I_{1}} \in I_{2} / I_{1}$. Since $x * y, y \in I_{2}$ and I_{2} is a d^{*}-ideal of X, we obtain $x \in I_{2}$. Hence

$$
\begin{equation*}
[x]_{I_{1}} \in I_{2} / I_{1} \tag{1}
\end{equation*}
$$

Also, suppose that $[x]_{I_{1}} \in I_{2} / I_{1},[y]_{I_{1}} \in X / I_{1}$ where $y \in X$. Then $x \in I_{2}$.
Since I_{2} is a d^{*}-ideal of X, we have $x * y \in I_{2}$. It follows that

$$
\begin{equation*}
[x]_{I_{1}} *[y]_{I_{1}}=[x * y]_{I_{1}} \in I_{2} / I_{1} . \tag{2}
\end{equation*}
$$

If $[x]_{I_{1}} *[y]_{I_{1}} \in I_{2} / I_{1}$ and $[y]_{I_{1}} *[z]_{I_{1}} \in I_{2} / I_{1}$, then $[x * y]_{I_{1}},[y * z]_{I_{1}} \in I_{2} / I_{1}$. Since $x * y, y * z \in I_{2}$ and I_{2} is a d^{*}-ideal of X, we have $x * z \in I_{2}$. It follows that

$$
\begin{equation*}
[x]_{I_{1}} *[z]_{I_{1}}=[x * z]_{I_{1}} \in I_{2} / I_{1} . \tag{3}
\end{equation*}
$$

Let $[x]_{I_{1}} *[y]_{I_{1}},[y]_{I_{1}} *[x]_{I_{1}} \in I_{2} / I_{1}$. Then $[x * y]_{I_{1}},[y * x]_{I_{1}} \in I_{2} / I_{1}$. Since $x * y, y * x \in I_{2}$ and I_{2} is a d^{*}-ideal of X, we obtain $(x * z) *(y * z) \in I_{2}$ and $(z * x) *(z * y) \in I_{2}$ for all $z \in X$. It follows that

$$
\begin{align*}
& {[x * z]_{I_{1}} *[y * z]_{I_{1}}=[(x * z) *(y * z)]_{I_{1}} \in I_{2} / I_{1},} \\
& {[z * x]_{I_{1}} *[z * y]_{I_{1}}=[(z * x) *(z * y)]_{I_{1}} \in I_{2} / I_{1} .} \tag{4}
\end{align*}
$$

Therefore I_{2} / I_{1} is a d^{*}-ideal of $\left(X / I_{1}, *, I_{1}\right)$.

Corollary 3.3. Let $\left(X, *, 0_{X}\right)$ be a d-algebra and I_{1}, I_{2} be d^{*}-ideals of X. Then $\left(X / I_{1}\right) /\left(I_{2} / I_{1}\right)$ is a d-algebra.

Proof. It follows from Theorem 3.1 and Theorem 2.18 that $\left(X / I_{1}\right) /\left(I_{2} / I_{1}\right)$ is also a d-algebra.

In fact, any element of the quotient d-algebra $\left(X / I_{1}\right) /\left(I_{2} / I_{1}\right)$ can be denoted by $\left[[x]_{I_{1}}\right]_{I_{2} / I_{1}}$ where $x \in X$. It is easy to see that

$$
\begin{aligned}
{\left[[x]_{I_{1}}\right]_{I_{2} / I_{1}} } & =\left\{[\alpha]_{I_{1}} \in X / I_{1} \mid[\alpha]_{I_{1}} \sim[x]_{I_{1}}\right\} \\
& =\left\{[\alpha]_{I_{1}} \in X / I_{1} \mid \alpha \sim x\left(\bmod I_{1}\right)\right\} \\
& =\left\{[\alpha]_{I_{1}} \in X / I_{1} \mid \alpha * x, x * \alpha \in I_{1}\right\}
\end{aligned}
$$

Hence we conclude that

$$
\begin{aligned}
\left(X / I_{1}\right) /\left(I_{2} / I_{1}\right) & =\left\{\left\{[\alpha]_{I_{1}} \in X / I_{1} \mid \alpha * x, x * \alpha \in I_{1}\right\} \mid x \in X\right\} \\
& =\left\{\left[[x]_{I_{1}}\right]_{I_{2} / I_{1}} \mid x \in X\right\}
\end{aligned}
$$

Theorem 3.4. Let $\left(X, *, 0_{X}\right)$ be a d-algebra and I_{1}, I_{2} be d^{*}-ideals of X with $I_{1} \subseteq I_{2}$. Then $\left(X / I_{1}\right) /\left(I_{2} / I_{1}\right) \cong X / I_{2}$.

Proof. Define $g: X / I_{1} \rightarrow X / I_{2}$ by $g\left([x]_{I_{1}}\right):=[x]_{I_{2}}$. Then g is well-defined. Indeed, for any $[x]_{I_{1}},[y]_{I_{1}} \in X / I_{1}$ with $[x]_{I_{1}}=[y]_{I_{1}}$, we have $x * y, y * x \in I_{1}$. Since $I_{1} \subseteq I_{2}$, we obtain $x * y, y * x \in I_{2}$. It follows that $x \sim y\left(\bmod I_{2}\right)$, which shows that $g\left([x]_{I_{1}}\right)=[x]_{I_{2}}=[y]_{I_{2}}=g\left([y]_{I_{1}}\right)$. Hence g is well-defined. Obviously, g is an epimorphism. Also,

$$
\begin{aligned}
\operatorname{Ker}(g) & =\left\{[x]_{I_{1}} \in X / I_{1} \mid g\left([x]_{I_{1}}\right)=\left[0_{X}\right]_{I_{2}}\right\} \\
& =\left\{[x]_{I_{1}} \in X / I_{1} \mid[x]_{I_{2}}=\left[0_{X}\right]_{I_{2}}\right\} \\
& =\left\{[x]_{I_{1}} \in X / I_{1} \mid x \sim 0_{X}\left(\bmod I_{2}\right)\right\} \\
& =\left\{[x]_{I_{1}} \in X / I_{1} \mid x * 0_{X}, 0_{X} * x \in I_{2}\right\}
\end{aligned}
$$

Since I_{2} is a d^{*}-ideal of X, we have $x \in I_{2}$ if and only if $x * 0_{X}, 0_{X} * x \in I_{2}$. This proves that $\operatorname{Ker}(g)=\left\{[x]_{I_{1}} \in X / I_{1} \mid x \in I_{2}\right\}=I_{2} / I_{1}$.

By applying Theorem 3.1, we obtain

$$
\left(X / I_{1}\right) /\left(I_{2} / I_{1}\right)=\left(X / I_{1}\right) / \operatorname{Ker}(g) \cong X / I_{2} .
$$

Let $\left(X, *, 0_{X}\right)$ be a d-algebra. Define a relation " \leq " on X by $x \leq y$ if and only if $x * y=0_{X}$, where $x, y \in X$. Note that every $B C K(B C I)$-algebra has a partially ordered set (simply, poset), but d-algebras need not have a poset structure in general. Consider the following example.

Example 3.5. Let $X:=\{0,1,2,3\}$ be a set with the following table:

$*$	0	1	2	3
0	0	0	0	0
1	1	0	0	1
2	2	2	0	0
3	3	3	3	0

Then $(X, *, 0)$ is a d-algebra. Since $1 * 2=2 * 3=0$ and $1 * 3=1 \neq 0$, we have that $1 \leq 2,2 \leq 3$, but $1 \not \leq 3$. This shows that ($X, *, 0$) has no poset structure.

Note that if $f:\left(X, *, 0_{X}\right) \rightarrow\left(Y, \bullet, 0_{Y}\right)$ is a homomorphism of d-algebras, then $f\left(0_{X}\right)=0_{Y}$. And if $x \leq y$ in X, then $f(x) \leq f(y)$ in Y.

Theorem 3.6. Let $\left(X, *, 0_{X}\right)$ and $\left(Y, \bullet, 0_{Y}\right)$ be d-algebras and let $f: X \rightarrow Y$ be a homomorphism. If B is a d^{*}-ideal of Y, then $f^{-1}(B)$ is a d^{*}-ideal of X.

Proof. Let B be a d^{*}-ideal of Y. Since $f\left(0_{X}\right)=0_{Y}$, we obtain $0_{X} \in f^{-1}(B)$. If $x * y, y \in f^{-1}(B)$, then $f(x) \bullet f(y)=f(x * y) \in B$ and $f(y) \in B$. Since B is a d^{*}-ideal of X, we obtain $f(x) \in B$, i.e.,

$$
\begin{equation*}
x \in f^{-1}(B) \tag{1}
\end{equation*}
$$

If $x \in f^{-1}(B)$, then $f(x) \in B$. Since B is a d^{*}-ideal of Y, we have $f(x * y)=$ $f(x) \bullet f(y) \in B$ for any $y \in X$. Hence

$$
\begin{equation*}
x * y \in f^{-1}(B) \tag{2}
\end{equation*}
$$

If $x * y, y * z \in f^{-1}(B)$, then $f(x * y), f(y * z) \in B$ and hence $f(x) \bullet f(y)$, $f(y) \bullet f(z) \in B$. Since B is a d^{*}-ideal of Y, we obtain $f(x * z)=f(x) \bullet f(z) \in B$, i.e.,

$$
\begin{equation*}
x * z \in f^{-1}(B) \tag{3}
\end{equation*}
$$

If $x * y, y * x \in f^{-1}(B)$, then $f(x) \bullet f(y)=f(x * y), f(y) \bullet f(x)=f(y) * f(x) \in B$. Since B is a d^{*}-ideal of Y, we have $f((x * z) *(y * z))=f(x * z) \bullet f(y * z)=$ $(f(x) \bullet f(z)) \bullet(f(y) \bullet f(z)) \in B$ and $f((z * x) *(z * y))=f(z * x) \bullet f(z * y)=$ $(f(z) \bullet f(x)) \bullet(f(z) \bullet f(y)) \in B$ for all $z \in X$.

Hence $f((x * z) *(y * z)), f((z * x) *(z * y)) \in B$. It follows that

$$
\begin{equation*}
(x * z) *(y * z), \quad(z * x) *(z * y) \in f^{-1}(B) \tag{4}
\end{equation*}
$$

Thus $f^{-1}(B)$ is a d^{*}-ideal of X.

Corollary 3.7. Let $\left(X, *, 0_{X}\right)$ and $\left(Y, \bullet, 0_{Y}\right)$ be d-algebras and let $f: X \rightarrow Y$ be a homomorphism. If B is a d^{*}-ideal of Y, then $X / f^{-1}(B)$ is a d-algebra.

Proof. If follows immediately from Theorem 2.18 and Theorem 3.6.

Theorem 3.8. Let $g:\left(X, *, 0_{X}\right) \rightarrow\left(Z, \odot, 0_{Z}\right)$ be a homomorphism of d algebras and let $h:\left(X, *, 0_{X}\right) \rightarrow\left(Y, \bullet, 0_{Y}\right)$ be an epimorphism of d-algebras such that $\operatorname{Ker}(h) \subseteq \operatorname{Ker}(g)$. Then there exists a unique homomorphism $f:\left(Y, \bullet, 0_{Y}\right) \rightarrow\left(Z, \odot, 0_{Z}\right)$ such that $g=f \circ h$, i.e.,

the diagram commutes.

Proof. Given y in Y, since h is onto, there exists an x in X such that $y=h(x)$. Define $f: Y \rightarrow Z$ by $f(h(x)):=g(x)$. We show that f is well-defined and the diagram commutes. If $h\left(x_{1}\right)=h\left(x_{2}\right)=y$ for some $x_{1}, x_{2} \in X$, then $h\left(x_{1}\right) \bullet h\left(x_{2}\right)=y \bullet y=0_{Y}$. Since h is an epimorphism, we have $h\left(x_{1} * x_{2}\right)$ $=h\left(x_{1}\right) \bullet h\left(x_{2}\right)=0_{Y}$, i.e., $x_{1} * x_{2} \in \operatorname{Ker}(h) \subseteq \operatorname{Ker}(g)$. It follows that $0_{Z}=$ $g\left(x_{1} * x_{2}\right)=g\left(x_{1}\right) \odot g\left(x_{2}\right)$. Similarly, $g\left(x_{2}\right) \odot g\left(x_{1}\right)=0_{Z}$. Since $\left(Z, \odot, 0_{Z}\right)$ is a d-algebra, we obtain $g\left(x_{1}\right)=g\left(x_{2}\right)$. This shows that $f\left(h\left(x_{1}\right)\right)=g\left(x_{1}\right)=g\left(x_{2}\right)$ $=f\left(h\left(x_{2}\right)\right)$. Hence $f: Y \rightarrow Z$ is well-defined and the diagram commutes.

We claim that f is a homomorphism. If $y_{1}, y_{2} \in Y$, since h is an epimorphism, there exist $x_{1}, x_{2} \in X$ such that $g_{1}=h\left(x_{1}\right), g_{2}=h\left(x_{2}\right)$. It follows that

$$
f\left(y_{1} \bullet y_{2}\right)=f\left(h\left(x_{1}\right) \bullet h\left(x_{2}\right)\right)
$$

$$
\begin{aligned}
& =f\left(h\left(x_{1} * x_{2}\right)\right) \\
& =g\left(x_{1} * x_{2}\right) \\
& =g\left(x_{1}\right) * g\left(x_{2}\right) \\
& =f\left(h\left(x_{1}\right)\right) \odot f\left(h\left(x_{2}\right)\right) \\
& =f\left(y_{1}\right) \odot f\left(y_{2}\right) .
\end{aligned}
$$

Hence $f: Y \rightarrow Z$ is a homomorphism. We show the uniqueness of such a map f.
Let $\hat{f}: Y \rightarrow Z$ be a homomorphism such that $\hat{f} \circ h=g$. For any $y \in Y$, there exists $x \in X$ such that $h(x)=y$, since h is an epimorphism. It follows that $\hat{f}(y)=\hat{f}(h(x))=(\hat{f} \circ h)(x)=g(x)=(f \circ h)(x)=f(h(x))=f(y)$, i.e., $f=\hat{f}$, proving the uniqueness.

Theorem 3.9. Let $\left(X, *, 0_{X}\right)$ be a d-algebra, and let $f:\left(X, *, 0_{X}\right) \rightarrow\left(Y, \bullet, 0_{Y}\right)$ be an epimorphism. If J is a d^{*}-ideals of Y, then $X / f^{-1}(J) \cong Y / J$, i.e.,

Proof. Let J be a d^{*}-ideal of Y and $\pi_{J}: Y \rightarrow Y / J$ be a canonical homomorphism of d-algebras. If we define $\mu:=\pi_{J} \circ f$, the composition of π_{J} and f, then $\mu: X \rightarrow Y / J$ is an epimorphism of d-algebras. If $\operatorname{Ker}(\mu)$ is a d^{*}-ideal of X, then $X / \operatorname{Ker}(\mu)$ is isomorphic with Y / J by Theorem 3.1. In order to show that $\operatorname{Ker}(\mu)$ is a d^{*}-ideal of X, we will show that $\operatorname{Ker}(\mu)=$ $f^{-1}(J)$. By Theorem 3.6, if J is a d^{*}-ideal of Y, then $f^{-1}(J)$ is a d^{*}-ideal of X. For all $x \in X$, we have

$$
\begin{equation*}
\mu(x)=(\pi \circ f)(x)=\pi(f(x))=[f(x)]_{J} \tag{3.1}
\end{equation*}
$$

We claim that $f^{-1}(J) \subseteq \operatorname{Ker}(\mu)$. In fact, if $x \in f^{-1}(J)$, then $f(x) \in J$. We need to prove that

$$
\begin{equation*}
[f(x)]_{J}=J \tag{3.2}
\end{equation*}
$$

If $\alpha \in[f(x)]_{J}$, then $\alpha \sim f(x)$. It follows that $\alpha \bullet f(x), f(x) \bullet \alpha \in J$. Since $f(x) \in J$ and J is a d^{*}-ideal of Y, we obtain $\alpha \in J$, i.e., $[f(x)]_{J} \subseteq J$.

Conversely, if $\beta \in J$, since $f(x) \in J$ and J is a d^{*}-ideal of Y, we obtain $f(x) \bullet \beta$, $\beta \bullet f(x) \in J$, and hence $\beta \in[f(x)]_{J}$, i.e., $J \subseteq[f(x)]_{J}$. So (3.2) holds.

By applying (3.1) and (3.2), we obtain

$$
\begin{equation*}
\mu(x)=(\pi \circ f)(x)=\pi(f(x))=[f(x)]_{J}=J . \tag{3.3}
\end{equation*}
$$

Since J is a zero in Y / J, we have $x \in \operatorname{Ker}(\mu)$ for any $x \in f^{-1}(J)$. This shows that $f^{-1}(J) \subseteq \operatorname{Ker}(\mu)$.

