creative
comimons

C O M O N S
& X EAlI-HI el Xl 2.0 Gigel=
Ol OtcHe =2 E 2= FR0l 86t AFSA
o Ol MHE=E= SN, HE, 8E, A, SH & &5 = AsLIC

XS Metok ELIChH

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

Higel. M5t= 0 &

o Fot=, 0l MEZ2 THOIZE0ILE B2 H, 0l HAS0 B2 0|8
£ 2ok LIEFLH O OF 8 LICEH
o HEZXNZREH EX2 oItE O 0lelet xAdE=2 HEX EsLIT

AEAH OHE oISt Aeles 212 LWS0ll 26t g&
71 2f(Legal Code)E OloiotI| &H

olx2 0 Ed=t

Disclaimer =1

ction

Colle


http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Thesis for the Doctor of Philosophy

On the structure of

general algebras and its applications

Young Joo SEO

Graduate School of Hanyang University

August 2019



Thesis for the Doctor of Philosophy

On the structure of

general algebras and its applications

Thesis Supervisor : Hee Sik KIM

A Thesis submitted to the graduate school of Hanyang
University in partial fulfillment of the requirements for the

degree of Doctor of Philosophy

Young Joo SEO

August 2019

Department of Mathematics

Graduate School of Hanyang University



This thesis, written by Young Joo Seo, has been
approved as a thesis for the Doctor of Philosophy.

August 2019

%
Committee Chairman : 7/)/ Z % /ﬁé‘»ﬁw
&
12

Committee member : 7\1)

Committee member : Cz': K N (Ei}kx*ﬁth&:e)
Committee member : H%‘ —?r_ gl (Siﬁz&éu@_, ;

ZiS
=) p-- /1 Yot
Committee member : _— A /é)) (Sig : ;Z

Graduate School of Hanyang University



CONTENTS

Contents ..ottt i ittt i i
Abstract ... e e ii
1. Introduction ... e 1
2. Preliminaries ..........iitiiiiiiiiiiii ittt 3
3. Structural properties of quotient d-algebras ............ 14
4. Analytic real algebras and d-algebras .................. 27
5. Smarandache fuzzy ideals in BCI-algebras ............. 38
References ... i i 51

Published Papers

1. Analytic real algebras, SpringerPlus 5 (2016), 1684-1692.
2. Smarandache fuzzy BCI-algebras, J. Comput. Anal. Appl. 24

(2018), 619-627.



ABSTRACT

On the structure of

general algebras and its applications

Young Joo Seo
Dept. of Mathematics

Graduate School of
Hanyang University

In this thesis, we discuss some structural theory of a d-
algebra which is a generalization of a BC K-algebra, and we
discuss analytic real algebras. We investigate several condi-
tions for analytic real algebras to be d-algebras. Moreover, we
introduce the notion of a Smarandacheness to BC'I-algebras,
and obtain several properties on Smarandache fuzzy BCI-

algebras.
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1. Introduction

The notions of BC K-algebras and BC'I-algebras were introduced by Y.
Imai and K. Iséki ([5, 6]). The class of BCK-algebras is a proper subclass of
the class of BCI-algebras. We refer useful textbooks for BC' K-algebras and
BC1I-algebras to ([4, 12, 17]). The notion of a d-algebra which is another useful
generalization of BC K-algebras was introduced by J. Neggers, Y. B. Jun and
H. S. Kim ([14]), and some relations between d-algebras and BC K-algebras as
well as several other relations between d-algebras and oriented digraphs were
investigated. Several aspects on d-algebras were studied ([1, 3, 10, 11, 13, 14]).
Simply, d-algebras can be obtained by deleting two identities as a generalization
of BC K-algebras, but it gives more wide ranges of research areas in algebraic
structures. Also, J. Neggers, Y. B. Jun and H. S. Kim ([14]) discussed the
ideal theory in d-algebras, and introduced the notions of a d-subalgebra, a d-
ideal, a d?-ideal and a d*-ideal, and investigated relations among them. Also,
a Smarandache structure on a set A means a weak structure W on A such
that there exists a proper subset B of A with a strong structure S which is
embedded in A. In [16], R. Padilla showed that Smarandache semigroups are
very important for the study of congruences. Y. B. Jun ([9]) introduced the
notion of Smarandache BC'I-algebras, Smarandache fresh and clean ideals of
Smarandache BC'I-algebras, and obtained many interesting results about them.

In Chapter 2, we study basic facts and useful properties of BC' K-algebras,

BC-algebras and d-algebras which are related to the topics. In Chapter 3,



we discuss structural properties of quotient d-algebras. We obtain several iso-
morphism theorems in quotient d-algebras, and we introduce the notion of an
obstinate ideal in d-algebras, and obtain its equivalent conditions. In Chapter
4, we introduce the notion of an analytic real algebra, and we obtain some
conditions to be a d-algebra. Moreover, we generalize a binary operation on
the set R of real numbers by using real-valued functions, and obtain some con-
ditions to be an edge d-algebra. In Chapter 5, we introduce the notion of a
Smarandache concept to BC'I-algebras, and discuss Smarandache fuzzy ideals
in Smarandache BC'I-algebras. Moreover, we discuss Smarandache fuzzy clean

ideals and Smarandache fuzzy fresh ideals in Smarandache BC'I-algebras.



2. Preliminaries

In this chapter, we provide several definitions and theorems which are useful

in the study of d-algebras and Smarandache (fuzzy) BCI-algebras.

2.1. d-algebras

Definition 2.1. ([15]) A d-algebra is a non-empty set X with a constant 0 and

[13 b

a binary operation “x” satisfying the following axioms:
(I) zxx =0,
(IT) 0%z =0,

(IlI) zxy=0and y*xxz =0 imply z =y

for all x,y € X.
For brevity we also call X a d-algebra. In X we can define a binary relation

“ <7 by x <y if and only if z xy = 0.

Definition 2.2. ([3]) An algebra (X, =,0) is said to be a strong d-algebra if it
satisfies (I), (II) and (IIT*) for all z,y € X, where

(IIT*) = xy = y * = implies x = y.

Obviously, every strong d-algebra is a d-algebra, but the converse need not

be true in general (see [3]).



Example 2.3. ([3]) Let R be the set of all real numbers and e € R. Define
xxy:=(x—y) - (x—e)+eforall z,y € R where “-” and “—" are the ordinary
product and subtraction of real numbers. Then it is easy to see that z xz = ¢
and exx =e. Ifxxy=yxzx=ethen (r—y)-(r—e) =0, (y—x)-(y—e) =0,
and hence z =y or z = e =y, i.e.,, x =y, i.e.,, (R, *,¢) is a d-algebra.

However, (R, *,e) is not a strong d-algebra. We can easily see that
zxy=yxrxs(r—y) - (r—e)+e=(y—z)-(y—e)+e
S@-y - (z-—e=—(r—y)(y—e)
Sx—y) - (r—et+y—e)=0
S (@-y) (@+y—2e) =0
Sx=y or z+y=2e.
If we take x :== e+ « and y := e — « for some o € R, then z + y = 2e. This

shows that xxy = y*x, but x # y. Hence the axiom (III*) does not hold. This

shows that (R, %, e) is a d-algebra, but not a strong d-algebra.