Conversely, if $x \in \operatorname{Ker}(\mu)$, then $\mu(x)=J$ in $Y / J . \quad$ By (3.1), we have $J=\mu(x)=[f(x)]_{J}$. It follows that $f(x) \in J$ and $x \in f^{-1}(J)$. Thus $\operatorname{Ker}(\mu) \subseteq$ $f^{-1}(J)$. Hence we obtain $\operatorname{Ker}(\mu)=f^{-1}(J)$.

By Theorem 3.6, we know that $f^{-1}(J)=\operatorname{Ker}(\mu)$ is a d^{*}-ideal of X. By Theorem 3.1, we conclude

$$
X / f^{-1}(J)=X / \operatorname{Ker}(\mu) \cong Y / J
$$

3.2 Obstinate d-ideals of d-algebras

Definition 3.10. Let $(X, *, 0)$ be a d-algebra and I be a proper d-ideal of X. I is said to be obstinate of X if $x, y \notin I$ and $x \neq y$ imply $x * y, y * x \in I$.

Example 3.11. Let $X:=\{0,1,2,3\}$ be a d-algebra with the following table:

$*$	0	1	2	3
0	0	0	0	0
1	1	0	0	1
2	3	2	0	3
3	3	2	2	0

Then $I:=\{0,1\}$ satisfies the conditions $\left(D_{1}\right)$ and $\left(D_{2}\right)$, but not $\left(D_{4}\right)$ in Definition 2.7, since $0 * 1=0,1 * 0=1 \in I,(3 * 0) *(3 * 1)=3 * 2=2 \notin I_{1}$. Hence $I=\{0,1\}$ is a d-ideal of X, but not a d^{*}-ideal of X. Also, since $3,2 \notin I$, $3 * 2=2,2 * 3=3 \notin I$, we see that I is not an obstinate d-ideal of X.

Example 3.12. Let $X:=\{0,1,2,3\}$ be a d-algebra with the following table:

$*$	0	1	2	3
0	0	0	0	0
1	1	0	0	1
2	3	2	0	0
3	3	3	1	0

Then it is easy to see that $I:=\{0,1\}$ is a d-ideal of X. Since $2,3 \notin I$ and $2 * 3=0,3 * 2=1$, i.e., $2 * 3,3 * 2 \in I, I$ is an obstinate d-ideal of X.

Recall that a d-algebra $\left(X, *, 0_{X}\right)$ is said to be d-transitive if $x * z=0_{X}$ and $z * y=0_{X}$ imply $x * y=0_{X}$.

Let $\mathbf{J}:=\{0,1\}$ be a set with the following table:

$$
\begin{array}{l|ll}
\bullet & 0 & 1 \\
\hline 0 & 0 & 0 \\
1 & 1 & 0
\end{array}
$$

Then it is easy to see that $(\mathbf{J}, \bullet, 0)$ is a d-transitive d-algebra.

Proposition 3.13. Let $\left(X, *, 0_{X}\right)$ be a d-algebra and $f:\left(X, *, 0_{X}\right) \rightarrow(\mathbf{J}, \bullet, 0)$ be a homomorphism. Then $\operatorname{Ker}(f)$ is an obstinate d^{*}-ideal of X.

Proof. By applying Proposition 2.16, we see that $\operatorname{Ker}(f)$ is a d^{*}-ideal of X. If $x, y \notin \operatorname{Ker}(f), x \neq y$, then $f(x * y)=f(x) \bullet f(y)=1 \bullet 1=0$.

Also, $f(y * x)=f(y) \bullet f(x)=1 \bullet 1=0$. Thus $x * y, y * x \in \operatorname{Ker}(f)$. Hence $\operatorname{Ker}(f)$ is an obstinate d^{*}-ideal of X.

Theorem 3.14. Let $\left(X, *, 0_{X}\right)$ be a d-algebra and let I be a proper d-ideal of X. Then, given an edge d-algebra $\left(Y, \bullet, 0_{Y}\right)$, there exists a homomorphism f : $X \rightarrow Y$ such that $\operatorname{Ker}(f)=I$ if and only if I is an obstinate ideal of X.

Proof. Let I be an obstinate ideal of X. We define a map $f: X \rightarrow Y$ by

$$
f(x):= \begin{cases}0_{Y} & (x \in I) \\ a & (x \in X \backslash I)\end{cases}
$$

where a is a fixed element of Y with $a \neq 0_{Y}$. We show that f is a homomorphism from X to Y. We consider 4 cases :

Case 1. If $x, y \in I$, then $x * y \in I$ by $\left(D_{2}\right)$ in Definition 2.7. It follows that

$$
f(x * y)=0_{Y}=0_{Y} \bullet 0_{Y}=f(x) \bullet f(y) .
$$

Case 2. If $x, y \notin I, x \neq y$, since I is obstinate, we obtain $x * y \in I$. It follows that

$$
f(x * y)=0_{Y}=a \bullet a=f(x) \bullet f(y)
$$

Case 3. If $x \notin I$ and $y \in I$, then $x * y \notin I$. In fact, if we assume $x * y \in I$, since $y \in I$ and $\left(D_{1}\right)$ in Definition 2.7, we obtain $x \in I$, a contradiction. Since Y is an edge d-algebra, we obtain

$$
f(x * y)=a=a \bullet 0_{Y}=f(x) \bullet f(y)
$$

Case 4. If $x \in I$ and $y \notin I$, then $x * y \in I$ by $\left(D_{2}\right)$ in Definition 2.7. It follows that

$$
f(x * y)=0_{Y}=0_{Y} \bullet a=f(x) \bullet f(y)
$$

This shows that $f: X \rightarrow Y$ is a homomorphism. Clearly, we have $\operatorname{Ker}(f)=I$. Conversely, let $Y:=\left\{0_{Y}, a\right\}$ be a set with the following table:

\bullet	0_{Y}	a
0_{Y}	0_{Y}	0_{Y}
a	a	0_{Y}

Then $\left(Y, \bullet, 0_{Y}\right)$ is an edge d-algebra. By assumption, there exists a homomorphism $f: X \rightarrow Y$ such that $\operatorname{Ker}(f)=I$. We claim that I is an obstinate ideal of X. If $x, y \notin I, x \neq y$, then $f(x)=f(y)=a$, and hence $f(x * y)=f(x) \bullet f(y)=a \bullet a=0_{Y}$ and $f(y * x)=f(y) \bullet f(x)=a \bullet a=0_{Y}$. It follows that $x * y, y * x \in \operatorname{Ker}(f)=I$. Hence I is an obstinate ideal of X.

4. Analytic real algebras and d-algebras

Let \mathbb{R} be the set of all real numbers and let "*" be a binary operation on \mathbb{R}. Define a map $\lambda: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$. We define $x * y:=\lambda(x, y)$ for all $x, y \in \mathbb{R}$. Such a groupoid $(\mathbb{R}, *)$ is said to be an analytic real algebra.

4.1. Analytic real algebras

Given an analytic real algebra $(\mathbb{R}, *)$, we define

$$
\operatorname{tr}(*, \lambda):=\int_{-\infty}^{\infty} \lambda(x, x) d x
$$

We call $\operatorname{tr}(*, \lambda)$ a trace of λ. Note that the trace $\operatorname{tr}(*, \lambda)$ may or may not converge. Given an analytic real algebra $(\mathbb{R}, *)$, where $x * y:=\lambda(x, y)$, if $x * x=0$ for all $x \in \mathbb{R}$, then $\operatorname{tr}(*, \lambda)=0$, but the converse need not be true in general.

Example 4.1. Let $x_{0} \in \mathbb{R}$. Define

$$
\lambda(x, x)= \begin{cases}0 & \text { if } x \neq x_{0} \\ 1 & \text { otherwise }\end{cases}
$$

Then $\operatorname{tr}(*, \lambda)=\int_{-\infty}^{\infty} \lambda(x, x) d x=0$, but $\lambda\left(x_{0}, x_{0}\right)=1 \neq 0$, i.e., $x_{0} * x_{0} \neq 0$.

Proposition 4.2. Let $(\mathbb{R}, *)$ be an analytic real algebra and let $a, b, c \in \mathbb{R}$, where $x * y:=a x+b y+c$ for all $x, y \in \mathbb{R}$. If $|\operatorname{tr}(*, \lambda)|<\infty$, then $\operatorname{tr}(*, \lambda)=0$ and $x * y=a(x-y)$ for all $x, y \in \mathbb{R}$.

Proof. Given $x \in \mathbb{R}$, we have $x * x=(a+b) x+c$. Since $|\operatorname{tr}(*, \lambda)|<\infty$, we have $\left|\int_{-\infty}^{\infty}[(a+b) x+c] d x\right|<\infty$. Now $\int_{0}^{A}[(a+b) x+c] d x=(a+b) \frac{A^{2}}{2}+c A=$
$A\left[\frac{a+b}{2} A+c\right]$ for a large number A, so that if $|\operatorname{tr}(*, \lambda)|<\infty$, then $a+b=0$ and $c=0$, i.e., we have $x * y=a(x-y)$, and thus $x * x=0$ for all $x \in \mathbb{R}$.

Theorem 4.3. Let $a, b, c, d, e, f \in \mathbb{R}$. Define a binary operation "*" on \mathbb{R} by

$$
x * y:=a x^{2}+b x y+c y^{2}+d x+e y+f
$$

for all $x, y \in \mathbb{R}$. If $|\operatorname{tr}(*, \lambda)|<\infty$ and $0 * x=0$ for all $x \in \mathbb{R}$, then $x * y=$ $a x(x-y)$ for all $x, y \in \mathbb{R}$.

Proof. Given $x \in \mathbb{R}$, we have $x * x=(a+b+c) x^{2}+(d+e) x+f$. Let $A:=a+b+c$, $B:=d+e$. If we assume $|\operatorname{tr}(*, \lambda)|<\infty$, then $\left|\int_{-\infty}^{\infty}\left(A x^{2}+B x+f\right) d x\right|<\infty$. Now $\int_{0}^{L}\left(A x^{2}+B x+f\right) d x=\frac{A}{3} L^{3}+\frac{B}{2} L^{2}+f L=L\left(\frac{A}{3} L^{2}+\frac{B}{2}+f\right)$ for a large number L so that $|\operatorname{tr}(*, \lambda)|<\infty$ implies $A=B=f=0$, i.e., $a+b+c=$ $0, d+e=0, f=0$. It follows that

$$
\begin{equation*}
x * y=(a x-c y+d)(x-y) . \tag{4.1}
\end{equation*}
$$

If we assume $0 * x=0$ for all $x \in \mathbb{R}$, then, by (4.1), we have

$$
\begin{aligned}
0 & =0 * x \\
& =(a 0-c x+d)(0-x) \\
& =c x^{2}-d x
\end{aligned}
$$

for all $x \in \mathbb{R}$. This shows that $c=d=0$. Hence $x * y=a x(x-y)$ for all $x, y \in \mathbb{R}$.

Corollary 4.4. Let $a, b, c, d, e, f \in \mathbb{R}$. Define a binary operation "*" on \mathbb{R} by

$$
x * y:=a x^{2}+b x y+c y^{2}+d x+e y+f
$$

for all $x, y \in \mathbb{R}$. If $x * x=0$ and $0 * x=0$ for all $x \in \mathbb{R}$, then $x * y=a x(x-y)$ for all $x, y \in \mathbb{R}$.

Proof. The condition, $x * x=0$ for all $x \in \mathbb{R}$, implies $|\operatorname{tr}(*, \lambda)|<\infty$. The conclusion follows from Theorem 4.3.

Proposition 4.5. Let $a, b, c, d, e, f \in \mathbb{R}$. Define a binary operation " $*$ " on \mathbb{R} by

$$
x * y:=a x^{2}+b x y+c y^{2}+d x+e y+f
$$

for all $x, y \in \mathbb{R}$. If $|\operatorname{tr}(*, \lambda)|<\infty$ and the anti-symmetry law holds for "*", then $(a x-c y+d)^{2}+(a y-c x+d)^{2}>0$ for $x \neq y$.

Proof. If $|t r(*, \lambda)|<\infty$, then by (4.1) we obtain $x * y=(a x-c y+d)(x-y)$. Assume the anti-symmetry law holds for " $*$ ". Then either $x * y \neq 0$ or $y * x \neq 0$ for $x \neq y$. It follows that $(x * y)^{2}>0$ or $(y * x)^{2}>0$, and hence $(x * y)^{2}+$ $(y * x)^{2}>0$. This shows that $(a x-c y+d)^{2}+(a y-c x+d)^{2}>0$.

Note that in Proposition 4.5 it is clear that if $(a x-c y+d)^{2}+(a y-c x+d)^{2}>0$ for $x \neq y$, then the anti-symmetry law holds.

Corollary 4.6. If we define $x * y:=a x(x-y)$ for all $x, y \in \mathbb{R}$ where $a \neq 0$, then $(\mathbb{R}, *)$ is a d-algebra.

Proof. It is easy to see that $x * x=0=0 * x$ for all $x \in \mathbb{R}$. Assume that $x \neq y$. Since $x * y=a x(x-y)=a x^{2}-a x y$, by applying Proposition 4.5, we obtain $b=-a, c=0, d=e=f=0$. It follows that $(a x-0 y+0)^{2}+(a y-0 x+0)^{2}=$ $a^{2} x^{2}+a^{2} y^{2}=a^{2}\left(x^{2}+y^{2}\right)>0$ when $a \neq 0$. By Proposition $4.5,(\mathbb{R}, *)$ is a d-algebra.

Proposition 4.7. Let $a, b, c, d, e, f \in \mathbb{R}$. Define a binary operation "*" on \mathbb{R} by

$$
x * y:=a x^{2}+b x y+c y^{2}+d x+e y+f
$$

for all $x, y \in \mathbb{R}$. If $|\operatorname{tr}(*, \lambda)|<\infty$ and $x * 0=x$ for all $x \in \mathbb{R}$, then $x * y=$ $(1-c y)(x-y)$ for all $x, y \in \mathbb{R}$.

Proof. If $|\operatorname{tr}(*, \lambda)|<\infty$, then by (4.1) we obtain $x * y=(a x-c y+d)(x-y)$ for all $x, y \in \mathbb{R}$. If we let $y:=0$, then $x=x * 0=(a x+d) x$. It follows that $a x^{2}+(d-1) x=0$ for all $x \in \mathbb{R}$. This shows that $a=0, d=1$. Hence $x * y=(1-c y)(x-y)$ for all $x, y \in \mathbb{R}$.

Theorem 4.8. If we define $x * y:=(a x-c y+d)(x-y)$ for all $x, y \in \mathbb{R}$ where $a, c, d \in \mathbb{R}$ with $a+c \neq 0$, then the anti-symmetry law holds.

Proof. Assume that there exist $x \neq y$ in \mathbb{R} such that $x * y=0=y * x$. Then $(a x-c y+d)(x-y)=0$ and $(a y-c x+d)(y-x)=0$. Since $x \neq y$, we have

$$
\begin{equation*}
a x-c y+d=0=a y-c x+d \tag{4.2}
\end{equation*}
$$

It follows that $(a+c)(x-y)=0$. Since $a+c \neq 0$, we obtain $x=y$, a contradiction.

Remark 4.9. The analytic algebra $(\mathbb{R}, *), x * y=a x(x-y)$ for all $x, y \in \mathbb{R}$, was proved to be a d-algebra in Corollary 4.6 by using Proposition 4.5. Since $x * y=a x(x-y)=(a x-0 y+0)(x-y)$, we know that $a+0=a \neq 0$. Hence the algebra $(\mathbb{R}, *)$ can be proved by using Theorem 4.8 also.

Note that the analytic real algebra $(\mathbb{R}, *)$ discussed in Corollary 4.6 need not be an edge d-algebra, since $x * 0=a x(x-0)=a x^{2} \neq x$.

4.2 Analytic real algebras with functions

Let $\alpha, \beta: \mathbb{R} \rightarrow \mathbb{R}$ be real-valued functions. Define a binary operation " \star " on \mathbb{R} by

$$
\begin{equation*}
x \star y:=\alpha(x) x+\beta(y) y+c \tag{4.3}
\end{equation*}
$$

where $c \in \mathbb{R}$.

Proposition 4.10. Let (\mathbb{R}, \star) be an analytic real algebra defined by (4.3). If $x \star x=0=0 \star x$ for all $x \in \mathbb{R}$, then $x \star y=0$ for all $x, y \in \mathbb{R}$.

Proof. Assume that $x \star x=0$ for all $x \in \mathbb{R}$. Then

$$
\begin{aligned}
0 & =x \star x \\
& =\alpha(x) x+\beta(x) x+c \\
& =[\alpha(x)+\beta(x)] x+c
\end{aligned}
$$

If we let $x:=0$, then $c=0$. If $x \neq 0$, then $\alpha(x)+\beta(x)=0$, i.e., $\beta(x)=-\alpha(x)$ for all $x \neq 0$ in \mathbb{R}. It follows that

$$
\begin{equation*}
x \star y=\alpha(x) x-\alpha(y) y \tag{4.4}
\end{equation*}
$$

Assume $0 \star x=0$ for all $x \in \mathbb{R}$. Then

$$
\begin{aligned}
0 & =0 \star x \\
& =\alpha(0) 0+\beta(x) x+c \\
& =\beta(x) x .
\end{aligned}
$$

It follows that $\beta(x)=0$ for all $x \neq 0$ in \mathbb{R}. Hence we have $x \star y=0$ for all $x, y \in \mathbb{R}$.

Proposition 4.11. Let (\mathbb{R}, \star) be an analytic real algebra defined by (4.3). If $x \star x=0$ and $x \star 0=x$ for all $x \in \mathbb{R}$, then $x \star y=x-y$ for all $x, y \in \mathbb{R}$.

Proof. If we assume $x \star x=0$ for all $x \in \mathbb{R}$, then by (4.4) we obtain $x \star y=$ $\alpha(x) x-\alpha(y) y$. Assume that $x \star 0=x$ for all $x \in \mathbb{R}$. Then $x=x \star 0=$ $\alpha(x) x-\alpha(0) 0=\alpha(x) x$. This shows that $\alpha(x)=1$ for any $x \neq 0$ in \mathbb{R}. Hence $x \star y=x-y$ for all $x, y \in \mathbb{R}$.

Let $a, b_{1}, b_{2}, c, d, e: \mathbb{R} \rightarrow \mathbb{R}$ be real-valued functions and let $f \in \mathbb{R}$. Define a binary operation " \star " on \mathbb{R} by

$$
\begin{equation*}
x \star y:=a(x) x^{2}+b_{1}(x) b_{2}(y) x y+c(y) y^{2}+d(x) x+e(y) y+f \tag{4.5}
\end{equation*}
$$

for all $x, y \in \mathbb{R}$. Assume $0 \star x=0$ for all $x \in \mathbb{R}$. Then

$$
\begin{aligned}
0 & =0 \star x \\
& =c(x) x^{2}+e(x) x+f \\
& =[c(x) x+e(x)] x+f
\end{aligned}
$$

for all $x \in \mathbb{R}$. It follows that $f=0$ and $c(x) x+e(x)=0$ for all $x \neq 0$ in \mathbb{R}. Hence $c(y) y^{2}+e(y) y=0$ for all $y \in \mathbb{R}$. Hence

$$
\begin{equation*}
x \star y=a(x) x^{2}+b_{1}(x) b_{2}(y) x y+d(x) x . \tag{4.6}
\end{equation*}
$$

Assume $x \star x=0$ for all $x \in \mathbb{R}$. Then by (4.6) we obtain

$$
\begin{aligned}
0 & =x \star x \\
& =a(x) x^{2}+b_{1}(x) b_{2}(x) x^{2}+d(x) x .
\end{aligned}
$$

It follows that $d(x) x=-\left[a(x) x^{2}+b_{1}(x) b_{2}(x) x^{2}\right]$. By (4.6) we obtain

$$
\begin{equation*}
x \star y=b_{1}(x) x\left[b_{2}(y) y-b_{2}(x) x\right] . \tag{4.7}
\end{equation*}
$$

Theorem 4.12. Let $b_{1}, b_{2}: \mathbb{R} \rightarrow \mathbb{R}$ be real-valued functions. Define a binary operation " \star " on \mathbb{R} as in (4.7). If we assume $b_{2}(x) x \neq b_{2}(y) y$ and $b_{1}^{2}(x) x^{2}+$ $b_{1}^{2}(y) y^{2}>0$ for any $x \neq y$ in \mathbb{R}, then (\mathbb{R}, \star) is a d-algebra.

Proof. Assume the anti-symmetry law holds. Then it is equivalent to that if $x \neq y$ then $x \star y \neq 0$ or $y \star x \neq 0$, i.e., if $x \neq y$ then $(x \star y)^{2}+(y \star x)^{2}>0$. Since $x \star y$ is defined by (4.7), we obtain that if $x \neq y$ then

$$
\left(b_{1}^{2}(x) x^{2}+b_{1}^{2}(y) y^{2}\right)\left(b_{2}(x) x-b_{2}(y) y\right)^{2}>0 .
$$

By assumption, we obtain that (\mathbb{R}, \star) is a d-algebra.

Example 4.13. Consider $x \star y:=a x(x-y)$ for all $x, y \in \mathbb{R}$. If we compare it with (4.7), then we have $b_{1}(x)=a, b_{2}(y)=-1$ and $b_{2}(x)=-1$ for all $x \in \mathbb{R}$. This shows that $b_{2}(x) x-b_{2}(y) y=(-1) x-(-1) y=y-x \neq 0$ when $x \neq y$. Moreover, $b_{1}^{2}(x) x^{2}+b_{1}^{2}(y) y^{2}=a^{2} x^{2}+b_{1}^{2}(y) y^{2}>0$ since $a \neq 0$. By applying Theorem 4.12, we see that an analytic real algebra (\mathbb{R}, \star) where $x \star y:=a x(x-y)$, $a \neq 0$ is a d-algebra.

Example 4.14. Consider $x \star y:=x \tan 2 x\left[e^{y} y-e^{x} x\right]$ for all $x, y \in \mathbb{R}$. By comparing it with (4.7), we obtain $b_{1}(x)=\tan 2 x, b_{2}(y)=e^{y}$ and $b_{2}(x)=$ e^{x}. If $x \neq y$, then it is easy to see that $x e^{x} \neq y e^{y}$ and $b_{1}^{2}(x) x^{2}+b_{1}^{2}(y) y^{2}=$ $(\tan 2 x)^{2} x^{2}+(\tan 2 y)^{2} y^{2}>0$ when $x \neq y$. Hence an analytic real algebra (\mathbb{R}, \star) where $x \star y:=x \tan 2 x\left[e^{y} y-e^{x} x\right]$ is a d-algebra by Theorem 4.12.

In Theorem 4.12, we obtained some conditions for analytic real algebras to be d-algebras. In addition, we construct an edge d-algebra from Theorem 4.12 as follows.

Theorem 4.15. If define a binary operation " \star " on \mathbb{R} by

$$
x \star y:= \begin{cases}x\left[1-\frac{b_{1}(x)}{b_{1}(y)}\right] & \text { if } y \neq 0 \\ x & \text { otherwise }\end{cases}
$$

where $b_{1}(x)$ is a real-valued function such that $b_{1}(y) \neq 0$ if $y \neq 0$, then (\mathbb{R}, \star) is an edge d-algebra.

Proof. Define a binary operation " \star " on \mathbb{R} as in (4.7) with additional conditions: $b_{2}(x) x \neq b_{2}(y) y$ and $b_{1}^{2}(x) x^{2}+b_{1}^{2}(y) y^{2}>0$ for any $x \neq y$ in \mathbb{R}. Assume $x \star 0=x$ for all $x \in \mathbb{R}$. Then

$$
\begin{aligned}
x & =x \star 0 \\
& =b_{1}(x) x\left[b_{2}(0) 0-b_{2}(x) x\right] \\
& =-b_{1}(x) b_{2}(x) x^{2} .
\end{aligned}
$$

Combining with (4.7) we obtain

$$
x \star y=b_{1}(x) b_{2}(y) x y-b_{1}(x) b_{2}(x) x^{2}
$$

$$
\begin{aligned}
& =b_{1}(x) b_{2}(y) x y+x \\
& =x\left[b_{1}(x) b_{2}(y) y+1\right] .
\end{aligned}
$$

If we let $x y \neq 0$, then

$$
\begin{aligned}
x \star y & =x\left[b_{1}(x)\left(-\frac{1}{b_{1}(y)}\right)+1\right] \\
& =x\left[1-\frac{b_{1}(x)}{b_{1}(y)}\right]
\end{aligned}
$$

If we let $x \star y:=x$ when $y=0$, then (\mathbb{R}, \star) is an edge d-algebra.

Example 4.16. Define a map $b_{1}(x):=e^{\lambda x}$ for all $x \in \mathbb{R}$. Then $x \star y=$ $x\left[1-\frac{e^{\lambda x}}{e^{\lambda y}}\right]=x\left(1-e^{\lambda(x-y)}\right)$ when $y \neq 0$. If we define a binary operation " \star " on \mathbb{R} by

$$
x \star y:=\left\{\begin{array}{lc}
x\left[1-e^{\lambda(x-y)}\right] & \text { if } y \neq 0 \\
x & \text { otherwise }
\end{array}\right.
$$

then (\mathbb{R}, \star) is an edge d-algebra.

Proposition 4.17. Suppose that we define a binary operation " \star " on \mathbb{R} by

$$
x \star y:=\left\{\begin{array}{lc}
x\left[1-\frac{b_{1}(x)}{b_{1}(y)}\right] & \text { if } y \neq 0, \\
x & \text { otherwise }
\end{array}\right.
$$

where $b_{1}(x)$ is a real-valued function such that $b_{1}(y) \neq 0$ if $y \neq 0$. Assume that if $x \neq y$, then either $b_{1}(x \star y)=b_{1}(x)$ or $b_{1}(x \star(x \star y))=b_{1}(y)$. Then

$$
\begin{equation*}
(x \star(x \star y)) \star y=0 \tag{4.8}
\end{equation*}
$$

for all $x, y \in \mathbb{R}$.

Proof. By Theorem $4.15(\mathbb{R}, \star)$ is an edge d-algebra and hence (4.8) holds for $x \star y=0$ or $y=0$. Assume $x \star y \neq 0$ and $y \neq 0$. Then

$$
x \star(x \star y)=x\left[1-\frac{b_{1}(x)}{b_{1}(x \star y)}\right] .
$$

It follows that

$$
\begin{aligned}
(x \star(x \star y)) \star y & =[x \star(x \star y)]\left[1-\frac{b_{1}(x \star(x \star y))}{b_{1}(y)}\right] \\
& =x\left[1-\frac{b_{1}(x)}{b_{1}(x \star y)}\right]\left[1-\frac{b_{1}(x \star(x \star y))}{b_{1}(y)}\right] \\
& =0
\end{aligned}
$$

proving the proposition.

5. Smarandache fuzzy ideals in $B C I$-algebras

In this chapter, we discuss a Smarandache fuzzy structure on $B C I$-algebras and introduce the notion of a Smarandache fuzzy subalgebra (ideal) of a Smarandache BCI-algebra, a Smarandache fuzzy clean (fresh) ideal of a Smarandache $B C I$-algebra are introduced, and we investigate their properties.

5.1 Smarandache fuzzy ideals

Definition 5.1. Let X be a Smarandache $B C I$-algebra. A map $\mu: X \rightarrow[0,1]$ is called a Smarandache fuzzy subalgebra of X if it satisfies
$\left(S F_{1}\right) \mu(0) \geq \mu(x)$ for all $x \in P$,
$\left(S F_{2}\right) \mu(x * y) \geq \min \{\mu(x), \mu(y)\}$ for all $x, y \in P$,
where $P \subsetneq X, P$ is a $B C K$-algebra with $|P| \geq 2$. A map $\mu: X \rightarrow[0,1]$ is called a Smarandache fuzzy ideal of X if it satisfies $\left(S F_{1}\right)$ and $\left(F_{2}\right) \mu(x) \geq$ $\min \{\mu(x * y), \mu(y)\}$ for all $x, y \in P$, where $P \subsetneq X, P$ is a $B C K$-algebra with $|P| \geq 2$. This Smarandache fuzzy subalgebra (ideal) is denoted by μ_{P}, i.e., $\mu_{P}: P \rightarrow[0,1]$ is a fuzzy subalgebra (ideal) of X.

Example 5.2. ([8]) Let $X:=\{0,1,2,3,4,5\}$ be a Smarandache $B C I$-algebra with the following table:

$*$	0	1	2	3	4	5
0	0	0	0	3	3	3
1	1	0	1	3	3	3
2	2	2	0	3	3	3
3	3	3	3	0	0	0
4	4	3	4	1	0	0
5	5	3	5	1	1	0

Define a map $\mu: X \rightarrow[0,1]$ by

$$
\mu(x):= \begin{cases}0.5 & \text { if } x \in\{0,1,2,3\} \\ 0.7 & \text { otherwise }\end{cases}
$$

Clearly μ is a Smarandache fuzzy subalgebra of X. It is verified that μ restricted to a subset $\{0,1,2,3\}$ which is a subalgebra of X is a fuzzy subalgebra of X, i.e., $\mu_{\{0,1,2,3\}}:\{0,1,2,3\} \rightarrow[0,1]$ is a fuzzy subalgebra of X. Thus $\mu: X \rightarrow[0,1]$ is a Smarandache fuzzy subalgebra of X. Note that $\mu: X \rightarrow[0,1]$ is not a fuzzy subalgebra of X, since $\mu(5 * 4)=\mu(1)=0.5 \ngtr \min \{\mu(5), \mu(4)\}=0.7$.

Example 5.3. ([8]) Let $X:=\{0,1,2,3,4,5\}$ be a Smarandache $B C I$-algebra with the following table:

$*$	0	1	2	3	4	5
0	0	0	0	0	4	4
1	1	0	0	1	4	4
2	2	2	0	2	4	4
3	3	3	3	0	4	4
4	4	4	4	4	0	0
5	5	4	4	5	1	0

Define a map $\mu: X \rightarrow[0,1]$ by

$$
\mu(x):= \begin{cases}0.5 & \text { if } x \in\{0,1,2\} \\ 0.7 & \text { otherwise }\end{cases}
$$

Clearly μ is a Smarandache fuzzy ideal of X. It is verified that μ restricted to a subset $\{0,1,2\}$ which is an ideal of X is a fuzzy ideal of X, i.e., $\mu_{\{0,1,2\}}$: $\{0,1,2\} \rightarrow[0,1]$ is a fuzzy ideal of X. Thus $\mu: X \rightarrow[0,1]$ is a Smarandache fuzzy ideal of X. Note that $\mu: X \rightarrow[0,1]$ is not a fuzzy ideal of X, since $\mu(2)=0.5 \ngtr \min \{\mu(2 * 4)=\mu(4), \mu(4)\}=\mu(4)=0.7$.

Lemma 5.4. Every Smarandache fuzzy ideal μ_{P} of a Smarandache BCIalgebra X is order reversing.

Proof. Let P be a $B C I$-algebra with $P \subsetneq X$ and $|P| \geq 2$. If $x, y \in P$ with $x \leq y$, then $x * y=0$. Hence we have $\mu(x) \geq \min \{\mu(x * y), \mu(y)\}=\min \{\mu(0), \mu(y)\}=$ $\mu(y)$.

Theorem 5.5. Every Smarandache fuzzy ideal μ_{P} of a Smarandache BCIalgebra X is a Smarandache fuzzy subalgebra of X.

Proof. Let P be a $B C I$-algebra with $P \subsetneq X$ and $|P| \geq 2$. Since $x * y \leq x$ for any $x, y \in P$, it follows from Lemma 5.4 that $\mu(x) \leq \mu(x * y)$, so by $\left(S F_{2}\right)$ we obtain $\mu(x * y) \geq \mu(x) \geq \min \{\mu(x * y), \mu(y)\} \geq \min \{\mu(x), \mu(y)\}$. This shows that μ is a Smarandache fuzzy subalgebra of X, proving the theorem.

Proposition 5.6. Let μ_{P} be a Smarandache fuzzy ideal of a Smarandache $B C I$-algebra X. If the inequality $x * y \leq z$ holds in P where $B C I$-algebra P with $P \subsetneq X$ and $|P| \geq 2$, then $\mu(x) \geq \min \{\mu(x), \mu(z)\}$ for all $x, y, z \in P$.

Proof. If $x * y \leq z$ in P, then $(x * y) * z=0$. Hence we have $\mu(x * y) \geq$ $\min \{\mu((x * y) * z), \mu(z)\}=\min \{\mu(0), \mu(z)\}=\mu(z)$. It follows that $\mu(x) \geq$ $\min \{\mu(x * y), \mu(y)\} \geq \min \{\mu(y), \mu(z)\}$.