Definition 2.4. ([12]) A BCK-algebrais a d-algebra X satisfying the following

additional axioms:
(V) (@ xy) * (z x 2)) * (2 xy) =0,
(V) (z*(z*y))xy=0

for all z,y,2z € X.



Example 2.5. ([14]) Let X := {0, 1,2, 3,4} be a set with the following table:

*|0 1 2 3 4
0/j0 0 0 0 O
111 0 1 0 1
212 2 0 3 0
313 3 2 0 3
414 4 1 1 0

Then (X, *,0) is a d-algebra which is not a BC'K-algebra, since ((2* 3) * (2

4)) % (4%3) = (3%0)*1#0.

Let X be a d-algebra and x € X. X is said to be edge if for any « € X,
xx X = {x,0}. It is known that if X is an edge d-algebra, then z x 0 = x for

any x € X (see [14]).

Definition 2.6. ([14]) An algebra (X, *,0) is called a BCI-algebra if it satisfies

(I), (III), (IV) and (V) for all z,y,z € X

Every BC'I-algebra X has the following properties:
(a1) zx0=u,
(ag) x <yimplies xxz <yx*xz,zxy < zx*zw

for all z,y,z € X.



2.2. d-ideals in d-algebras

Definition 2.7. ([14]) Let (X, *,0) be a d-algebra and () # I C X. [ is called a
d-subalgebra of X if xxy € I whenever x € [ and y € I. [ is called a BCK -ideal

of X if it satisfies the following conditions:
(Dy) O €I,
(D1) xxyel,yelimply x €l forall z,y € X.
A non-empty subset [ is called a d-ideal of X if it satisfies (D7) and
(Dg) ze€landy € X imply zxy €1 for all z,y € X.
A d-ideal T of a d-algebra X is called a d*-ideal of X if for any z,y, z € I,
(D3) zxyel,yxzelimply x*z € I.
A d#-ideal I of a d-algebra X is called a d*-ideal of X if for any z,y,z € X,

(Dy) xxy€land yxx € X imply (x*2)*(y*2) € I and (zxx)* (zxy) € I.

Example 2.8. ([14]) Let X := {0,a,b,c,d} be a d-algebra which is not a

BC K-algebra with the following table:

* 0 a b ¢ d
0|0 0 0 0 O
ala 0 a 0 a
blb b 0 ¢ 0
cle ¢ b 0 ¢
dlc ¢ a a 0

Then [ := {0, a} is a d-ideal of a d-algebra X.



Example 2.9. ([14]) Let X :={0,a,b,c} be a d-algebra which is not a BOK-

algebra with the following table:

o o O *
o o OO
o o O O
o O o ol
SO OO0

Then I := {0,a,b} is a BCK-ideal which is not a d-subalgebra of X, while
J :={0,c} is a d-subalgebra of X which is not a BC K-ideal of X. Moreover,
K :={0,a} is a d*-ideal of X.

Clearly, {0} is a d-subalgebra of every d-algebra X and every d-ideal of X

is a d-subalgebra, but the converse need not be true.

Example 2.10. ([14]) Let X := {0, a, b, ¢} be a d-algebra which is not a BCK-

algebra with the following table:

o o O ¥
o o Q OO0
o o O O
o O o olc
S O T On

Then I := {0,a} is a d-subalgebra of X, but not a d-ideal of X, since a * ¢ =

bel.

Lemma 2.11. ([14]) If I is a d-ideal of a d-algebra X, then 0 € I.

Note that every d-ideal of a d-algebra is a BC K-ideal, but the converse
need not be true. In Example 2.10, I := {0,a} is a BCK-ideal of X, but not a

d-ideal of X.



Proposition 2.12. ([14]) Let I be a d-ideal of a d-algebra X, If x € I and

yxx =0, theny € 1.

Theorem 2.13. ([14]) In a d*-algebra, every BCK -ideal is a d-ideal.

Corollary 2.14. ([14]) In a d*-algebra, every BCK -ideal is a d-subalgebra.

Theorem 2.15. ([11]) If (X, *,0) is a BCK-algebra, then every BCK -ideal of

X is a d*-ideal of X.

Let (X,*,0x) and (Y,e,0y) be d-algebras. A mapping f : X — Y is
called a homomorphism if f(zxy) = f(x)e f(y) for all z,y € X. In [13], J.
Neggers, A. Dvurecenskij and H. S. Kim used “d-morphism”, but we change
it into “homomorphism” for convenience. Note that f(0x) = Oy. A d-algebra
(X, *,0x) is said to be d-transitive (see [14]) if zxz = 0x and z*y = Ox imply

z+y =0x.

Proposition 2.16. ([14]) Let f : X — Y be a homomorphism from a d-algebra

X into a d-transitive d-algebra Y. Then Ker f is a d*-ideal of X .

Let (X, *,0) be a d-algebra and let I be a d*-ideal of X. Define a binary

relation “~” on X by z ~ y if and only if x xy, y xx € I. We denote it by

“r ~y (mod I)” or simply “z ~ y”.

We denote a congruence class containing = by [z]7, i.e., [z]; :={y € X|x ~y
(mod I)}. We see that x ~ y if and only if [z]; = [y];. Denote the set of all

equivalence classes of X by X/I, i.e., X/I := {[z]/|x € X}.



Lemma 2.17. ([14]) Let I be a d*-ideal of a d-algebra (X, *,0). Then I = [0]s.

Theorem 2.18. ([14]) Let (X, *,0) be a d-algebra and let I be a d*-ideal of X .
If we define [x]r*[y|r := [x*y|r where z,y € X, then (X/I, *,0) is a d-algebra,

called the quotient d-algebra.

Proposition 2.19. ([14]) Let I be a d*-ideal of a d-algebra (X, *,0). Then the
mapping © : X — X/I defined by w(x) := [x]; is a homomorphism of X onto

the quotient d-algebra X /I and the kernel of w is precisely the set I.

Theorem 2.20. ([14]) If f : X — Y is a homomorphism from a d-algebra X

onto a d-transitive d-algebra Y, then X/Kerf =Y.



2.3. Smarandache B('[-algebras

An algebra (X, #,0) is called a BCT-algebra if it satisfies the following

conditions:

(BCI-1) ((zxy)*(z*x2))*(z2xy) =0,
(BCI-2) (z x (x*y)) xy =0,

(BCI-3) zxx =0,

(BCI4) zxy=0and y*xx =0 imply x =y

for all x,y,z € X.
A non-empty subset I of a BC'I-algebra X is called a BC'I-ideal of X if it

satisfies the following conditions:
(i) 0 €1,
(ii) xxy eI,y € [ imply x € I.
for all z,y € X.

Definition 2.21. ([8]) A BCI-algebra (X, *,0) is said to be a Smarandache

BC1-algebra if it contains a proper subset ) of X such that
(i) 0 € Q and |Q| > 2,
(ii) (@,*,0) is a BC' K-algebra.

By a Smarandache positive implicative (resp., commutative and implicative)
BCTI-algebra, we mean a BCI-algebra X which has a proper subset @) of X

such that

10



(i) 0 € Q and |Q| > 2,

(ii) @ is a positive implicative (resp., commutative and implicative) BC K-

algebra under the same operation of X.