Theorem 5.7. Let X be a Smarandache BCI-algebra. A Smarandache fuzzy subalgebra μ_{P} of X is a Smarandache fuzzy ideal of X if and only if for all $x, y \in P$ where $B C I$-algebra P with $P \subsetneq X$ and $|P| \geq 2$, the inequality $x * y \leq z$ implies $\mu(x) \geq \min \{\mu(y), \mu(z)\}$.

Proof. Suppose that μ_{P} is a Smarandache fuzzy subalgebra of X satisfying the condition $x * y \leq z$ implies $\mu(x) \geq \min \{\mu(y), \mu(z)\}$. Since $x *(x * y) \leq y$ for all $x, y \in P$, it follows that $\mu(x) \geq \min \{\mu(x * y), \mu(y)\}$. Hence μ_{P} is a Smarandache fuzzy ideal of X. The converse follows from Proposition 5.6.

5.2 Smarandache fuzzy clean ideals

Definition 5.8. Let X be a Smarandache $B C I$-algebra. A map $\mu: X \rightarrow[0,1]$ is called a Smarandache fuzzy clean ideal of X if it satisfies $\left(S F_{1}\right)$ and $\left.\left(S F_{3}\right) \mu(x) \geq \min \{\mu(x *(y * x)) * z), \mu(z)\right\}$ for all $x, y, z \in P$, where $P \subsetneq X$ and P is a $B C K$-algebra with $|P| \geq 2$. This Smarandache fuzzy clean ideal is denoted by μ_{P}, i.e., $\mu_{P}: P \rightarrow[0,1]$ is a Smarandache fuzzy clean ideal of X.

Example 5.9. ([9]) Let $X:=\{0,1,2,3,4,5\}$ be a Smarandache $B C I$-algebra with the following table:

$*$	0	1	2	3	4	5
0	0	0	0	0	0	5
1	1	0	0	0	0	5
2	2	1	0	1	0	5
3	3	4	4	4	0	5
4	4	4	4	4	0	5
5	5	5	5	5	5	0

Define a map $\mu: X \rightarrow[0,1]$ by

$$
\mu(x):= \begin{cases}0.4 & \text { if } x \in\{0,1,2,3\} \\ 0.8 & \text { otherwise }\end{cases}
$$

Clearly μ is a Smarandache fuzzy clean ideal of X, but μ is not a fuzzy clean ideal of X, since $\mu(3)=0.4 \ngtr \min \{\mu((3 *(0 * 3)) * 5), \mu(5)\}=\min \{\mu(5), \mu(5)\}=$ $\mu(5)=0.8$.

Theorem 5.10. Let X be a Smarandache BCI-algebra. Every Smarandache fuzzy clean ideal μ_{P} of X is a Smarandache fuzzy ideal of X.

Proof. Let X be a $B C I$-algebra with $P \subsetneq X$ and $|P| \geq 2$. Let $\mu_{P}: P \rightarrow[0,1]$ be a Smarandache fuzzy clean ideal of X. If we let $y:=x$ in $\left(S F_{3}\right)$, then $\mu(x) \geq$ $\min \{\mu((x *(x * x)) * z), \mu(z)\}=\min \{\mu((x * 0) * z), \mu(z)\}=\min \{\mu(x * z), \mu(z)\}$, for all $x, y, z \in P$. This shows that μ satisfies $\left(S F_{2}\right)$. Combining $\left(S F_{1}\right)$, we get μ_{P} is a Smarandache fuzzy ideal of X, proving the theorem.

Corollary 5.11. Every Smarandache fuzzy clean ideal μ_{P} of a Smarandache $B C I$-algebra X is a Smarandache fuzzy subalgebra of X.

Proof. It follows from Theorem 5.5 and Theorem 5.10.

Example 5.12. Let $X:=\{0,1,2,3,4,5\}$ be a Smarandache $B C I$-algebra with the following table:

$*$	0	1	2	3	4	5
0	0	0	0	0	0	5
1	1	0	1	0	0	5
2	2	2	0	0	0	5
3	3	3	3	0	0	5
4	4	3	4	1	0	5
5	5	5	5	5	5	0

Let μ_{P} be a fuzzy set in $P=\{0,1,2,3,4\}$ defined by $\mu(0)=\mu(2)=0.8$ and $\mu(1)=\mu(3)=\mu(4)=0.3$. It is easy to check that μ_{P} is a fuzzy ideal of X. Hence $\mu: X \rightarrow[0,1]$ is a Smarandache fuzzy ideal of X. But it is not a Smarandache fuzzy clean ideal of X since $\mu(1)=0.3 \ngtr \min \{\mu((1 *(3 * 1)) *$ $2), \mu(2)\}=\min \{\mu(0), \mu(2)\}=0.8$.

Theorem 5.13. Let X be a Smarandache implicative BCI-algebra. Every Smarandache fuzzy ideal μ_{P} of X is a Smarandache fuzzy clean ideal of X.

Proof. Let P be a $B C I$-algebra with $P \subsetneq X$ and $|P| \geq 2$. Since X is a Smarandache implicative $B C I$-algebra, we have $x=x *(y * x)$ for all $x, y \in P$. Let μ_{P} be a Smarandache fuzzy ideal of X. It follows from $\left(S F_{2}\right)$ that $\mu(x) \geq$ $\min \{\mu(x * z), \mu(z)\} \geq \min \{\mu((x *(y * x)) * z), \mu(z)\}$, for all $x, y, z \in P$. Hence μ_{P} is a Smarandache clean ideal of X. The proof is complete.

In what follows, we give characterizations of fuzzy implicative ideals.

Theorem 5.14. Let X be a Smarandache BCI-algebra. Suppose that μ_{P} is a Smarandache fuzzy ideal of X. Then the following equivalent:
(i) μ_{P} is Smarandache fuzzy clean,
(ii) $\mu(x) \geq \mu(x *(y * x))$ for all $x, y \in P$,
(iii) $\mu(x)=\mu(x *(y * x))$ for all $x, y \in P$.

Proof. (i) \Rightarrow (ii): Let μ_{P} be a Smarandache fuzzy clean ideal of X. It follows from $\left(S F_{3}\right)$ that $\mu(x) \geq \min \{\mu((x *(y * x)) * 0), \mu(0)\}=\min \{\mu(x *(y *$ $x)), \mu(0)\}=\mu(x *(y * x))$, for all $x, y \in P$. Hence the condition (ii) holds.
(ii) \Rightarrow (iii): Since X is a Smarandache $B C I$-algebra, we have $x *(y * x) \leq x$ for all $x, y \in P$. It follows from Lemma 5.4 that $\mu(x) \leq \mu(x *(y * x))$. By (ii), $\mu(x) \geq \mu(x *(y * x))$. Thus the condition (iii) holds.
(iii) \Rightarrow (i): Suppose that the condition (iii) holds. Since μ_{P} is a Smarandache fuzzy ideal, by $\left(S F_{2}\right)$, we have $\mu(x *(y * x)) \geq \min \{\mu((x *(y * x)) * z), \mu(z)\}$. By assumption, we obtain $\mu(x) \geq \min \{\mu((x *(y * x)) * z), \mu(z)\}$. Hence μ satisfies the condition $\left(S F_{3}\right)$. Obviously, μ satisfies $\left(S F_{1}\right)$. Therefore μ is a fuzzy clean ideal of X. Hence the condition (i) holds. The proof is complete.

For any fuzzy sets μ and ν in X, we write $\mu \leq \nu$ if and only if $\mu(x) \leq \nu(x)$ for any $x \in X$.

Definition 5.15. Let X be a Smarandache $B C I$-algebra and let $\mu_{P}: P \rightarrow[0,1]$ be a Smarandache fuzzy $B C I$-algebra of X. For $t \leq \mu(0)$, the set $\mu_{t}:=\{x \in$ $P \mid \mu(x) \geq t\}$ is called a level subset of μ_{P}.

Theorem 5.16. A fuzzy set μ in P is a Smarandache fuzzy clean ideal of X if and only if, for all $t \in[0,1], \mu_{t}$ is either empty or a Smarandache clean ideal of X.

Proof. Suppose that μ_{P} is a Smarandache fuzzy clean ideal of X and $\mu_{t} \neq \emptyset$ for any $t \in[0,1]$. It is clear that $0 \in \mu_{t}$ since $\mu(0) \geq t$. Let $\mu((x *(y * x)) * z) \geq t$ and $\mu(z) \geq t$. It follows from $\left(S F_{3}\right)$ that $\mu(x) \geq \min \{\mu((x *(y * x)) * z)$, $\mu(z)\} \geq t$, namely, $x \in \mu_{t}$. This shows that μ_{t} is a Smarandache clean ideal of X.

Conversely, assume that for each $t \in[0,1], \mu_{t}$ is either empty or a Smarandache clean ideal of X. For any $x \in P$, let $\mu(x)=t$. Then $x \in \mu_{t}$. Since $\mu_{t}(\neq \emptyset)$ is a Smarandache clean ideal of $X, 0 \in \mu_{t}$ and hence $\mu(0) \geq \mu(x)=t$. Thus $\mu(0) \geq \mu(x)$ for all $x \in P$. Now we show that μ satisfies $\left(S F_{3}\right)$. If not,
then there exist $x^{\prime}, y^{\prime}, z^{\prime} \in P$ such that $\mu\left(x^{\prime}\right)<\min \left\{\mu\left(\left(x^{\prime} *\left(y^{\prime} * z^{\prime}\right)\right) * z^{\prime}\right), \mu\left(z^{\prime}\right)\right\}$. Taking $t_{0}:=\frac{1}{2}\left\{\mu\left(x^{\prime}\right)+\min \left\{\mu\left(\left(x^{\prime} *\left(y^{\prime} * z^{\prime}\right)\right) * z^{\prime}\right), \mu\left(z^{\prime}\right)\right\}\right\}$, we have $\mu\left(x^{\prime}\right)<t_{0}<$ $\min \left\{\mu\left(\left(x^{\prime} *\left(y^{\prime} * z^{\prime}\right)\right) * z^{\prime}\right), \mu\left(z^{\prime}\right)\right\}$. Hence $x^{\prime} \notin \mu_{t_{0}},\left(x^{\prime} *\left(y^{\prime} * x^{\prime}\right)\right) * z \in \mu_{t_{0}}$, and $z^{\prime} \in \mu_{t_{0}}$, i.e., $\mu_{t_{0}}$ is not a Smarandache clean of X, which is a contradiction. Therefore, μ_{P} is a Smarandache fuzzy clean ideal, completing the proof.

Theorem 5.17. ([9]) (Extension Property) Let X be a Smarandache BCIalgebra. Let I and J be Q-Smarandache ideals of X and $I \subseteq J \subseteq Q$. If I is a Q-Smarandache clean ideal of X, then so is J.

Next we give the extension theorem of Smarandache fuzzy clean ideals.

Theorem 5.18. Let X be a Smarandache BCI-algebra. Let μ and ν be Smarandache fuzzy ideals of X such that $\mu \leq \nu$ and $\mu(0)=\nu(0)$. If μ is a Smarandache fuzzy clean ideal of X, then so is ν.

Proof. It suffices to show that for any $t \in[0,1], \nu_{t}$ is either empty or a Smarandache clean ideal of X. If the level subset ν_{t} is non-empty, then $\mu_{t} \neq \emptyset$ and $\mu_{t} \subseteq \nu_{t}$. In fact, if $x \in \mu_{t}$, then $t \leq \mu(x)$; hence $t \leq \nu(x)$, i.e, $x \in \nu_{t}$. So $\mu_{t} \subseteq \nu_{t}$. By the hypothesis, since μ is a Smarandache fuzzy clean ideal of X, μ_{t} is a Smarandache clean of X by Theorem 5.16. It follows from Theorem 5.17 that ν_{t} is a Smarandache clean ideal of X. Hence ν is a Smarandache fuzzy clean of X. The proof is complete.

5.3 Smarandache fuzzy fresh ideals

Definition 5.19. Let X be a Smarandache $B C I$-algebra. A map $\mu: X \rightarrow[0,1]$ is called a Smarandache fuzzy fresh ideal of X if it satisfies $\left(S F_{1}\right)$ and $\left(S F_{4}\right) \mu(x * z) \geq \min \{\mu((x * y) * z), \mu(y * z)\}$ for all $x, y, z \in P$,
where P is a $B C K$-algebra with $P \subsetneq X$ and $|P| \geq 2$. This Smarandache fuzzy ideal is denoted by μ_{P}, i.e., $\mu_{P}: P \rightarrow[0,1]$ is a Smarandache fuzzy fresh ideal of X.

Example 5.20. ([9]) Let $X:=\{0,1,2,3,4,5\}$ be a Smarandache $B C I$-algebra with the following table:

$*$	0	1	2	3	4	5
0	0	0	0	0	0	5
1	1	0	1	0	1	5
2	2	2	0	2	0	5
3	3	1	3	0	3	5
4	4	4	4	4	0	5
5	5	5	5	5	5	0

Define a map $\mu: X \rightarrow[0,1]$ by

$$
\mu(x):= \begin{cases}0.5 & \text { if } x \in\{0,1,3\} \\ 0.9 & \text { otherwise }\end{cases}
$$

Clearly μ is a Smarandache fuzzy fresh ideal of X. But it is not a fuzzy fresh ideal of X, since $\mu(2 * 4)=\mu(0)=0.5 \ngtr \min \{\mu((2 * 5) * 4), \mu(5 * 4)\}=\mu(5)=$ 0.9 .

Theorem 5.21. Every Smarandache fuzzy fresh ideal of a Smarandache BCIalgebra X is a Smarandache fuzzy ideal of X.

Proof. Taking $z:=0$ in $\left(S F_{4}\right)$ and $x * 0=x$, we have $\mu(x * 0) \geq \min \{\mu((x *$ $y) * 0), \mu(y * 0)\}$. Hence $\mu(x) \geq \min \{\mu(x * y), \mu(y)\}$. Thus $\left(S F_{2}\right)$ holds.

The converse of Theorem 5.21 need not be true in general.

Example 5.22. ([9]) Let $X:=\{0,1,2,3,4,5\}$ be a Smarandache $B C I$-algebra with the following table:

$*$	0	1	2	3	4	5
0	0	0	0	0	0	5
1	1	0	0	0	1	5
2	2	1	0	1	2	5
3	3	1	1	0	3	5
4	4	4	4	4	0	5
5	5	5	5	5	5	0

Define a map $\mu: X \rightarrow[0,1]$ by

$$
\mu(x):= \begin{cases}0.5 & \text { if } x \in\{0,4\} \\ 0.4 & \text { otherwise }\end{cases}
$$

Clearly $\mu(x)$ is a Smarandache fuzzy ideal of X. But $\mu(x)$ is not a Smarandache fuzzy fresh ideal of X, since $\mu(2 * 3)=\mu(1)=0.4 \ngtr \min \{\mu((2 * 1) * 3)$, $\mu(1 * 3)\}=\min \{\mu(1 * 3), \mu(0)\}=\mu(0)=0.5$.

Proposition 5.23. Let X be a Smarandache $B C I$-algebra. A Smarandache fuzzy ideal μ_{P} of X is a Smarandache fuzzy fresh ideal of X if and only if it satisfies the condition $\mu(x * y) \geq \mu((x * y) * y)$ for all $x, y \in P$.

Proof. Assume that μ_{P} is a Smarandache fuzzy fresh ideal of X. Putting $z:=y$ in $\left(S F_{4}\right)$, we have $\mu(x * y) \geq \min \{\mu((x * y) * y), \mu(y * y)\}=\min \{\mu((x * y) *$ $y), \mu(0)\}=\mu((x * y) * y)$, for all $x, y \in P$.

Conversely, let μ_{P} be a Smarandache fuzzy ideal of X such that $\mu(x * y) \geq$ $\mu((x * y) * y)$. Since, for all $x, y, z \in P,((x * z) * z) *(y * z) \leq(x * z) * y=$ $(x * y) * z$, we have $\mu((x * y) * z) \leq \mu(((x * z) * z) *(y * z))$. Hence $\mu(x * z) \geq$ $\mu((x * z) * z) \geq \min \{\mu(((x * z) * z) *(y * z)), \mu(y * z)\} \geq \min \{\mu((x * y) * z)$, $\mu(y * z)\}$. This completes the proof.

Since $(x * y) * y \leq x * y$, it follows from Lemma 5.4 that $\mu(x * y) \leq \mu((x * y) * y)$. Thus we have the following theorem.