Let (X, *,0) be a Smarandache BCI-algebra and H be a subset of X such
that 0 € H and |H| > 2. Then H is called a Smarandache subalgebra of X if
(H,*,0) is a Smarandache BCI-algebra (see [14]).

A non-empty subset I of X is called a Smarandache ideal of X related to

Q if it satisfies the following conditions:
(i) 0e 1,
(i) zeQ,yel,zxy el imply z €I,

where @ is a BCK-algebra contained in X (see [9]). If I is a Smarandache
ideal of X related to every BC K-algebra contained in X, we simply say that I

is a Smarandache ideal of X.

In what follows, let X and @) denote a Smarandache BC'I-algebra and a

BC K-algebra which is properly contained in X, respectively.

Definition 2.22. ([9]) A non-empty subset [ of X is called a Smarandache

ideal of X related to @ (or briefly, a Q-Smarandache ideal) of X if it satisfies:
(cl) 0€ Ia

(o) z€Q,yel,zxyelimply zel.

11



If I is a Smarandache ideal of X related to every BC K-algebra contained

in X, we simply say that I is a Smarandache ideal of X.

Definition 2.23. ([9]) A non-empty subset I of X is called a Smarandache
fresh ideal of X related to @ (or briefly, a Q-Smarandache fresh ideal of X) if

it satisfies the conditions (c1) in Definition 2.22 and

(c3) z,y,2€Q , ((r*xy)*xz) el and y*xz € [ imply z* z € I.

Theorem 2.24. ([9]) Every QQ-Smarandache fresh ideal which is contained in

Q is a @-Smarandache ideal.

The converse of Theorem 2.24 need not be true in general.

Theorem 2.25. ([9]) Let I and J be Q-Smarandache ideals of X and I C J.

If I is a Q-Smarandache fresh ideal of X, then so is J.

Definition 2.26. ([9]) A non-empty subset I of X is called a Smarandache
clean ideal of X related to @ (or briefly, a Q-Smarandache clean ideal of X) if

it satisfies the conditions (¢1) in Definition 2.22 and

(ca) 2,y€Q,z€l, (xx(y*z))*2 €l implyz €.

Theorem 2.27. (|9]) Every Q)-Smarandache clean ideal of X is a (Q-Smarandache

ideal.

The converse of Theorem 2.27 need not be true in general.

12



Theorem 2.28. (]9]) Every ()-Smarandache clean ideal of X is a (Q-Smarandache

fresh ideal.

Theorem 2.29. ([95]) Let I and J be QQ-Smarandache ideals of X and I C J.

If I is a Q-Smarandache clean ideal of X, then so is J.

A fuzzy set pin X is called a fuzzy subalgebra of a BCI-algebra X if

p(x *y) > min{u(z), u(y)} for all x,y € X(see [7]).

A fuzzy set pin X is called a fuzzy ideal of X if
(F2) p(z) = min{u(z «y), p(y)}

for all z,y € X (see [7]).

Let 1 be a fuzzy set in a set X. For ¢ € [0, 1], the set u; := {x € X|u(x) > t}

is called a level subset of p.

13



3. Structural properties of quotient d-algebras

3.1. Structures of quotient d-algebras

Let (X, *,0) be a d-algebra and let I1, I5 be d*-ideals of X with I; C Is.
Then X/I; := { [z]1,| * € X} is a quotient d-algebra. We define I5/I; := {
[x]ﬁ | x € Iy }. We claim that each element of I5/I; is an element of X/1, i.e.,

[z]r, = [x]ﬁ for all x € X. In fact,

(2] ={a €l | a~ax (mod )}
={a€elh|ax*xz, zxacli}
ClaeX |ax*xz, xxa€l}

= [x]h‘

If g € [x]r,, then 8 ~ x (mod I). It follows that 8*x, x* 3 € I;. Since z € I}
and I; is a d*-ideal of X, we obtain 8 € I; by (D;). Since I} C I, we have
B € Ir. Tt follows from 8 ~ z (mod I;) that 8 € [x]ﬁ Hence [z]7, C [m]ﬁ .
Therefore [z|;, = [x]%

We give an exact analog of Theorem 2.20 without using the notion of a

“d—transitivity”. Usually it is not get known that the kernel of an epimorphism

of d-algebras forms a d*-ideal.

Theorem 3.1. If g : (X,*,0x) — (Y,e,0y) is an epimorphism of d-algebras

and Ker(g) is a d*-ideal of X, then X/Ker(g) =Y.

14



Proof. Let I := Ker(g) be a d*-ideal of X. Define h : X/I — Y by h([z];) :=
g(x) for any = € X. Suppose [z]; = [y|;. Then z ~ y (mod I), ie., x *xy,
y*xx € I. Tt follows that g(z) e g(y) = g(z *y) = Oy and g(y) e g(x) =
g(y x ) = Oy. Since Y is a d-algebra, we obtain g(x) = g(y). Hence h is
well-defined. For any y € Y, since ¢ is an onto map, there exists € X such

that g(x) = y. Thus

which means that A : X/I — Y is an onto map.

For any [x]7, [y]r € X/I with h([z];) = h([y]r), we have

9(x) = g(y) = gl xy) = Oy, g(y xz) = Oy
=zxy, yxz € Ker(g) =1

=z ~y (mod I)

= [z]r = [y]1-
Therefore h is an one-one map. Since

h([z]r * [ylr) = h([z * yl1) = g(z xy) = g(x) @ g(y) = h([x]1) * h([y]1),

we obtain X/Ker(g) =Y. O

Theorem 3.2. Let (X,*,0x) be a d-algebra and let Iy, Is be d*-ideals of X

with I C Iy. Then Iy/I is a d*-ideal of the quotient d-algebra (X/I1,x,1I1).

Proof. Suppose [z]r, * [y]1, € I2/11, [y]r, € I2/11. Then [z xy]1,, [y]1, € I2/I1.

Since x xy, y € Iy and I3 is a d*-ideal of X, we obtain = € I». Hence

15



[37]11 c [2/[1' ...... (Dl)

Also, suppose that [z];, € Io/I1, [y]r, € X/I1 where y € X. Then x € I.

Since I3 is a d*-ideal of X, we have x x y € I>. It follows that
[55]11 * [y]ll = [f*y]ll € 12/11. ...... (D2)

If (], * [y, € I2/11 and [y]r, * [2]1, € I2/I1, then [x xy]r, [y * 2], € I2/I4.
Since x xy, y * z € I and Iy is a d*-ideal of X, we have = x z € I5. It follows

that
(2] * 2l =[x 2] € I/l e (Ds)

Let [z]r, * [ylr,, Y], * [z]r, € I2/Ii. Then [z * y]r,, [y * x|, € I2/I1. Since
xxy, y*xx € Iy and Iy is a d*-ideal of X, we obtain (z * z) * (y x z) € Iy and

(zxx)* (2xy) € I for all z € X. It follows that

[z % 2] * [y* 2] = [(x*2) * (y x 2)|n, € Ia/1h,

[zx2ln *[zxyln = [(zx2)« (zxy)ln, € /L. e (D4)

Therefore I/1; is a d*-ideal of (X/I1,*,I). O

Corollary 3.3. Let (X, *,0x) be a d-algebra and Iy, Iy be d*-ideals of X. Then
(X/I) / (I2/11) is a d-algebra .