Theorem 5.24. Let X be a Smarandache BCI-algebra. A Smarandache fuzzy ideal μ_{P} of X is Smarandache fuzzy fresh if and only if it satisfies the equality

$$
\mu(x * y)=\mu((x * y) * y), \quad \text { for all } x, y \in X
$$

We give an equivalent condition for which a Smarandache fuzzy subalgebra of a Smarandache $B C I$-algebra to be a Smarandache fuzzy clean ideal of X.

Theorem 5.25. A Smarandache fuzzy subalgebra μ_{P} of X is a Smarandache fuzzy clean ideal of X if and only if it satisfies

$$
(x *(y * x)) * z \leq u \text { implies } \mu(x) \geq \min \{\mu(z), \mu(u)\} \text { for all } x, y, z, u \in P .(* *)
$$

Proof. Assume that μ_{P} is a Smarandache fuzzy clean ideal of X. Let $x, y, z, u \in$ P be such that $(x *(y * x)) * z \leq u$. Since μ is a Smarandache fuzzy ideal of X, we have $\mu(x *(y * x)) \geq \min \{\mu(z), \mu(u)\}$ by Theorem 5.7. By Theorem 5.14 (iii), we obtain $\mu(x) \geq \min \{\mu(z), \mu(u)\}$.

Conversely, suppose that μ_{P} satisfies ($* *$). Obviously, μ_{P} satisfies ($S F_{1}$), since $(x *(y * x)) *((x *(y * x)) * z) \leq z$, by (\dagger), we obtain $\mu(x) \geq$ $\min \{\mu((x *(y * x)) * z), \mu(z)\}$, which shows that μ_{P} satisfies $\left(S F_{3}\right)$. Hence μ_{P} is a Smarandache fuzzy clean ideal of X. The proof is complete.

References

[1] P. J. Allen, H. S. Kim and J. Neggers, On companion d-algebras, Math. Slovaca 57 (2007), 93-106.
[2] P. J. Allen, H. S. Kim and J. Neggers, Deformations of d/BCK-algebras, Bull. Korean Math. Soc. 48 (2011), 315-324.
[3] J. S. Han, H. S. Kim and J. Neggers, Strong and ordinary d-algebras, J. Mult.-Valued Logic Soft Comput. 16 (2010), 331-339.
[4] A. Iorgulescu, Algebras of logic as $B C K$-algebras, Editura ASE, Bucharest, 2008.
[5] K. Iséki, On BCI-algebras, Math. Sem. Notes Kobe Univ. 8 (1980), 125-130.
[6] K. Iséki and S. Tanaka, An introduction to theory of BCK-algebras, Math. Japonica 23 (1978), 1-26.
[7] Y. B. Jun, Closed fuzzy ideals in BCI-algebras, Math. Japonica 38 (1993), 199-202.
[8] Y. B. Jun, Smarandache BCI-algebras, Math. Japonica 62 (2005), 137-142
[9] Y. B. Jun, Smarandache fresh and clean ideals of Smarandache BCI-algebras, Kyungpook Math. J. 46 (2006), 409-416.
[10] H. S. Kim, J. Neggers and K. S. So, Some aspects of d-units in d/BCK-algebras, J. Appl. Math. 2012 (2012), ID 141684.
[11] Y. C. Lee and H. S. Kim, On d-subalgebras of d-transitive d*-algebras, Math. Slovaca 49 (1999), 27-33.
[12] J. Meng and Y. B. Jun, BCK-algebras, Kyungmoon Sa, Seoul, 1994.
[13] J. Neggers, A. Dvurečenskij and H. S. Kim, On d-fuzzy functions in d-algebras, Found. Phys. 30 (2000), 1807-1816.
[14] J. Neggers, Y. B. Jun and H. S. Kim, On d-ideals in d-algebras, Math. Slovaca 49 (1999), 243-251.
[15] J. Neggers and H. S. Kim, On d-algebras, Math. Slovaca 49 (1999), 19-26.
[16] R. Padilla, Smarandache algebraic structures, Bull. Pure Sci. Delhi, 17E (1998), no.1, 119-121;http://www.gallup.unm.edu/smarandache/alg-s-tx.txt.
[17] H. Yisheng, BCI-algebras, Science Press, Beijing, 2006.

Analytic real algebras

Young Joo Seo ${ }^{1}$ and Young Hee Kim ${ }^{2 *}$

*Correspondence
yhkim@cbnu.ac.kr
${ }^{2}$ Department of Mathematics, Chungbuk National University, Cheongju 28644, Korea Full list of author information is available at the end of the article

Abstract

In this paper we construct some real algebras by using elementary functions, and discuss some relations between several axioms and its related conditions for such functions. We obtain some conditions for real-valued functions to be a (edge) d-algebra.

Keywords: Analytic real algebra, Trace, d-algebra, $B C K$-algebra
Mathematics Subject Classification: 26A09, 06F35

Background

The notions of $B C K$-algebras and $B C I$-algebras were introduced by Iséki and Iséki and Tanaka $(1980,1978)$. The class of $B C K$-algebras is a proper subclass of the class of $B C I-$ algebras. We refer useful textbooks for $B C K$-algebras and $B C I$-algebras (Lorgulescu 2008); Meng and Jun (1994); Yisheng (2006). The notion of d-algebras which is another useful generalization of $B C K$-algebras was introduced by Neggers and Kim (1999), and some relations between d-algebras and $B C K$-algebras as well as several other relations between d-algebras and oriented digraphs were investigated. Several aspects on d-algebras were studied (Allen et al. 2007; Han et al. 2010; Kim et al. 2012; Lee and Kim 1999; Neggers et al. 1999, 2000). Simply d-algebras can be obtained by deleting two identities as a generalization of $B C K$-algebras, but it gives more wide ranges of research areas in algebraic structures. Allen et al. (2007) developed a theory of companion d-algebras in sufficient detail to demonstrate considerable parallelism with the theory of $B C K$-algebras as well as obtaining a collection of results of a novel type. Han et al. (2010) defined several special varieties of d-algebras, such as strong d-algebras, (weakly) selective d-algebras and pre- d-algebras, and they showed that the squared algebra ($X, \square, 0$) of a pre- d-algebra $(X, *, 0)$ is a strong d-algebra if and only if $(X, *, 0)$ is strong. Allen et al. (2011) introduced the notion of deformations in $d / B C K$-algebras. Using such deformations, d-algebras were constructed from $B C K$-algebras. Kim et al. (2012) studied properties of d-units in d-algebras, and they showed that the d-unit is the greatest element in bounded $B C K$-algebras, and it is equivalent to the greatest element in bounded commutative $B C K$-algebras. They obtained several properties related with the notions of weakly associativity, d-integral domain, left injective in d-algebras also.
In this paper we construct some real algebras by using elementary functions, and discuss some relations between several axioms and its related conditions for such functions. We obtain some conditions for real-valued functions to be a (edge) d-algebra.

[^0]
Preliminaries

A d-algebra (Neggers and Kim 1999) is a non-empty set X with a constant 0 and a binary operation " $*$ " satisfying the following axioms:
(I) $\quad x * x=0$,
(II) $0 * x=0$,
(III) $\quad x * y=0$ and $y * x=0$ imply $x=y$ for all $x, y \in X$.

For brevity we also call X a d-algebra. In X we can define a binary relation " \leq " by $x \leq y$ if and only if $x * y=0$.
An algebra $(X, *, 0)$ of type $(2,0)$ is said to be a strong d-algebra (Han et al. 2010) if it satisfies (I), (II) and (III*) hold for all $x, y \in X$, where
(III*) $x * y=y * x$ implies $x=y$.

Obviously, every strong d-algebra is a d-algebra, but the converse need not be true (Han et al. 2010).

Example 1 (Han et al. 2010) Let \mathbf{R} be the set of all real numbers and $e \in \mathbf{R}$. Define $x * y:=(x-y) \cdot(x-e)+e$ for all $x, y \in \mathbf{R}$ where "." and "-" are the ordinary product and subtraction of real numbers. Then $x * x=e ; e * x=e ; x * y=y * x=e$ yields $(x-y) \cdot(x-e)=0,(y-x) \cdot(y-e)=0$ and $x=y$ or $x=e=y$, i.e., $x=y$, i.e., $(\mathbf{R}, *, e)$ is a d-algebra.

However, $(\mathbf{R}, *, e)$ is not a strong d-algebra. If $x * y=y * x \Leftrightarrow(x-y) \cdot(x-e)+e$ $=(y-x) \cdot(y-e)+e \Leftrightarrow(x-y) \cdot(x-e)=-(x-y) \cdot(y-e) \Leftrightarrow(x-y) \cdot(x-e+y-e)$ $=0 \Leftrightarrow(x-y) \cdot(x+y-2 e)=0 \Leftrightarrow(x=y$ or $x+y=2 e)$, then there exist $x=e+\alpha$ and $y=e-\alpha$ such that $x+y=2 e$, i.e., $x * y=y * x$ and $x \neq y$. Hence, axiom (III*) fails and thus the d-algebra $(\mathbf{R}, *, e)$ is not a strong d-algebra.

A BCK-algebra is a d-algebra X satisfying the following additional axioms:
(IV) $\quad((x * y) *(x * z)) *(z * y)=0$,
(V) $\quad(x *(x * y)) * y=0$ for all $x, y, z \in X$.

Example 2 (Neggers et al. 1999) Let $X:=\{0,1,2,3,4\}$ be a set with the following table:

$\boldsymbol{*}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
0	0	0	0	0	0
1	1	0	1	0	1
2	2	2	3	0	
3	3	2	0	3	
4	4	1	1	0	

Then $(X, *, 0)$ is a d-algebra which is not a $B C K$-algebra.

Let X be a d-algebra and $x \in X . X$ is said to be edge if for any $x \in X, x * X=\{x, 0\}$. It is known that if X is an edge d-algebra, then $x * 0=x$ for any $x \in X$ (Neggers et al. 1999).

Analytic real algebras

Let \mathbf{R} be the set of all real numbers and let " \not " be a binary operation on \mathbf{R}. Define a map $\lambda: \mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R}$. If we define $x * y:=\lambda(x, y)$ for all $x, y \in \mathbf{R}$, then we call such a groupoid $(\mathbf{R}, *)$ an analytic real algebra.

Given an analytic groupoid $(\mathbf{R}, *)$, we define

$$
\operatorname{tr}(*, \lambda):=\int_{-\infty}^{\infty} \lambda(x, x) d x
$$

We call $\operatorname{tr}(*, \lambda)$ a trace of λ. Note that the trace $\operatorname{tr}(*, \lambda)$ may or may not converge. Given an analytic groupoid $(\mathbf{R}, *)$, where $x * y:=\lambda(x, y)$, if $x * x=0$ for all $x \in \mathbf{R}$, then $\operatorname{tr}(*, \lambda)=0$, but the converse need not be true in general.

Example 3 Let $x_{0} \in \mathbf{R}$. Define

$$
\lambda(x, x)= \begin{cases}0 & \text { if } x \neq x_{0} \\ 1 & \text { otherwise }\end{cases}
$$

Then $\operatorname{tr}(*, \lambda)=\int_{-\infty}^{\infty} \lambda(x, x) d x=0$, but $\lambda\left(x_{0}, x_{0}\right)=1 \neq 0$, i.e., $x_{0} * x_{0} \neq 0$.
Proposition 4 Let $(\mathbf{R}, *)$ be an analytic real algebra and let $a, b, c \in \mathbf{R}$, where $x * y:=a x+b y+c$ for all $x, y \in \mathbf{R}$. If $|\operatorname{tr}(*, \lambda)|<\infty$, then $\operatorname{tr}(*, \lambda)=0$ and $x * y=a(x-y)$ for all $x, y \in \mathbf{R}$.

Proof Given $x \in \mathbf{R}$, we have $x * x=(a+b) x+c$. Since $|\operatorname{tr}(*, \lambda)|<\infty$, we have $\left|\int_{-\infty}^{\infty}[(a+b) x+c] d x\right|<\infty$.Now $\int_{0}^{A}[(a+b) x+c] d x=(a+b) \frac{A^{2}}{2}+c A=A\left[\frac{a+b}{2} A+c\right]$ for a large number A, so that if $|\operatorname{tr}(*, \lambda)|<\infty$, then $a+b=0$ and $c=0$, i.e., we have $x * y=a(x-y)$, and thus $x * x=0$ for all $x \in \mathbf{R}$.

Theorem 5 Let a, b, c, d,e,f $\in \mathbf{R}$. Define a binary operation " $*$ " on \mathbf{R} by

$$
x * y:=a x^{2}+b x y+c y^{2}+d x+e y+f
$$

for all $x, y \in \mathbf{R} . I f|\operatorname{tr}(*, \lambda)|<\infty$ and $0 * x=0$ for all $x \in \mathbf{R}$, then $x * y=a x(x-y)$ for all $x, y \in \mathbf{R}$.

Proof Given $x \in \mathbf{R}$, we have $x * x=(a+b+c) x^{2}+(d+e) x+f$. Let $A:=a+b+c$, $B:=d+e$. If we assume $|\operatorname{tr}(*, \lambda)|<\infty$, then $\left|\int_{-\infty}^{\infty}\left(A x^{2}+B x+f\right) d x\right|<\infty$. Now $\int_{0}^{L}\left(A x^{2}+B x+f\right) d x=\frac{A}{3} L^{3}+\frac{B}{2} L^{2}+f L=L\left(\frac{A}{3} L^{2}+\frac{B}{2}+f\right)$ for a large number L so that $|\operatorname{tr}(*, \lambda)|<\infty$ implies $A=B=f=0$, i.e., $a+b+c=0, d+e=0, f=0$. It follows that

$$
\begin{equation*}
x * y=(a x-c y+d)(x-y) \tag{1}
\end{equation*}
$$

If we assume $0 * x=0$ for all $x \in \mathbf{R}$, then, by (1), we have

$$
\begin{aligned}
0 & =0 * x \\
& =(a 0-c x+d)(0-x) \\
& =c x^{2}-d x,
\end{aligned}
$$

for all $x \in \mathbf{R}$. This shows that $c=d=0$. Hence $x * y=a x(x-y)$ for all $x, y \in \mathbf{R}$.

Corollary 6 Let a, b, c, d,e,f $\in \mathbf{R}$. Define a binary operation "*" on \mathbf{R} by

$$
x * y:=a x^{2}+b x y+c y^{2}+d x+e y+f
$$

for all $x, y \in \mathbf{R}$. If $x * x=0$ and $0 * x=0$ for all $x \in \mathbf{R}$, then $x * y=a x(x-y)$ for all $x, y \in \mathbf{R}$.

Proof The condition, $x * x=0$ for all $x \in \mathbf{R}$, implies $|\operatorname{tr}(*, \lambda)|<\infty$. The conclusion follows from Theorem 5.

Proposition 7 Let a, $b, c, d, e, f \in \mathbf{R}$. Define a binary operation "*" on \mathbf{R} by

$$
x * y:=a x^{2}+b x y+c y^{2}+d x+e y+f
$$

for all $x, y \in \mathbf{R}$. If $|\operatorname{tr}(*, \lambda)|<\infty$ and the anti-symmetry law holds for "*", then $(a x-c y+d)^{2}+(a y-c x+d)^{2}>0$ for $x \neq y$.

Proof If $|\operatorname{tr}(*, \lambda)|<\infty$, then by (1) we obtain $x * y=(a x-c y+d)(x-y)$. Assume the anti-symmetry law holds for " $*$ ". Then either $x * y \neq 0$ or $y * x \neq 0$ for $x \neq y$. It follows that $(x * y)^{2}>0$ or $(y * x)^{2}>0$, and hence $(x * y)^{2}+(y * x)^{2}>0$. This shows that $(a x-c y+d)^{2}+(a y-c x+d)^{2}>0$.

Note that in Proposition 7 it is clear that if $(a x-c y+d)^{2}+(a y-c x+d)^{2}>0$ for $x \neq y$, then the anti-symmetry law holds.

Corollary 8 If we define $x * y:=a x(x-y)$ for all $x, y \in \mathbf{R}$ where $a \neq 0$, then $(\mathbf{R}, *)$ is a d-algebra.

Proof It is easy to see that $x * x=0=0 * x$ for all $x \in \mathbf{R}$. Assume that $x \neq y$. Since $x * y=a x(x-y)=a x^{2}-a x y$, by applying Proposition 7, we obtain $b=-a, c=0$, $d=e=f=0$. It follows that $\quad(a x-0 y+0)^{2}+(a y-0 x+0)^{2}=a^{2} x^{2}+a^{2} y^{2}$ $=a^{2}\left(x^{2}+y^{2}\right)>0$ when $a \neq 0$. By Proposition $7,(\mathbf{R}, *)$ is a d-algebra.

Proposition 9 Let $a, b, c, d, e, f \in \mathbf{R}$. Define a binary operation "*" on \mathbf{R} by

$$
x * y:=a x^{2}+b x y+c y^{2}+d x+e y+f
$$

for all $x, y \in \mathbf{R}$. If $|\operatorname{tr}(*, \lambda)|<\infty$ and $x * 0=x$ for all $x \in \mathbf{R}$, then $x * y=(1-c y)(x-y)$ for all $x, y \in \mathbf{R}$.

Proof If $|\operatorname{tr}(*, \lambda)|<\infty$, then by (1) we obtain $x * y=(a x-c y+d)(x-y)$ for all $x, y \in \mathbf{R}$. If we let $y:=0$, then $x=x * 0=(a x+d) x$. It follows that $a x^{2}+(d-1) x=0$ for all $x \in \mathbf{R}$. This shows that $a=0, d=1$. Hence $x * y=(1-c y)(x-y)$ for all $x, y \in \mathbf{R}$.

Theorem 10 If we define $x * y:=(a x-c y+d)(x-y)$ for all $x, y \in \mathbf{R}$ where $a, c, d \in \mathbf{R}$ with $a+c \neq 0$, then the anti-symmetry law holds.

Proof Assume that there exist $x \neq y$ in \mathbf{R} such that $x * y=0=y * x$. Then $(a x-c y+d)(x-y)=0$ and $(a y-c x+d)(y-x)=0$. Since $x \neq y$, we have

$$
\begin{equation*}
a x-c y+d=0=a y-c x+d \tag{2}
\end{equation*}
$$

It follows that $(a+c)(x-y)=0$. Since $a+c \neq 0$, we obtain $x=y$, a contradiction.

Remark The analytic algebra $(\mathbf{R}, *), x * y=a x(x-y)$ for all $x, y \in \mathbf{R}$, was proved to be a d-algebra in Corollary 8 by using Proposition 7. Since $x * y=a x(x-y)=(a x-0 y+0)(x-y)$, we know that $a+0=a \neq 0$. Hence the alge$\operatorname{bra}(\mathbf{R}, *)$ can be proved by using Theorem 10 also.

Note that the analytic real algebra $(\mathbf{R}, *)$ discussed in Corollary 8 need not be an edge d-algebra, since $x * 0=a x(x-0)=a x^{2} \neq x$.

Analytic real algebras with functions

Let $\alpha, \beta: \mathbf{R} \rightarrow \mathbf{R}$ be real-valued functions. Define a binary operation " $*$ " on \mathbf{R} by

$$
\begin{equation*}
x * y:=\alpha(x) x+\beta(y) y+c \tag{3}
\end{equation*}
$$

where $c \in \mathbf{R}$.

Proposition 11 Let $(\mathbf{R}, *)$ be an analytic real algebra defined by (3). If $x * x=0=0 * x$ for all $x \in \mathbf{R}$, then $x * y=0$ for all $x, y \in \mathbf{R}$.

Proof Assume that $x * x=0$ for all $x \in \mathbf{R}$. Then

$$
\begin{aligned}
0 & =x * x \\
& =\alpha(x) x+\beta(x) x+c \\
& =[\alpha(x)+\beta(x)] x+c
\end{aligned}
$$

If we let $x:=0$, then $c=0$. If $x \neq 0$, then $\alpha(x)+\beta(x)=0$, i.e., $\beta(x)=-\alpha(x)$ for all $x \neq 0$ in \mathbf{R}. It follows that

$$
\begin{equation*}
x * y=\alpha(x) x-\alpha(y) y \tag{4}
\end{equation*}
$$

Assume $0 * x=0$ for all $x \in \mathbf{R}$. Then

$$
\begin{aligned}
0 & =0 * x \\
& =\alpha(0) 0+\beta(x) x+c \\
& =\beta(x) x
\end{aligned}
$$

It follows that $\beta(x)=0$ for all $x \neq 0$ in \mathbf{R}. Hence we have $x * y=0$ for all $x, y \in \mathbf{R}$.

Proposition 12 Let $(\mathbf{R}, *)$ be an analytic real algebra defined by (3). If $x * x=0$ and $x * 0=x$ for all $x \in \mathbf{R}$, then $x * y=x-y$ for all $x, y \in \mathbf{R}$.

Proof If we assume $x * x=0$ for all $x \in \mathbf{R}$, then by (4) we obtain $x * y=\alpha(x) x-\alpha(y) y$. Assume that $x * 0=x$ for all $x \in \mathbf{R}$. Then $x=x * 0=\alpha(x) x-\alpha(0) 0=\alpha(x) x$. This shows that $\alpha(x)=1$ for any $x \neq 0$ in \mathbf{R}. Hence $x * y=x-y$ for all $x, y \in \mathbf{R}$.

Let $a, b_{1}, b_{2}, c, d, e: \mathbf{R} \rightarrow \mathbf{R}$ be real-valued functions and let $f \in \mathbf{R}$. Define a binary operation " $*$ " on \mathbf{R} by

$$
\begin{equation*}
x * y:=a(x) x^{2}+b_{1}(x) b_{2}(y) x y+c(y) y^{2}+d(x) x+e(y) y+f \tag{5}
\end{equation*}
$$

for all $x, y \in \mathbf{R}$. Assume $0 * x=0$ for all $x \in \mathbf{R}$. Then

$$
\begin{aligned}
0 & =0 * x \\
& =c(x) x^{2}+e(x) x+f \\
& =[c(x) x+e(x)] x+f
\end{aligned}
$$

for all $x \in \mathbf{R}$. It follows that $f=0$ and $c(x) x+e(x)=0$ for all $x \neq 0$ in \mathbf{R}. Hence $c(y) y^{2}+e(y) y=0$ for all $y \in \mathbf{R}$. Hence

$$
\begin{equation*}
x * y=a(x) x^{2}+b_{1}(x) b_{2}(y) x y+d(x) x \tag{6}
\end{equation*}
$$

Assume $x * x=0$ for all $x \in \mathbf{R}$. Then by (6) we obtain

$$
\begin{aligned}
0 & =x * x \\
& =a(x) x^{2}+b_{1}(x) b_{2}(x) x^{2}+d(x) x
\end{aligned}
$$

It follows that $d(x) x=-\left[a(x) x^{2}+b_{1}(x) b_{2}(x) x^{2}\right]$. By (6) we obtain

$$
\begin{equation*}
x * y=b_{1}(x) x\left[b_{2}(y) y-b_{2}(x) x\right] \tag{7}
\end{equation*}
$$

Theorem 13 Let $b_{1}, b_{2}: \mathbf{R} \rightarrow \mathbf{R}$ be real-valued functions. Define a binary operation " $*$ " on \mathbf{R} as in (7). If we assume $b_{2}(x) x \neq b_{2}(y) y$ and $b_{1}^{2}(x) x^{2}+b_{1}^{2}(y) y^{2}>0$ for any $x \neq y$ in \mathbf{R}, then $(\mathbf{R}, *)$ is a d-algebra.

Proof Assume the anti-symmetry law holds. Then it is equivalent to that if $x \neq y$ then $x * y \neq 0$ or $y * x \neq 0$, i.e., if $x \neq y$ then $(x * y)^{2}+(y * x)^{2}>0$. Since $x * y$ is defined by (7), we obtain that if $x \neq y$ then

$$
\left(b_{1}^{2}(x) x^{2}+b_{1}^{2}(y) y^{2}\right)\left(b_{2}(x) x-b_{2}(y) y\right)^{2}>0
$$

By assumption, we obtain that $(\mathbf{R}, *)$ is a d-algebra.

Example 14 Consider $x * y:=a x(x-y)$ for all $x, y \in \mathbf{R}$. If we compare it with (7), then we have $b_{1}(x)=a, b_{2}(y)=-1$ and $b_{2}(x)=-1$ for all $x \in \mathbf{R}$. This shows that $\quad b_{2}(x) x-b_{2}(y) y=(-1) x-(-1) y=y-x \neq 0 \quad$ when $\quad x \neq y$. Moreover, $b_{1}^{2}(x) x^{2}+b_{1}^{2}(y) y^{2}=a^{2} x^{2}+b_{1}^{2}(y) y^{2}>0$ since $a \neq 0$. By applying Theorem 13 , we see that an analytic real algebra $(\mathbf{R}, *)$ where $x * y:=a x(x-y), a \neq 0$ is a d-algebra.

Example 15 Consider $x * y:=x \tan 2 x\left[e^{y} y-e^{x} x\right]$ for all $x, y \in \mathbf{R}$. By comparing it with (7), we obtain $b_{1}(x)=\tan 2 x, b_{2}(y)=e^{y}$ and $b_{2}(x)=e^{x}$. If $x \neq y$, then it is easy to see that $x e^{x} \neq y e^{y}$ and $b_{1}^{2}(x) x^{2}+b_{1}^{2}(y) y^{2}=(\tan 2 x)^{2} x^{2}+(\tan 2 y)^{2} y^{2}>0$ when $x \neq y$.

Hence an analytic real algebra $(\mathbf{R}, *)$ where $x * y:=x \tan 2 x\left[e^{y} y-e^{x} x\right]$ is a d-algebra by Theorem 13.

In Theorem 13, we obtained some conditions for analytic real algebras to be d-algebras. In addition, we construct an edge d-algebra from Theorem 13 as follows.

Theorem 16 If we define a binary operation "*" on \mathbf{R} by

$$
x * y:= \begin{cases}x\left[1-\frac{b_{1}(x)}{b_{1}(y)}\right] & \text { if } y \neq 0 \\ x & \text { otherwise }\end{cases}
$$

where $b_{1}(x)$ is a real-valued function such that $b_{1}(y) \neq 0$ if $y \neq 0$. Then $(\mathbf{R}, *)$ is an edge d-algebra.

Proof Define a binary operation " $*$ " on \mathbf{R} as in (7) with additional conditions: $b_{2}(x) x \neq b_{2}(y) y$ and $b_{1}^{2}(x) x^{2}+b_{1}^{2}(y) y^{2}>0$ for any $x \neq y$ in \mathbf{R}. Assume $x * 0=x$ for all $x \in \mathbf{R}$. Then

$$
\begin{aligned}
x & =x * 0 \\
& =b_{1}(x) x\left[b_{2}(0) 0-b_{2}(x) x\right] \\
& =-b_{1}(x) b_{2}(x) x^{2}
\end{aligned}
$$

Combining with (7) we obtain

$$
\begin{aligned}
x * y & =b_{1}(x) b_{2}(y) x y-b_{1}(x) b_{2}(x) x^{2} \\
& =b_{1}(x) b_{2}(y) x y+x \\
& =x\left[b_{1}(x) b_{2}(y) y+1\right]
\end{aligned}
$$

If we let $x y \neq 0$, then

$$
\begin{aligned}
x * y & =x\left[b_{1}(x)\left(-\frac{1}{b_{1}(y)}\right)+1\right] \\
& =x\left[1-\frac{b_{1}(x)}{b_{1}(y)}\right]
\end{aligned}
$$

If we let $x * y:=x$ when $y=0$, then $(\mathbf{R}, *)$ is an edge d-algebra.
Example 17 Define a map $b_{1}(x):=e^{\lambda x}$ for all $x \in \mathbf{R}$. Then $x * y=x\left[1-\frac{e^{\lambda x}}{e^{\lambda y}}\right]$ $=x\left(1-e^{\lambda(x-y)}\right)$ when $y \neq 0$. If we define a binary operation " $*$ " on \mathbf{R} by

$$
x * y:= \begin{cases}x\left(1-e^{\lambda(x-y)}\right) & \text { if } y \neq 0 \\ x & \text { otherwise }\end{cases}
$$

then $(\mathbf{R}, *)$ is an edge d-algebra.

Proposition 18 If we define a binary operation " $*$ " on \mathbf{R} by

$$
x * y:= \begin{cases}x\left[1-\frac{b_{1}(x)}{b_{1}(y)}\right] & \text { if } y \neq 0, \\ x & \text { otherwise }\end{cases}
$$

where $b_{1}(x)$ is a real-valued function such that $b_{1}(y) \neq 0$ if $y \neq 0$. Assume that if $x \neq y$, then either $b_{1}(x * y)=b_{1}(x)$ or $b_{1}(x *(x * y))=b_{1}(y)$. Then

$$
\begin{equation*}
(x *(x * y)) * y=0 \tag{8}
\end{equation*}
$$

for all $x, y \in \mathbf{R}$.

Proof By Theorem 16, ($\mathbf{R}, *$) is an edge d-algebra and hence (8) holds for $x * y=0$ or $y=0$. Assume $x * y \neq 0$ and $y \neq 0$. Then

$$
x *(x * y)=x\left[1-\frac{b_{1}(x)}{b_{1}(x * y)}\right]
$$

It follows that

$$
\begin{aligned}
(x *(x * y)) \star y & =[x *(x * y)]\left[1-\frac{b_{1}(x *(x * y))}{b_{1}(y)}\right] \\
& =x\left[1-\frac{b_{1}(x)}{b_{1}(x * y)}\right]\left[1-\frac{b_{1}(x *(x * y))}{b_{1}(y)}\right] \\
& =0
\end{aligned}
$$

proving the proposition.

Conclusions

We constructed some algebras on the set of real numbers by using elementary functions. The notions of (edge) d-algebras were developed from BCK-algebras, and widened the range of research areas. It is useful to find linear (quadratic) polynomial real algebras by using the real functions. In "Analytic real algebras" section, we obtained some linear (quadratic) algebras related to some algebraic axioms, and found suitable binary operations for (edge) d-algebras. In "Analytic real algebras with functions" section, we developed the idea of analytic methods, and obtained necessary conditions for the real valued function so that the real algebra is an edge d-algebra. We may apply the analytic method discussed here to several algebraic structures, and it may useful for find suitable conditions to construct several algebraic structures and many examples.

Authors' contributions

All authors read and approved the final manuscript.

Author details

${ }^{1}$ Department of Mathematics, Research Institute for Natural Sci., Hanyang University, Seoul 04763, Korea. ${ }^{2}$ Department of Mathematics, Chungbuk National University, Cheongju 28644, Korea.

Competing interests

The authors declare that they have no competing interests.

References

Allen PJ, Kim HS, Neggers J (2007) On companion d-algebras. Math Slovaca 57:93-106
Allen PJ, Kim HS, Neggers J (2011) Deformations of d/BCK-algebras. Bull Korean Math Soc 48:315-324
Han JS, Kim HS, Neggers N (2010) Strong and ordinary d-algebras. J Mult Valued Log Soft Comput 16:331-339
lorgulescu A (2008) Algebras of logic as BCK-algebras. Editura ASE, Bucharest
Iséki K (1980) On BCI-algebras. Math Semin Notes 8:125-130
Iséki K, Tanaka S (1978) An introduction to theory of BCK-algebras. Math Jpn 23:1-26
Kim HS, Neggers J, So KS (2012) Some aspects of d-units in d/BCK-algebras. J Appl Math ID 141684
Lee YC, Kim HS (1999) On d-subalgebras of d-transitive d^{*}-algebras. Math Slovaca 49:27-33
Meng J, Jun YB (1994) BCK-algebras. Kyungmoon Sa, Seoul
Neggers J, Dvurećenskij A, Kim HS (2000) On d-fuzzy functions in d-algebras. Found Phys 30:1805-1815
Neggers J, Jun YB, Kim HS (1999) On d-ideals in d-algebras. Math Slovaca 49:243-251
Neggers J, Kim HS (1999) On d-algebras. Math Slovaca 49:19-26
Yisheng H (2006) BCl-algebras. Science Press, Beijing

Submit your manuscript to a SpringerOpen ${ }^{\ominus}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at \downarrow springeropen.com

Smarandache fuzzy $B C I$-algebras

Sun Shin Ahn ${ }^{1}$ and Young Joo Seo ${ }^{*, 2}$
${ }^{1}$ Department of Mathematics Education, Dongguk University, Seoul 04620, Korea
${ }^{2}$ Research Institute for Natural Sciences, Department of Mathematics, Hanyang University, Seoul, 04763, Korea

Abstract

The notions of a Smarandache fuzzy subalgebra (ideal) of a Smarandache BCI-algebra, a Smarandache fuzzy clean(fresh) ideal of a Smarandache $B C I$-algebra are introduced. Examples are given, and several related properties are investigated.

1. Introduction

Generally, in any human field, a Smarandache structure on a set A means a weak structure W on A such that there exists a proper subset B of A with a strong structure S which is embedded in A. In [4], R. Padilla showed that Smarandache semigroups are very important for the study of congruences. Y. B. Jun ($[1,2]$) introduced the notion of Smarandache BCI-algebras, Smarandache fresh and clean ideals of Smarandache BCI-algebras, and obtained many interesting results about them.