Proof. 1t follows from Theorem 3.1 and Theorem 2.18 that (X/I1) / (I2/11) is

also a d-algebra. O

16



In fact, any element of the quotient d-algebra (X/I1)/(I2/11) can be denoted

by [[#]1,];,/r, where z € X. It is easy to see that

([=1n] 1,0, = {la)n € X/ | [l ~ [2]n}
={la], € X/ | « ~ x (mod 1)}

={la], € X/, | a*xz, xxa € I}
Hence we conclude that

(X/Il)/(fg/fl) = {{[a]h EX/Il | a*xT, T*xoE Il} ‘ x EX}

= {llnlpp o€ X}

Theorem 3.4. Let (X,*,0x) be a d-algebra and 11,15 be d*-ideals of X with

Il g IQ. Then (X/Il)/(fg/ll) = X/IQ

Proof. Define g : X/I) — X/Is by g([z]r,) := [z],- Then g is well-defined.
Indeed, for any [z]r,, [y]r, € X/I1 with [z];, = [y]r,, we have z xy, y*xx € I3.
Since I; C I, we obtain x xy, y*x € I. It follows that z ~ y (mod I3), which
shows that g([z]r,) = [z]1, = [yl = 9([y]r,). Hence g is well-defined.

Obviously, g is an epimorphism. Also,

Ker(g) = {[z]r, € X/I | 9([2]1,) = [0x]1, }
={[z]n € X/I | [2], = [0x]1,}
={[z]y, € X/I1 | x ~ 0x (mod I2)}

= {[:L’]Il € X/]l ’ zx0x, Ox xx € IQ}.

17



Since I is a d*-ideal of X, we have x € I, if and only if z % 0x, Ox x x € Is.
This proves that Ker(g)= {[z];, € X/I1 | v € I} = I/1.

By applying Theorem 3.1, we obtain

(X/I)/(I2/ 1) = (X/1)/Ker(g) & X/I>.

Let (X, *,0x) be a d-algebra. Define a relation “ <” on X by x <y if and
only if z * y = Ox, where z,y € X. Note that every BCK(BC1I)-algebra has
a partially ordered set (simply, poset), but d-algebras need not have a poset

structure in general. Consider the following example.

Example 3.5. Let X := {0, 1,2,3} be a set with the following table:

«|0 1 2 3
0/0 0 0 0
1{1 0 0 1
R JoN )
313 3 30

Then (X, *,0) is a d-algebra. Since 1%2 =2%3 =0and 1x3 =1 # 0, we have

that 1 < 2,2 <3, but 1 £ 3. This shows that (X, *,0) has no poset structure.

Note that if f: (X, *, 0x) — (Y, e, 0y) is a homomorphism of d-algebras,

then f(0x)=0y. And if z <y in X, then f(z) < f(y) in Y.

Theorem 3.6. Let (X,*,0x) and (Y, ,0y) be d-algebras and let f : X —Y

be a homomorphism. If B is a d*-ideal of Y, then f~1(B) is a d*-ideal of X.

18



Proof. Let B be a d*-ideal of Y. Since f(0x) = Oy, we obtain 0x € f~(B).
If zxy, y€ f~1(B), then f(z)e f(y)=f(z+y) € B and f(y) € B. Since B is
a d*-ideal of X, we obtain f(z) € B, i.e.,
= f‘l(B). ...... (D1)
If z € f~1(B), then f(z) € B. Since B is a d*-ideal of Y, we have f(z *y) =
f(x)e f(y) € B for any y € X. Hence
zey€f7HB). e (D2)

If zxy, yxz € f~1(B), then f(z xy), f(y*2) € B and hence f(z) o f(y),
f(y)e f(z) € B. Since B is a d*-ideal of Y, we obtain f(z*z) = f(x)e f(z) € B,

i.e.,
rxz€ fYB). (D3)

Ifzxy, yxz € f~(B), then f(x)e f(y) = f(z*y), f(y)ef(x) = f(y)*f(z) € B.

Since B is a d*-ideal of Y, we have f((x  2) * (y* 2)) = f(z *2) e f(y * 2) =

(f(z) e f(2)) o (f(y) e f(2)) € Band f((zx2)* (zxy)) = f(zx2) 0 fzxy) =

(f(2) e f(z)) e (f(2) e f(y)) € B for all z € X.

Hence f((z % 2) % (y % 2)), f((z %) % (2 ¥ y)) € B. It follows that
(zx2)%(y*z), (z52)%(z5y) € fHB).  ooen (D)

Thus f~1(B) is a d*-ideal of X. O

Corollary 3.7. Let (X,*,0x) and (Y, e,0y) be d-algebras and let f : X —Y

be a homomorphism. If B is a d*-ideal of Y, then X/f~Y(B) is a d-algebra.
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Proof. If follows immediately from Theorem 2.18 and Theorem 3.6. O

Theorem 3.8. Let g : (X,*,0x) — (Z,,0z) be a homomorphism of d-
algebras and let h : (X,%,0x) — (Y,e,0y) be an epimorphism of d-algebras
such that Ker(h) C Ker(g). Then there exists a unique homomorphism

f:(Y,e0y) = (Z,,0z) such that g = foh, i.e.,

the diagram commutes.

Proof. Given y in Y, since h is onto, there exists an x in X such that y = h(x).
Define f : Y — Z by f(h(z)):= g(x). We show that f is well-defined and
the diagram commutes. If h(x1) = h(ze) = y for some z1, x2 € X, then
h(z1) @ h(z2) = y ey = Oy. Since h is an epimorphism, we have h(x; * z2)
= h(z1) ® h(xzz) = Oy, i.e., x1 xx9 € Ker(h) C Ker(g). It follows that 0, =
g(x1 *x2) = g(x1) ® g(xe). Similarly, g(z2) ® g(z1) = 0z. Since (Z,®,0z) is a
d-algebra, we obtain g(z1) = g(x2). This shows that f(h(x1)) = g(x1) = g(z2)
= f(h(x2)). Hence f : Y — Z is well-defined and the diagram commutes.

We claim that f is a homomorphism. If y;, y2 € Y, since h is an epimor-
phism, there exist x;, zo € X such that g = h(x1), g2 = h(z2). It follows

that

f(yr e y2) = f(h(x1) @ h(x2))
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= f(h(z1 * x2))

= g(z1 * x2)

= g(x1) * g(22)

= f(h(21)) © f(h(22))
= f(y1) © f(y2)-

Hence f : Y — Z is a homomorphism. We show the uniqueness of such a map
f.
Let f : 'Y — Z be a homomorphism such that f o h=g. For any y € Y, there

exists © € X such that h(z) = y, since h is an epimorphism. It follows that

A~ N

fy) = f(h(@)) = (foh)(2) = g(x) = (foh)(@) = f(h(z)) = f(y), i [ =],

proving the uniqueness. O

Theorem 3.9. Let (X, x,0x) be a d-algebra, and let f: (X,*,0x) — (Y, e,0y)

be an epimorphism. If J is a d*-ideals of Y, then X/f~1(J) 2 Y/J, i.e.,

TJ

Y Y/J
/ p=mof =
X o X/Ker(u)
||
X/ ()
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Proof. Let J be a d*-ideal of Y and 7y : Y — Y/J be a canonical homomor-
phism of d-algebras. If we define p := my o f, the composition of 7; and f,
then p : X — Y/J is an epimorphism of d-algebras. If Ker(u) is a d*-ideal of
X, then X/Ker(u) is isomorphic with Y/J by Theorem 3.1.