In this paper, we discuss a Smarandache fuzzy structure on $B C I$-algebras and introduce the notions of a Smarandache fuzzy subalgebra (ideal) of a Smarandache BCI-algebra, a Smarandache fuzzy clean (fresh) ideal of a Smarandache BCI-algebra are introduced, and we investigate their properties.

2. Preliminaries

An algebra $(X ; *, 0)$ of type $(2,0)$ is called a BCI-algebra if it satisfies the following conditions:
(I) $(\forall x, y, z \in X)(((x * y) *(x * z)) *(z * y)=0)$,
(II) $(\forall x, y \in X)((x *(x *(x * y)) * y=0)$,
(III) $(\forall x \in X)((x * x=0)$,
(IV) $(\forall x, y \in X)(x * y=0$ and $y * x=0$ imply $x=y)$.

If a $B C I$-algebra X satisfies the following identity;
(V) $(\forall x \in X)(0 * x=0)$,
then X is said to be a BCK-algebra. We can define a partial order " \leq " on X by $x \leq y$ if and only if $x * y=0$.
Every BCI-algebra X has the following properties:
$\left(a_{1}\right)(\forall x \in X)(x * 0=x)$,
(a_{1}) $(\forall x, y, z \in X)(x \leq y$ implies $x * z \leq y * z, z * y \leq z * x)$.
A non-empty subset I of a $B C I$-algebra X is called an ideal of X if it satisfies the following conditions:
(i) $0 \in I$,
(ii) $(\forall x \in X)(\forall y \in I)(x * y \in I$ implies $x \in I)$.

[^1]Sun Shin Ahn ${ }^{1}$ and Young Joo Seo ${ }^{2}$
Definition 2.1. ([1]) A Smarandache BCI-algebra is defined to be a BCI-algebra X in which there exists a proper subset Q of X such that
(i) $0 \in Q$ and $|Q| \geq 2$,
(ii) Q is a $B C K$-algebra under the same operation of X.

By a Smarandache positive implicative (resp. commutative and implicative) BCI-algebra, we mean a BCIalgebra X which has a proper subset Q of X such that
(i) $0 \in Q$ and $|Q| \geq 2$,
(ii) Q is a positive implicative (resp. commutative and implicative) $B C K$-algebra under the same operation of X.

Let $(X ; *, 0)$ be a Smarandache $B C I$-algebra and H be a subset of X such that $0 \in H$ and $|H| \geq 2$. Then H is called a Smarandache subalgebra of X if $(H ; *, 0)$ is a Smarandache $B C I$-algebra.

A non-empty subset I of X is called a Smarandache ideal of X related to Q if it satisfies:
(i) $0 \in I$,
(ii) $(\forall x \in Q)(\forall y \in I)(x * y \in I$ implies $x \in I)$,
where Q is a $B C K$-algebra contained in X. If I is a Smarandache ideal of X related to every $B C K$-algebra contained in X, we simply say that I is a Smarandache ideal of X.

In what follows, let X and Q denote a Smarandache $B C I$-algebra and a $B C K$-algebra which is properly contained in X, respectively.

Definition 2.2. ([2]) A non-empty subset I of X is called a Smarandache ideal of X related to Q (or briefly, a Q-Smarandache ideal) of X if it satisfies:
($\left.c_{1}\right) 0 \in I$,
$\left(c_{2}\right)(\forall x \in Q)(\forall y \in I)(x * y \in I$ implies $x \in I)$.
If I is a Smarandache ideal of X related to every $B C K$-algebra contained in X, we simply say that I is a Smarandache ideal of X.

Definition 2.3. ([2]) A non-empty subset I of X is called a Smarandache fresh ideal of X related to Q (or briefly, a Q-Smuranduche fresh ideal of X) if it satisfies the conditions $\left(c_{1}\right)$ and
$\left(c_{3}\right)(\forall x, y, z \in Q)(((x * y) * z) \in I$ and $y * z \in I$ imply $x * z \in I)$.
Theorem 2.4. ([2]) Every Q-Smarandache fresh ideal which is contained in Q is a Q-Smarandache ideal.
The converse of Theorem 2.4 need not be true in general.
Theorem 2.5. ([2]) Let I and J be Q-Smarandache ideals of X and $I \subset J$. If I is a Q-Smarandache fresh ideal of X, then so is J.

Definition 2.6. ([2]) A non-empty subset I of X is called a Smarandache clean ideal of X related to Q (or briefly, a Q-Smarandache clean ideal of X) if it satisfies the conditions $\left(c_{1}\right)$ and

$$
\left(c_{4}\right)(\forall x, y \in Q)(z \in I)((x *(y * x)) * z \in I \text { implies } x \in I)
$$

Smarandache fuzzy $B C I$-algebras
Theorem 2.7. ([2]) Every Q-Smarandache clean ideal of X is a Q-Smarandache ideal.
The converse of Theorem 2.7 need not be true in general.
Theorem 2.8. ([2]) Every Q-Smarandache clean ideal of X is a Q-Smarandache fresh ideal.
Theorem 2.9. ([2]) Let I and J be Q-Smarandache ideals of X and $I \subset J$. If I is a Q-Smarandache clean ideal of X, then so is J.

A fuzzy set μ in X is called a fuzzy subalgebra of a BCI-algebra X if $\mu(x * y) \geq \min \{\mu(x), \mu(y)\}$ for all $x, y \in X$. A fuzzy set μ in X is called a fuzzy ideal of X if
$\left(F_{1}\right) \mu(0) \geq \mu(x)$ for all $x \in X$,
$\left(F_{2}\right) \mu(x) \geq \min \{\mu(x * y), \mu(y)\}$ for all $x, y \in X$
Let μ be a fuzzy set in a set X. For $t \in[0,1]$, the set $\mu_{t}:=\{x \in X \mid \mu(x) \geq t\}$ is called a level subset of μ.

3. Smarandache fuzzy ideals

Definition 3.1. Let X be a Smarandache BCI-algebra. A map $\mu: X \rightarrow[0,1]$ is called a Smarandache fuzzy subalgebra of X if it satisfies

$$
\begin{aligned}
& \left(S F_{1}\right) \mu(0) \geq \mu(x) \text { for all } x \in P \\
& \left(S F_{2}\right) \mu(x * y) \geq \min \{\mu(x), \mu(y)\} \text { for all } x, y \in P
\end{aligned}
$$

where $P \subsetneq X, P$ is a $B C K$-algebra with $|P| \geq 2$.
A map $\mu: X \rightarrow[0,1]$ is called a Smarandache fuzzy ideal of X if it satisfies $\left(S F_{1}\right)$ and

$$
\left(S F_{2}\right) \mu(x) \geq \min \{\mu(x * y), \mu(y)\} \text { for all } x, y \in P,
$$

where $P \subsetneq X, P$ is a $B C K$-algebra with $|P| \geq 2$. This Smarandache fuzzy subalgebra (ideal) is denoted by μ_{P}, i.e., $\mu_{P}: P \rightarrow[0,1]$ is a fuzzy subalgebra(ideal) of X.

Example 3.2. Let $X:=\{0,1,2,3,4,5\}$ be a Smarandache BCI-algebra ([1]) with the following Cayley table:

$*$	0	1	2	3	4	5
0	0	0	0	3	3	3
1	1	0	1	3	3	3
2	2	2	0	3	3	3
3	3	3	3	0	0	0
4	4	3	4	1	0	0
5	5	3	5	1	1	0

Define a map $\mu: X \rightarrow[0,1]$ by

$$
\mu(x):= \begin{cases}0.5 & \text { if } x \in\{0,1,2,3\} \\ 0.7 & \text { otherwise }\end{cases}
$$

Clearly μ is a Samrandache fuzzy subalgebra of X. It is verified that μ restricted to a subset $\{0,1,2,3\}$ which is a subalgebra of X is a fuzzy subalgebra of X, i.e., $\mu_{\{0,1,2,3\}}:\{0,1,2,3\} \rightarrow[0,1]$ is a fuzzy subalgebra of X. Thus $\mu: X \rightarrow[0,1]$ is a Smarandache fuzzy subalgebra of X. Note that $\mu: X \rightarrow[0,1]$ is not a fuzzy subalgebra of X, since $\mu(5 * 4)=\mu(0)=0.5 \ngtr \min \{\mu(5), \mu(4)\}=0.7$.

Sun Shin Ahn ${ }^{1}$ and Young Joo Seo ${ }^{2}$

Example 3.3. Let $X:=\{0,1,2,3,4,5\}$ be a Smarandache $B C I$-algebra ([1]) with the following Cayley table:

$*$	0	1	2	3	4	5
0	0	0	0	0	4	4
1	1	0	0	1	4	4
2	2	2	0	2	4	4
3	3	3	3	0	4	4
4	4	44	4	0	0	
5	5	4	4	5	1	0

Define a map $\mu: X \rightarrow[0,1]$ by

$$
\mu(x):= \begin{cases}0.5 & \text { if } x \in\{0,1,2\} \\ 0.7 & \text { otherwise }\end{cases}
$$

Clearly μ is a Samrandache fuzzy ideal of X. It is verified that μ restricted to a subset $\{0,1,2\}$ which is an ideal of X is a fuzzy ideal of X, i.e., $\mu_{\{0,1,2\}}:\{0,1,2\} \rightarrow[0,1]$ is a fuzzy ideal of X. Thus $\mu: X \rightarrow[0,1]$ is a Smarandache fuzzy ideal of X. Note that $\mu: X \rightarrow[0,1]$ in not a fuzzy ideal of X, since $\mu(2)=0.5 \ngtr \min \{\mu(2 * 4)=\mu(4), \mu(4)\}=$ $\mu(4)=0.7$.

Lemma 3.4. Every Smarandache fuzzy ideal μ_{P} of a Smarandache BCI-algebra X is order reversing.
Proof. Let P be a $B C K$-algebra with $P \subsetneq X$ and $|P| \geq 2$. If $x, y \in P$ with $x \leq y$, then $x * y=0$. Hence we have $\mu(x) \geq \min \{\mu(x * y), \mu(y)\}=\min \{\mu(0), \mu(y)\}=\mu(y)$.

Theorem 3.5. Any Smarandache fuzzy ideal μ_{P} of a Smarandache BCI-algebra X must be a Smarandache fuzzy subalgehra of X.
Proof. Let P be a $B C K$-algebra with $P \subsetneq X$ and $|X| \geq 2$. Since $x * y \leq x$ for any $x, y \in P$, it follows from Lemma 3.4 that $\mu(x) \leq \mu(x * y)$, so by $\left(S F_{2}\right)$ we obtain $\mu(x * y) \geq \mu(x) \geq \min \{\mu(x * y), \mu(y)\} \geq \min \{\mu(x), \mu(y)\}$. This shows that μ is a Smarandache fuzzy subalgebra of X, proving the theorem.

Proposition 3.6. Let μ_{P} be a Smarandache fuzzy ideal of a Smarandache BCI-algebra X. If the inequality $x * y \leq z$ holds in P, then $\mu(x) \geq \min \{\mu(x), \mu(z)\}$ for all $x, y, z \in P$.

Proof. Let P be a $B C K$-algebra with $P \subsetneq X$ and $|P| \geq 2$. If $x * y \leq z$ in P, then $(x * y) * z=0$. Hence. we have $\mu(x * y) \geq \min \{\mu((x * y) * z), \mu(z)\}=\min \{\mu(0), \mu(z)\}=\mu(z)$. It follows that $\mu(x) \geq \min \{\mu(x * y), \mu(y)\} \geq$ $\min \{\mu(y), \mu(z)\}$.

Theorem 3.7. Let X be a Smarandache BCI-algebra. A Smarandache fuzzy subalgebra μ_{P} of X is a Smarandache fuzzy ideal of X if and only if for all $x, y \in P$, the inequality $x * y \leq z$ implies $\mu(x) \geq \min \{\mu(y), \mu(z)\}$.

Proof. Suppose that μ_{P} is a Smarandache fuzzy subalgebra of X satisfying the condition $x * y \leq z$ implies $\mu(x) \geq \min \{\mu(y), \mu(z)\}$. Since $x *(x * y) \leq y$ for all $x, y \in P$. it follows that $\mu(x) \geq \min \{\mu(x * y), \mu(y)\}$. Hence μ_{P} is a Smarandache fuzzy ideal of X. The converse follows from Proposition 3.6.

Definition 3.8. Let X be a Smarandache $B C I$-algebra. A map $\mu: X \rightarrow[0,1]$ is called a Smarandache fuzzy clean ideal of X if it satisfies $\left(S F_{1}\right)$ and
$\left.\left(S F_{3}\right) \mu(x) \geq \min \{\mu(x *(y * x)) * z), \mu(z)\right\}$ for all $x, y, z \in P$,
where $P \subsetneq X$ and P is a $B C K$-algebra with $|P| \geq 2$. This Smarandache fuzzy clean ideal is denoted by μ_{P}, i.e., $\mu_{P}: P \rightarrow[0,1]$ is a Smarandache fuzzy clean ideal of X.

Example 3.9. Let $X:=\{0,1,2,3,4,5\}$ be a Smarandache $B C I$-algebra ([2]) with the following Cayley table:

$*$	0	1	2	3	4	5
0	0	0	0	0	0	5
1	1	0	0	0	0	5
2	2	1	0	1	0	5
3	3	4	4	4	0	5
4	4	4	4	4	0	5
5	5	5	5	5	5	0

Define a map $\mu: X \rightarrow[0,1]$ by

$$
\mu(x):= \begin{cases}0.4 & \text { if } x \in\{0,1,2,3\} \\ 0.8 & \text { otherwise }\end{cases}
$$

Clearly μ is a Samrandache fuzzy clean ideal of X, but μ is not a fuzzy clean ideal of X, since $\mu(3)=0.4 \ngtr$ $\min \{\mu((3 *(0 * 3)) * 5), \mu(5)\}=\min \{\mu(5), \mu(5)\}=\mu(5)=0.8$.

Theorem 3.10. Let X be a Smarandache BCI-algebra. Any Smarandache fuzzy clean ideal μ_{P} of X must be a Smarandache fuzzy ideal of X.

Proof. Let X be a $B C K$-algebra with $P \subsetneq X$ and $|P| \geq 2$. Let $\mu_{P}: P \rightarrow[0,1]$ be a Smarndache fuzzy clean ideal of X. If we let $y:=x$ in $\left(S F_{3}\right)$, then $\mu(x) \geq \min \{\mu((x *(x * x)) * z), \mu(z)\}=\min \{\mu((x * 0) * z), \mu(z)\}=$ $\min \{\mu(x * z), \mu(z)\}$, for all $x, y, z \in P$. This shows that μ satisfies $\left(S F_{2}\right)$. Combining $\left(S F_{1}\right), \mu_{P}$ is a Smarandache fuzzy ideal of X, proving the theorem.

Corollary 3.11. Every Smarandache fuzzy clean ideal μ_{P} of a Smarndache BCI-algebra X must be a Smarandache fuzzy subalgebra of X.

Proof. It follows from Theorem 3.5 and Theorem 3.10.
The converse of Theorem 3.10 may not be true as shown in the following example.
Example 3.12. Let $X:=\{0,1,2,3,4,5\}$ be a Smarandache $B C I$-algebra with the following Cayley table:

$*$	0	1	2	3	4	5
0	0	0	0	0	0	5
1	1	0	1	0	0	5
2	2	2	0	0	0	5
3	3	3	3	0	0	5
4	4	3	4	1	0	5
5	5	5	5	5	5	0

Let μ_{P} be a fuzzy set in $P=\{0,1,2,3,4\}$ defined by $\mu(0)=\mu(2)=0.8$ and $\mu(1)=\mu(3)=\mu(4)=0.3$. It is easy to check that μ_{P} is a fuzzy ideal of X. Hence $\mu: X \rightarrow[0,1]$ is a Smarandache fuzzy ideal of X. But it is not a Smarandache fuzzy clean ideal of X since $\mu(1)=0.3 \ngtr \min \{\mu((1 *(3 * 1)) * 2), \mu(2)\}=\min \{\mu(0), \mu(2)\}=0.8$.

Theorem 3.13. Let X be a Smarandache implicative BCI-algebra. Every Smarandache fuzzy ideal μ_{P} of X is a Smarandache fuzzy clean ideal of X.

Sun Shin Ahn ${ }^{1}$ and Young Joo Seo ${ }^{2}$

Proof. Let P be a $B C K$-algebra with $P \subsetneq X$ and $|P| \geq 2$. Since X is a Smarandache implicative $B C I$-algebra, we have $x=x *(y * x)$ for all $x, y \in P$. Let μ_{P} be a Smarandache fuzzy ideal of X. It follows from $\left(S F_{2}\right)$ that $\mu(x) \geq \min \{\mu(x * z), \mu(z)\} \geq \min \{\mu((x *(y * x)) * z), \mu(z)\}$, for all $x, y, z \in P$. Hence μ_{P} is a Smarandache clean ideal of X. The proof is complete.

In what follows, we give characterizations of fuzzy implicative ideals.
Theorem 3.14. Let X be a Smarandache BCI-algebra. Suppose that μ_{P} is a Smarandache fuzzy ideal of X. Then the following equivalent:
(i) μ_{P} is Smarandache fuzzy clean,
(ii) $\mu(x) \geq \mu(x *(y * x))$ for all $x, y \in P$,
(iii) $\mu(x)=\mu(x *(y * x))$ for all $x, y \in P$.

Proof. (i) \Rightarrow (ii): Let μ_{P} be a Smarandache fuzzy clean ideal of X. It follows from $\left(S F_{3}\right)$ that $\mu(x) \geq \min \{\mu((x *$ $(y * x)) * 0), \mu(0)\}=\min \{\mu(x *(y * x)), \mu(0)\}=\mu(x *(y * x)), \forall x, y \in P$. Hence the condition (ii) holds.
(ii) \Rightarrow (iii): Since X is a Smarnadache $B C I$-algebra, we have $x *(y * x) \leq x$ for all $x, y \in P$. It follows from Lemma 3.4 that $\mu(x) \leq \mu(x *(y * x))$. By (ii), $\mu(x) \geq \mu(x *(y * x))$. Thus the condition (iii) holds.
(iii) \Rightarrow (i): Suppose that the condition (iii) holds. Since μ_{P} is a Smarandache fuzzy ideal, by ($S F_{2}$), we have $\mu(x *(y * x)) \geq \min \{\mu((x *(y * x)) * z), \mu(z)\}$. Combining (iii), we obtain $\mu(x) \geq \min \{\mu((x *(y * x)) * z), \mu(z)\}$. Hence μ satisfies the condition $\left(S F_{3}\right)$. Obviously, μ satisfies $\left(S F_{1}\right)$. Therefore μ is a fuzzy clean ideal of X. Hence the condition (i) holds. The proof is complete.

For any fuzzy sets μ and ν in X, we write $\mu \leq \nu$ if and only if $\mu(x) \leq \nu(x)$ for any $x \in X$.
Definition 3.15. Let X be a Smarandache $B C I$-algebra and let $\mu_{P}: P \rightarrow[0,1]$ be a Smarandache fuzzy $B C I$-algebra of X. For $t \leq \mu(0)$, the set $\mu_{t}:=\{x \in P \mid \mu(x) \geq t\}$ is called a level subset of μ_{P}.

Theorem 3.16. A fuzzy set μ in P is a Smarandache fuzzy clean ideal of X if and only if, for all $t \in[0,1], \mu_{t}$ is either empty or a Smarandache clean ideal of X.

Proof. Suppose that μ_{P} is a Smarandache fuzzy clean ideal of X and $\mu_{t} \neq \emptyset$ for any $t \in[0,1]$. It is clear that $0 \in \mu_{t}$ since $\mu(0) \geq t$. Let $\mu((x *(y * x)) * z) \geq t$ and $\mu(z) \geq t$. It follows from $\left(S F_{3}\right)$ that $\mu(x) \geq$ $\min \{\mu((x *(y * x)) * z), \mu(z)\} \geq t$, namely, $x \in \mu_{t}$. This shows that μ_{t} is a Smarandache clean ideal of X.

Conversely, assume that for each $t \in[0,1], \mu_{t}$ is either empty or a Smaranadche clean ideal of X. For any $x \in P$, let $\mu(x)=t$. Then $x \in \mu_{t}$. Since $\mu_{t}(\neq \emptyset)$ is a Smarandache clean ideal of X, therefore $0 \in \mu_{t}$ and hence $\mu(0) \geq$ $\mu(x)=t$. Thus $\mu(0) \geq \mu(x)$ for all $x \in P$. Now we show that μ satisfies $\left(S F_{3}\right)$. If not, then there exist $x^{\prime}, y^{\prime}, z^{\prime} \in P$ such that $\mu\left(x^{\prime}\right)<\min \left\{\mu\left(\left(x^{\prime} *\left(y^{\prime} * z^{\prime}\right)\right) * z^{\prime}\right), \mu\left(z^{\prime}\right)\right\}$. Taking $t_{0}:=\frac{1}{2}\left\{\mu\left(x^{\prime}\right)+\min \left\{\mu\left(\left(x^{\prime} *\left(y^{\prime} * z^{\prime}\right)\right) * z^{\prime}\right), \mu\left(z^{\prime}\right)\right\}\right\}$, we have $\mu\left(x^{\prime}\right)<t_{0}<\min \left\{\mu\left(\left(x^{\prime} *\left(y^{\prime} * z^{\prime}\right)\right) * z^{\prime}\right), \mu\left(z^{\prime}\right)\right\}$. Hence $x^{\prime} \notin \mu_{t_{0}},\left(x^{\prime} *\left(y^{\prime} * x^{\prime}\right)\right) * z \in \mu_{t_{0}}$, and $z^{\prime} \in \mu_{t_{0}}$, i.e., $\mu_{t_{0}}$ is not a Smaraqndache clean of X, which is a contradiction. Therefore, μ_{P} is a Smarnadche fuzzy clean ideal, completing the proof.

Theorem 3.17. ([2]) (Extension Property) Let X be a Smarandache BCI-algebra. Let I and J be Q Smarandache ideals of X and $I \subseteq J \subseteq Q$. If I is a Q-Smarandache clean ideal of X, then so is J.

Next we give the extension theorem of Smarandache fuzzy clean ideals.

Smarandache fuzzy $B C I$-algebras
Theorem 3.18. Let X be a Smarandache BCI-algebra. Let μ and ν be Smarandache fuzzy ideals of X such that $\mu \leq \nu$ and $\mu(0)=\nu(0)$. If μ is a Smarndache fuzzy clean ideal of X, then so is ν.

Proof. It suffices to show that for any $t \in[0,1], \nu_{l}$ is either empty or a Smarandache clean ideal of X. If the level subset ν_{l} is non-empty, then $\mu_{l} \neq \emptyset$ and $\mu_{l} \subseteq \nu_{l}$. In fact, if $x \in \mu_{l}$, then $t \leq \mu(x)$; hence $t \leq \nu(x)$, i.e, $x \in \nu_{l}$. So $\mu_{t} \subseteq \nu_{t}$. By the hypothesis, since μ is a Smarandache fuzzy clean ideal of X, μ_{t} is a Smarandache clean of X by Theorem 3.16. It follows from Theorem 3.17 that ν_{t} is a Smarandache clean ideal of X. Hence ν is a Smarandache fuzzy clean of X. The proof is complete.

Definition 3.19. Let X be a Smarandache BCI-algebra. A map $\mu: X \rightarrow[0,1]$ is called a Smarandache fuzzy fresh ideal of X if it satisfies $\left(S F_{1}\right)$ and

$$
\left(S F_{4}\right) \mu(x * z) \geq \min \{\mu((x * y) * z), \mu(y * z)\} \text { for all } x, y, z \in P
$$

where P is a $B C K$-algebra with $P \subsetneq X$ and $|P| \geq 2$. This Smarandache fuzzy ideal is denoted by μ_{P}, i.e., $\mu_{P}: P \rightarrow[0,1]$ is a Smarandache fuzzy fresh ideal of X.

Example 3.20. Let $X:=\{0,1,2,3,4,5\}$ be a Smarandache $B C I$-algebra ([2]) with the following Cayley table:

$*$	0	1	2	3	4	5
0	0	0	0	0	0	5
1	1	0	1	0	1	5
2	2	2	0	2	0	5
3	3	1	3	0	3	5
4	4	4	4	4	0	5
5	5	5	5	5	5	0

Define a map $\mu: X \rightarrow[0,1]$ by

$$
\mu(x):= \begin{cases}0.5 & \text { if } x \in\{0,1,3\}, \\ 0.9 & \text { otherwise }\end{cases}
$$

Clearly μ is a Samrandache fuzzy fresh ideal of X. But it is not a fuzzy fresh ideal of X. since $\mu(2 * 4)=\mu(0)=$ $0.5 \ngtr \min \{\mu((2 * 5) * 4), \mu(5 * 4)\}=\mu(5)=0.9$.

Theorem 3.21. Any Smarandache fuzzy fresh ideal of a Smarandache BCI-algebra X must be a Smarandache fuzzy ideal of X.

Proof. Taking $z:=0$ in $\left(S F_{4}\right)$ and $x * 0=x$, we have $\mu(x * 0) \geq \min \{\mu((x * y) * 0), \mu(y * 0)\}$. Hence $\mu(x) \geq$ $\min \{\mu(x * y), \mu(y)\}$. Thus $\left(S F_{2}\right)$ holds.

The converse of Theorem 3.21 may not be true as show in the following example.
Example 3.22. Let $X:=\{0,1,2,3,4,5\}$ be a Smarandache $B C I$-algebra ([2]) with the following Cayley table:

$*$	0	1	2	3	4	5
0	0	0	0	0	0	5
1	1	0	0	0	1	5
2	2	1	0	1	2	5
3	3	1	1	0	3	5
4	4	4	4	4	0	5
5	5	5	5	5	5	0

Sun Shin Ahn ${ }^{1}$ and Young Joo Seo ${ }^{2}$

Define a map $\mu: X \rightarrow[0,1]$ by

$$
\mu(x):= \begin{cases}0.5 & \text { if } x \in\{0,4\} \\ 0.4 & \text { otherwise }\end{cases}
$$

Clearly $\mu(x)$ is a Samrandache fuzzy ideal of X. But $\mu(x)$ is not a Samrandache fuzzy fresh ideal of X, since $\mu(2 * 3)=\mu(1)=0.4 \ngtr \min \{\mu((2 * 1) * 3), \mu(1 * 3)\}=\min \{\mu(1 * 3), \mu(0)\}=\mu(0)=0.5$.

Proposition 3.23. Let X be a Smarandache BCI-algebra. A Smarandache fuzzy ideal μ_{P} of X is a Smarandache fuzzy fresh ideal of X if and only if it satisfies the condition $\mu(x * y) \geq \mu((x * y) * y)$ for all $x, y \in P$.

Proof. Assume that μ_{P} is a Smarandache fuzzy fresh ideal of X. Putting $z:=y$ in $\left(S F_{4}\right)$, we have $\mu(x * y) \geq$ $\min \{\mu((x * y) * y), \mu(y * y)\}=\min \{\mu((x * y) * y), \mu(0)\}=\mu((x * y) * y), \forall x, y \in P$.

Conversely, let μ_{P} be Smarandache fuzzy ideal of X such that $\mu(x * y) \geq \mu((x * y) * y)$. Since, for all $x, y, z \in P$, $((x * z) * z) *(y * z) \leq(x * z) * y=(x * y) * z$, we have $\mu((x * y) * z) \leq \mu(((x * z) * z) *(y * z))$. Hence $\mu(x * z) \geq \mu((x * z) * z) \geq \min \{\mu(((x * z) * z) *(y * z)), \mu(y * z)\} \geq \min \{\mu((x * y) * z), \mu(y * z)\}$. This completes the proof.

Since $(x * y) * y \leq x * y$, it follows from Lemma 3.4 that $\mu(x * y) \leq \mu((x * y) * y)$. Thus we have the following theorem.

Theorem 3.24. Let X be a Smarandache BCI-algebra. A Smarandache fuzzy ideal μ_{P} of X is a Smarandache fuzzy fresh if and only if it satisfies the identity

$$
\mu(x * y)=\mu((x * y) * y), \text { text for all } x, y \in X
$$

We give an equivalent condition for which a Smarandache fuzzy subalgebra of a Smarandache $B C I$-algebra to be a Smarandache fuzzy clean ideal of X.

Theorem 3.25. A Smarandache fuzzy subalghebra μ_{P} of X is a Smarandache fuzzy clean ideal of X if and only if it satisfies

$$
\begin{equation*}
(x *(y * x)) * z \leq u \text { implies } \mu(x) \geq \min \{\mu(z), \mu(u)\} \text { for all } x, y, z, u \in P \text {. } \tag{*}
\end{equation*}
$$

Proof. Assume that μ_{P} is a Smarandache fuzzy clean ideal of X. Let $x, y, z, u \in P$ be such that $(x *(y * x)) * z \leq u$. Since μ is a Smarandache fuzzy ideal of X, we have $\mu(x *(y * x)) \geq \min \{\mu(z), \mu(u)\}$ by Theorem 3.7. By Theorem 3.14-(iii), we obtain $\mu(x) \geq \min \{\mu(z), \mu(u)\}$.

Conversely, suppose that μ_{P} satisfies (*). Obviously, μ_{P} satisfies $\left(S F_{1}\right)$, since $(x *(y * x)) *((x *(y * x)) * z) \leq z$, by $(*)$, we obtain $\mu(x) \geq \min \{\mu((x *(y * x)) * z), \mu(z)\}$, which shows that μ_{P} satisfies $\left(S F_{3}\right)$. Hence μ_{P} is a Smarandache fuzzy clean ideal of X. The proof is complete.

References

[1] Y. B. Jun, Smarandache BCI-algebras, Sci. Math. Japo. 62(1) (2005), 137-142; e:2005, 271-276.
[2] Y. B. Jun, Smarandache fresh and clean ideals of Smarandache BCI-algebras, Kyungpook Math. J. 46 (2006), 409-416.
[3] J. Meng and Y. B. Jun, BCK-algebras, Kyung Moon Sa, Seoul, 1994.

Smarandache fuzzy BCI-algebras

[4] R. Padilla, Smarandache algebraic structures, Bull. Pure Sci. Delhi, 17E (1998), no.1, 119-121;http://www.gallup.unm.edu/smarandache/alg-s-tx.txt.

국 문 요 지

대수구조와 그 응용에 관한 연구
 (On the structure of general algebras and its applications)

한양 대학 교 대학 원 수학 과

서 영 주

본 논문에서는 BCK-대수의 일반화된 대수 구조인 d-대수의 구조적 이해와 해석적 실 대수가 d-대수가 되는 과정을 규명하였으며, BCI-대 수 상에서 Smarandache 개념을 도입하여 퍼지이론을 전개하였다. 먼 저, 상 d-대수에서 두 가지 동형정리를 증명하고, obstinate d-이데알의 개념을 도입하여, 그 동치조건을 구하였다. 또한, 실공간 위에서 함수 로서 정의되는 이항연산을 정의하여, 그것이 d-대수가 될 수 있는 조건 들을 구하였다. 마지막으로 Smarandache BCI-대수 위에 Smarandache 퍼지 부분대수(이데알)의 개념을 도입하여 여러 동치가 되는 조건들을 구하였고, 기존 퍼지 개념을 재정립 하였다.

연구 윤리 서약서

본인은 한양대학교 대학원생으로서 이 학위논문 작성 과정에서
다음과 같이 연구 윤리의 기본 원칙을 준수하였음을 서약합니다.
첫째, 지도교수의 지도를 받아 정직하고 엄정한 연구를 수행하여 학위논문을 작성한다.

둘째, 논문 작성시 위조, 변조, 표절 등 학문적 진실성을 훼손하는 어떤 연구 부정행위도 하지 않는다.

셋째, 논문 작성시 논문유사도 검증시스템 "카피킬러"등을 거쳐야 한다.

2019년06월11일

학위명: 박사

학과: 수학과

지도교수 : 김희식

성명: 서영주

한 양 대 학 교 대 학 원 장 귀 하

Declaration of Ethical Conduct in Research

I, as a graduate student of Hanyang University, hereby declare that I have abided by the following Code of Research Ethics while writing this dissertation thesis, during my degree program.
"First, I have strived to be honest in my conduct, to produce valid and reliable research conforming with the guidance of my thesis supervisor, and I affirm that my thesis contains honest, fair and reasonable conclusions based on my own careful research under the guidance of my thesis supervisor.

Second, I have not committed any acts that may discredit or damage the credibility of my research. These include, but are not limited to : falsification, distortion of research findings or plagiarism.

Third, I need to go through with Copykiller Program(Internetbased Plagiarism-prevention service) before submitting a thesis."

JUNE 11, 2019

Degree: Doctor
Department:
DEPARTMENT OF MATHEMATICS

Thesis Supervisor: Kim, Hee Sik
Name:
SEO YOUNGJOO

[^0]: © 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

[^1]: ${ }^{0 *}$ Correspondence: Tel: +82 1092476575 (Y. J. Seo).