In order to show that Ker(u) is a d*-ideal of X, we will show that Ker(u) =
f~Y(J). By Theorem 3.6, if J is a d*-ideal of Y, then f~!(J) is a d*-ideal of X.

For all z € X, we have

p(z) = (mo f)(z) = n(f(x)) = [f(2)ls. (3.1)

We claim that f~1(J) C Ker(u). In fact, if x € f71(J), then f(z) € J. We
need to prove that

[F@)]s=J. (3.2)
If @ € [f(x)]s, then o ~ f(x). It follows that o e f(x), f(x) e € J. Since
f(z) € J and J is a d*-ideal of Y, we obtain a € J, i.e., [f(z)]; C J.
Conversely, if § € J, since f(z) € J and J is a d*-ideal of Y, we obtain f(z)e /3,
B e f(x) € J,and hence 8 € [f(z)]s, i-e., J C [f(z)]s. So (3.2) holds.

By applying (3.1) and (3.2), we obtain

p(x) = (mo f)(x) = n(f(2)) = [f(@)]s = J. (3-3)

Since J is a zero in Y/J, we have z € Ker(u) for any x € f~1(J). This shows
that f~1(J) C Ker(p).

Conversely, if © € Ker(u), then p(x) = J in Y/J. By (3.1), we have
J = u(x) = [f(x)];. Tt follows that f(x) € J and z € f~1(J). Thus Ker(u) C
f7Y(J). Hence we obtain Ker(u) = f~(J).
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By Theorem 3.6, we know that f~1(J) = Ker(u) is a d*-ideal of X. By Theorem

3.1, we conclude

X/fHJ) = X/Ker(p) 2 Y/J.
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3.2 Obstinate d-ideals of d-algebras

Definition 3.10. Let (X, %,0) be a d-algebra and I be a proper d-ideal of X.

1 is said to be obstinate of X if z,y € [ and x # y imply z*xy, yxx € I.

Example 3.11. Let X := {0, 1,2,3} be a d-algebra with the following table:

W N = O ¥
W W= oo
NN OO
N O O O
S W= OlWw

Then I:= {0,1} satisfies the conditions (D7) and (D3), but not (Dy) in Defi-
nition 2.7, since 0% 1 =0, 1*0=1€ I, 3%x0)x(3x1) =3%x2=2¢ I;.
Hence I= {0, 1} is a d-ideal of X, but not a d*-ideal of X. Also, since 3,2 ¢ I,

3x2=2,2x3=3¢ I, we see that [ is not an obstinate d-ideal of X.

Example 3.12. Let X := {0,1,2,3} be a d-algebra with the following table:

W N = O ¥
W W= oo
w NN oo
— O O Ol
OO R OlWw

Then it is easy to see that I := {0,1} is a d-ideal of X. Since 2,3 ¢ I and

2%3=0,3x2=1,1ie.,2%x3,3x2 €I, 1 is an obstinate d-ideal of X.

Recall that a d-algebra (X, *,0x) is said to be d-transitive if z+z = 0x and

zxy=0x imply x xy = 0x.
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Let J :={0,1} be a set with the following table:

0
0
1

=K ]
O Ol =

Then it is easy to see that (J,e,0) is a d-transitive d-algebra.

Proposition 3.13. Let (X,*,0x) be a d-algebra and f: (X,*,0x) — (J,e,0)

be a homomorphism. Then Ker(f) is an obstinate d*-ideal of X.

Proof. By applying Proposition 2.16, we see that Ker(f) is a d*-ideal of X. If
z,y & Ker(f), = #y, then f(zxy) = f(z)e f(y) =1e1=0.
Also, f(yxz) = f(y) e f(x) =11 =0. Thus x xy, yxx € Ker(f). Hence

Ker(f) is an obstinate d*-ideal of X. O

Theorem 3.14. Let (X,*,0x) be a d-algebra and let I be a proper d-ideal of
X. Then, given an edge d-algebra (Y, e,0y), there exists a homomorphism f :

X =Y such that Ker(f) = I if and only if I is an obstinate ideal of X.

Proof. Let I be an obstinate ideal of X. We define amap f: X — Y by

L Oy (wEI)
J(@) ._{a (x e X\ 1)

where a is a fixed element of Y with a # 0y. We show that f is a homomorphism

from X to Y. We consider 4 cases :

Case 1. If z, y € I, then z xy € I by (D2) in Definition 2.7. It follows that

f(xy) =0y =0y o0y = f(x) o f(y).
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Case 2. If x, y € I, x # vy, since [ is obstinate, we obtain x xy € I. It follows

that

flexy) =0y =aea= f(x)ef(y).

Case 3. Ifx ¢ T and y € I, then x xy & I. In fact, if we assume x xy € I, since
y € I and (D;) in Definition 2.7, we obtain z € I, a contradiction. Since Y is

an edge d-algebra, we obtain

fxy) =a=aely = f(z)e f(y).

Case 4. If z € [ and y ¢ I, then x xy € I by (D2) in Definition 2.7. It follows

that

fl@xy) =0y=0y ea = f(z)e f(y)
This shows that f: X — Y is a homomorphism. Clearly, we have Ker(f) = I.
Conversely, let Y := {0y, a} be a set with the following table:
° ‘ Oy a

Oy | Oy Oy
a a Oy

Then (Y,e,0y) is an edge d-algebra. By assumption, there exists a homo-
morphism f : X — Y such that Ker(f) = I. We claim that [ is an ob-
stinate ideal of X. If x, y € I, v # y, then f(z) = f(y) = a, and hence
J(zxy) = f@)e f(y) =aea=0y and fy+x) = f(y) o f(z) =asa=0y. Tt

follows that x *y, y * x € Ker(f) =I. Hence I is an obstinate ideal of X. [
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4. Analytic real algebras and d-algebras

Let R be the set of all real numbers and let “x¥” be a binary operation on
R. Define a map A : R x R — R . We define z x y := A(z,y) for all z,y € R.

Such a groupoid (R, *) is said to be an analytic real algebra.

4.1. Analytic real algebras

Given an analytic real algebra (R, %), we define
tr(x,\) = [ M, z) do

We call tr(x,\) a trace of A. Note that the trace tr(x,\) may or may not
converge. Given an analytic real algebra (R,x*), where z %y := A(z,y), if
xxx =0 for all z € R, then tr(x,\) = 0, but the converse need not be true in

general.

Example 4.1. Let 2y € R. Define

o) = {0 if x # xg,

1 otherwise.

Then tr(x,\) = [~

oo

Az, z) de =0, but A(zg,z9) =1 # 0, i.e., zg * z9 # 0.

Proposition 4.2. Let (R, ) be an analytic real algebra and let a,b,c € R,
where x x y := ax + by + ¢ for all x,y € R. If |tr(x,\)| < oo, then tr(x, A) =0

and x xy = a(x — y) for all z,y € R.

Proof. Given z € R, we have z x x = (a 4+ b)x + ¢. Since |tr(x, \)| < oo, we

have | [%_[(a+b)z + ¢] dz| < co. Now fOA[(a+b)x+C] dr = (a+b)A72+cA =
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A [%H’A—I— c| for a large number A, so that if [tr(x, A)| < oo, then a +b =0

and ¢ = 0, i.e., we have zxy = a(r —y), and thus x x 2z = 0 for all z € R. [

[

Theorem 4.3. Let a,b,c,d, e, f € R. Define a binary operation “«” on R by
rxy:=ar’+bry+cy+de+ey+ f

for all xz,y € R. If |tr(x,A\)| < oo and Oxx =0 for all x € R, then z xy =

ax(x —y) for all z,y € R.

Proof. Given z € R, we have xxz = (a+b+c)z?+(d+e)z+f. Let A := a+b+c,
B :=d+ e. If we assume [tr(x, \)| < oo, then | [ (Az? + Bz + f)dz| < oo.
Now fOL(Ax2 +Bx+ f) dx = %LB’ + gLQ +fL=1L (%LQ + g + f) for a large
number L so that [tr(x,\)] < oo impliess A = B = f =0, ie,a+b+c=

0,d+e=0,f=0. It follows that
zxy=(ax —cy+d)(z—y). (4.1)
If we assume 0z = 0 for all x € R, then, by (4.1), we have

0 = Oxx
= (a0 —czx +d)(0 — z)

= cx’—dx

for all z € R. This shows that ¢ = d = 0. Hence x xy = ax(x — y) for all

x,y € R. O
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Corollary 4.4. Let a,b,c,d,e, f € R. Define a binary operation “«” on R by
rxy:=ax’+bry+cy’ +de+ey+ f

forallz,y e R. If zxx =0 and Oxx =0 for all x € R, then x xy = ax(x — y)

for all x,y € R.

Proof. The condition, = * x = 0 for all x € R, implies |tr(x,A\)] < oco. The

conclusion follows from Theorem 4.3. O]

Proposition 4.5. Let a,b,c,d,e, f € R. Define a binary operation ‘“«” on R
by

rxy:=ar’ +bry +cy’ +dr+ey+ f
for all x,y € R. If |tr(*, \)| < oo and the anti-symmetry law holds for “«”, then

(ax —cy +d)? + (ay — cx +d)? > 0 for v # y.

Proof. If |tr(x,\)| < oo, then by (4.1) we obtain z xy = (ax — cy + d)(z — y).
Assume the anti-symmetry law holds for “¥”. Then either x*xy £ 0 or y*xx # 0
for  # y. It follows that (z * y)> > 0 or (y*z)?> > 0, and hence (z * y)? +

(y * )2 > 0. This shows that (az — cy + d)? + (ay — cx + d)? > 0. O

Note that in Proposition 4.5 it is clear that if (az—cy+d)%+(ay—cx+d)? > 0

for « # y, then the anti-symmetry law holds.

Corollary 4.6. If we define x x y := ax(x — y) for all x,y € R where a # 0,

then (R, %) is a d-algebra.
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Proof. 1t is easy to see that x xx = 0 = 0xz for all z € R. Assume that = # y.

2 — axy, by applying Proposition 4.5, we obtain

Since x *x y = azx(x — y) = ax
b=—a,c=0,d=e= f=0. It follows that (az — Oy 4+ 0)? + (ay — 0z + 0) =
a’x? + a®>y? = a®(2% + y?) > 0 when a # 0. By Proposition 4.5, (R, ) is a

d-algebra. O

Proposition 4.7. Let a,b,c,d, e, f € R. Define a binary operation “«” on R
by

rxy:=ar’ +bry+cy’ +de+ey+ f
for all z,y € R. If |tr(x,\)| < oo and x x0 = x for all x € R, then x xy =

(1 -cy)(x—vy) for all z,y € R.

Proof. If |tr(x, \)| < oo, then by (4.1) we obtain z *xy = (ax — cy + d)(x — y)
for all z,y € R. If we let y := 0, then x = %0 = (ax + d)z. It follows
that az? + (d — 1)z = 0 for all x € R. This shows that a = 0,d = 1. Hence

xxy=(1—cy)(x—y) for all z,y € R. O

Theorem 4.8. If we define x xy := (ax — cy + d)(x — y) for all z,y € R where

a,c,d € R with a + ¢ # 0, then the anti-symmetry law holds.

Proof. Assume that there exist  # y in R such that z *y = 0 = y % z. Then

(ax —cy+d)(z —y) =0 and (ay — cx + d)(y — x) = 0. Since x # y, we have
ar—cy+d=0=ay —cx+d. (4.2)

It follows that (a + ¢)(x —y) = 0. Since a + ¢ # 0, we obtain z = y, a

contradiction. O
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Remark 4.9. The analytic algebra (R, ), x xy = ax(x — y) for all z,y € R,
was proved to be a d-algebra in Corollary 4.6 by using Proposition 4.5. Since
rxy=azx(r—y) = (ax — 0y + 0)(x — y), we know that a + 0 = a # 0. Hence

the algebra (R, x) can be proved by using Theorem 4.8 also.

Note that the analytic real algebra (R,x*) discussed in Corollary 4.6 need not

be an edge d-algebra, since z % 0 = az(z — 0) = ax? # x.
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4.2 Analytic real algebras with functions

Let a, 8 : R — R be real-valued functions. Define a binary operation “x”
on R by

zxy = a(z)r+ B(y)y +c (4.3)

where ¢ € R.

Proposition 4.10. Let (R, %) be an analytic real algebra defined by (4.3). If

cxx=0=0x%x for allx € R, then x xy =0 for all z,y € R.

Proof. Assume that x xx = 0 for all z € R. Then
0 = zxz
= o(z)r+ p(z)r+c
= la(z) + B(x)z +c

If we let  := 0, then ¢ = 0. If z # 0, then a(z) + 8(x) =0, i.e., 5(z) = —a(x)

for all z # 0 in R. It follows that

xxy=a(z)r—aly)y. (4.4)
Assume Oxx = 0 for all x € R. Then

0 = Ox=x

It follows that B(z) = 0 for all x # 0 in R. Hence we have z xy = 0 for all

x,y € R. I
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Proposition 4.11. Let (R, %) be an analytic real algebra defined by (4.3). If

xxx=0and xx0=x for allx € R, then x xy = x —y for all z,y € R.

Proof. 1If we assume z xxz = 0 for all x € R, then by (4.4) we obtain x xy =
a(r)r — a(y)y. Assume that © 0 = z for all z € R. Then z = 2 %0 =
a(z)x — a(0)0 = a(z)z. This shows that a(x) = 1 for any = # 0 in R. Hence

zxy=x—yforall z,y € R. O

Let a,b1,b2,¢,d, e : R = R be real-valued functions and let f € R. Define a

binary operation “x” on R by
zxy = a(z)a® + by (2)ba(y)ry + c(y)y® + d(x)z + e(y)y + f (4.5)
for all x,y € R. Assume 0% x = 0 for all x € R. Then

0 = 0%z
= c(x)2® te(x)x+ f

= le(@)z +e(x)]r + f

for all z € R. It follows that f = 0 and c¢(x)z + e(z) = 0 for all z # 0 in R.

Hence c(y)y? + e(y)y = 0 for all y € R. Hence

zxy = a(x)z? + by (2)by(y)zy + d(x)x. (4.6)
Assume z * z = 0 for all z € R. Then by (4.6) we obtain

0 = zxz

= a(2)x? 4 by (2)be(x)2? + d(x)x.
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It follows that d(z)z = —[a(z)x? + by (z)ba(z)z?]. By (4.6) we obtain

zxy = bi(x)zba(y)y — ba(x)z]. (4.7)

Theorem 4.12. Let by, by : R — R be real-valued functions. Define a binary
operation “x” on R as in (4.7). If we assume be(z)x # ba(y)y and b?(x)x? +

b3 (y)y? > 0 for any = # y in R, then (R, %) is a d-algebra.

Proof. Assume the anti-symmetry law holds. Then it is equivalent to that if
x #ythen zxy # 0 or yxx # 0, ie., if z # y then (x xy)?2 + (yx2)? > 0.

Since = x y is defined by (4.7), we obtain that if z # y then

(b1 (z)a” 4 b3 (v)y”) (ba(z)x — ba(y)y)* > 0.

By assumption, we obtain that (R, «) is a d-algebra. O

Example 4.13. Consider z xy := ax(z — y) for all z,y € R. If we compare it
with (4.7), then we have bi(z) = a,b2(y) = —1 and ba(z) = —1 for all x € R.
This shows that ba(z)x — b2(y)y = (—1)z — (=1)y = y —  # 0 when = # y.
Moreover, b3(z)x? + b3(y)y? = ax? + b2(y)y? > 0 since a # 0. By applying
Theorem 4.12, we see that an analytic real algebra (R, x) where xxy := ax(z—y),

a # 0 is a d-algebra.
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Example 4.14. Consider x x y := xtan2z[e¥y — ez] for all z,y € R. By
comparing it with (4.7), we obtain bi(x) = tan2z,by(y) = €Y and be(x) =
e®. If z # y, then it is easy to see that ze® # ye¥ and b?(z)z? + b3 (y)y? =
(tan 22)%22 + (tan 2y)?y? > 0 when z # 3. Hence an analytic real algebra (R, x)

where z x y := x tan 2z[eYy — e”x] is a d-algebra by Theorem 4.12.

In Theorem 4.12, we obtained some conditions for analytic real algebras to
be d-algebras. In addition, we construct an edge d-algebra from Theorem 4.12

as follows.

Theorem 4.15. If define a binary operation “«” on R by

_ (=) :
THxY = {m [1 bl(y)} ify #0,

T otherwise,

where by (x) is a real-valued function such that by(y) # 0 ify # 0, then (R, ) is

an edge d-algebra.

Proof. Define a binary operation “x” on R as in (4.7) with additional conditions:
bo(x)w # ba(y)y and b?(z)z% +b2(y)y? > 0 for any = # y in R. Assume xx0 = z

for all z € R. Then

r = zx0
= bi(z)z[b2(0)0 — b (z)x]

= —by(z)ba(z)x?.
Combining with (4.7) we obtain

zxy = bi(x)ba(y)zy — bi(x)ba(x)z?
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= bi(x)ba(y)xy +

= by (x)ba(y)y + 1].

If we let xy # 0, then

x [bl(x)(—l) + 1}

Txy =
bi(y)
b
T [1 . 1(33)] .
bi(y)
If we let  xy := x when y = 0, then (R, x) is an edge d-algebra. O

Example 4.16. Define a map bi(z) := e for all z € R. Then z xy =

x [1 — Z%} =z (1 — eA(x*y)) when y # 0. If we define a binary operation “x”
on R by

x otherwise,

1—eMe=0] ify #£0
R )
then (R, *) is an edge d-algebra.

Proposition 4.17. Suppose that we define a binary operation “«<” on R by

_ bi(x) :
TxY = {33 {1 bl(w} ity #0,

x otherwise,

where by (x) is a real-valued function such that bi(y) # 0 if y # 0. Assume that

if x # y, then either by(x xy) = bi(x) or by(zx (x xy)) = b1(y). Then

(x*x(z*xy))xy=0 (4.8)

for all z,y € R.
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Proof. By Theorem 4.15 (R, «) is an edge d-algebra and hence (4.8) holds for

xxy=0o0ry=0. Assume z xy # 0 and y # 0. Then

N bl(:c)
rx(xxy)=2x [1— bl(a?*y)] .
It follows that
(@ arg)ry = los (@) 1= 2]
I b1 (z) _bl(x*(az*y))
; [1 bl(x*yJ [1 b1(y) ]
= 0,
proving the proposition. ]
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5. Smarandache fuzzy ideals in BC'[-algebras

In this chapter, we discuss a Smarandache fuzzy structure on BCI-algebras
and introduce the notion of a Smarandache fuzzy subalgebra (ideal) of a Smaran-
dache BCI-algebra, a Smarandache fuzzy clean (fresh) ideal of a Smarandache

BCI-algebra are introduced, and we investigate their properties.

5.1 Smarandache fuzzy ideals

Definition 5.1. Let X be a Smarandache BCI-algebra. A map p: X — [0,1]

is called a Smarandache fuzzy subalgebra of X if it satisfies
(SFy) 1(0) > p(x) for all x € P,

(SFy) p(x = y) = min{u(x), u(y)} for all z,y € P,

where P C X, P is a BCK-algebra with |P| > 2. A map p: X — [0,1] is
called a Smarandache fuzzy ideal of X if it satisfies (SF1) and (F») pu(x) >
min{u(z *y), u(y)} for all z,y € P, where P C X, P is a BCK-algebra with
|P| > 2. This Smarandache fuzzy subalgebra (ideal) is denoted by up, i.e.,

pup = P —]0,1] is a fuzzy subalgebra (ideal) of X.
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Example 5.2. ([8]) Let X := {0,1,2,3,4,5} be a Smarandache BCI-algebra

with the following table:

T W N~ O %
DL W N~ OO
W W W oo
UL WO = O
== O W W Www
— O O W W W e
O OO W W W ot

Define a map p: X — [0, 1] by

0.5 ifz e {0,1,2,3},
() = .
0.7 otherwise.

Clearly p is a Smarandache fuzzy subalgebra of X. It is verified that u restricted
to a subset {0, 1, 2,3} which is a subalgebra of X is a fuzzy subalgebra of X, i.e.,
po1,2,3) : 10,1,2,3} — [0,1] is a fuzzy subalgebra of X. Thus p: X — [0,1] is
a Smarandache fuzzy subalgebra of X. Note that p: X — [0, 1] is not a fuzzy
subalgebra of X, since u(5*4) = u(1) = 0.5 % min{u(5), u(4)} = 0.7.

Example 5.3. ([8]) Let X := {0,1,2,3,4,5} be a Smarandache BCI-algebra

with the following table:

T W N~ O %
DL W N~ OO
=k Wy O Ol
=k W OO Ol
UL O N = O W
— O R R R R
S O R ROt

Define a map p: X — [0, 1] by

() =

0.5 ifz € {0,1,2},
0.7 otherwise.
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Clearly p is a Smarandache fuzzy ideal of X. It is verified that p restricted
to a subset {0, 1,2} which is an ideal of X is a fuzzy ideal of X, i.e., pyo1,9y
{0,1,2} — [0,1] is a fuzzy ideal of X. Thus p: X — [0,1] is a Smarandache
fuzzy ideal of X. Note that p : X — [0,1] is not a fuzzy ideal of X, since

#(2) = 0.5 % min{pu(2 x 4) = u(4), u(4)} = p(4) = 0.7.

Lemma 5.4. Every Smarandache fuzzy ideal pp of a Smarandache BCI-

algebra X is order reversing.

Proof. Let P be a BCI-algebra with P C X and |P| > 2. If z,y € P withz <y,
then z*y = 0. Hence we have p(z) > min{u(z *y), p(y) } = min{u(0), u(y)} =

1(y)- O

Theorem 5.5. Every Smarandache fuzzy ideal up of a Smarandache BCI-

algebra X is a Smarandache fuzzy subalgebra of X.

Proof. Let P be a BCI-algebra with P C X and |P| > 2. Since z *xy < z for

any z,y € P, it follows from Lemma 5.4 that p(z) < p(z *y), so by (SFz) we

obtain p(x *y) > p(x) > min{u(x * y), u(y)} > min{u(z), u(y)}. This shows

that p is a Smarandache fuzzy subalgebra of X, proving the theorem. O
Proposition 5.6. Let pp be a Smarandache fuzzy ideal of a Smarandache

BCT-algebra X. If the inequality = *vy < z holds in P where BCI-algebra P

with P C X and |P| > 2, then p(z) > min{u(z), u(z)} for all x,y,z € P.
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Proof. If xxy < zin P, then (x xy)* 2z = 0. Hence we have u(z xy) >

min{u((z * y) * z), p(z)} = min{u(0), pu(z)} = u(z). It follows that u(x) >

O

min{p(z *y), wu(y)} = min{u(y), u(z)}

Theorem 5.7. Let X be a Smarandache BCI-algebra. A Smarandache fuzzy
subalgebra up of X is a Smarandache fuzzy ideal of X if and only if for all

x,y € P where BCI-algebra P with P C X and |P| > 2, the inequality

xxy < z implies p(x) > min{u(y), p(2)}.

Proof. Suppose that pp is a Smarandache fuzzy subalgebra of X satisfying the
condition = * y < z implies p(z) > min{u(y),pu(2)}. Since z * (x xy) < y
for all z,y € P, it follows that p(z) > min{u(z * y), u(y)}. Hence up is a

Smarandache fuzzy ideal of X. The converse follows from Proposition 5.6. [
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5.2 Smarandache fuzzy clean ideals

Definition 5.8. Let X be a Smarandache BCT-algebra. A map p: X — [0, 1]

is called a Smarandache fuzzy clean ideal of X if it satisfies (SF7) and
(SF3) p(z) > min{u(zx (y*x)) *2), u(2)} for all z,y,z € P,

where P C X and P is a BCK-algebra with |P| > 2. This Smarandache fuzzy
clean ideal is denoted by pp, i.e., up : P — [0,1] is a Smarandache fuzzy clean

ideal of X.

Example 5.9. ([9]) Let X :={0,1,2,3,4,5} be a Smarandache BCI-algebra

with the following table:

T W N~ O %
QU W N~ OO
G N~ O Ol
T O O O N
TR RO OoOlWw
OO O OO O
S Ot Ot Ot Ot Ot Ot

Define a map p: X — [0, 1] by

0.4 ifze{0,1,2,3},
u(e) = 10.1,2,3)
0.8 otherwise.

Clearly p is a Smarandache fuzzy clean ideal of X, but p is not a fuzzy clean
ideal of X, since p(3) = 0.4 ¥ min{u((3*(0%3))*5), u(5)} = min{u(5), u(5)} =
wu(5) =0.8.
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Theorem 5.10. Let X be a Smarandache BCI-algebra. Every Smarandache

fuzzy clean ideal up of X is a Smarandache fuzzy ideal of X .

Proof. Let X be a BCI-algebra with P C X and |P| > 2. Let pup : P — [0,1]

be a Smarandache fuzzy clean ideal of X. If we let y := x in (SF3), then u(x) >

min{p((z (2 +2)) * 2), u(2)} = min{p((z *0) * 2), u(2)} = min{u(z «2), p(2)},
for all z,y, 2 € P. This shows that u satisfies (SF3). Combining (SF1), we get

pp is a Smarandache fuzzy ideal of X, proving the theorem. O

Corollary 5.11. Every Smarandache fuzzy clean ideal up of a Smarandache

BCT-algebra X is a Smarandache fuzzy subalgebra of X.

Proof. 1t follows from Theorem 5.5 and Theorem 5.10. 0

Example 5.12. Let X :={0,1,2,3,4,5} be a Smarandache BCI-algebra with

the following table:

*0 1 2 3 4 5
0/]0 0 0 0O 0 5
11 01 0 0 5
212 2 0 0 0 5
313 3 3 00 5
414 3 41 0 5
5!5 5 5 5 5 0

Let up be a fuzzy set in P = {0,1,2,3,4} defined by u(0) = u(2) = 0.8 and
uw(l) = p(3) = p(4) = 0.3. It is easy to check that pp is a fuzzy ideal of
X. Hence p: X — [0,1] is a Smarandache fuzzy ideal of X. But it is not a

Smarandache fuzzy clean ideal of X since u(1) = 0.3 ¥ min{u((1 x (3 % 1)) *

2), 1(2)} = min{u(0), p(2)} = 0.8,
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Theorem 5.13. Let X be a Smarandache implicative BCI-algebra. Every

Smarandache fuzzy ideal pp of X is a Smarandache fuzzy clean ideal of X.

Proof. Let P be a BCI-algebra with P C X and |P| > 2. Since X is a
Smarandache implicative BC'I-algebra, we have © = x x (y x ) for all x,y € P.
Let pp be a Smarandache fuzzy ideal of X. It follows from (SF3) that u(z) >
min{u(z = 2), u(2)} > min{p((z * (y * 2)) % 2), u(2)}, for all 2y, 2 € P. Hence

wp is a Smarandache clean ideal of X. The proof is complete. O

In what follows, we give characterizations of fuzzy implicative ideals.

Theorem 5.14. Let X be a Smarandache BC'I-algebra. Suppose that pp is a

Smarandache fuzzy ideal of X. Then the following equivalent:
(i) pp is Smarandache fuzzy clean,
(ii) p(z) > p(x* (y*x)) for all z,y € P,

(i) p(x) = p(x* (y*x)) for all x,y € P.

Proof. (i) = (ii): Let up be a Smarandache fuzzy clean ideal of X. It follows
from (SFs) that p(z) > min{u((z * (y * 2)) * 0), n(0)} = min{u(z « (y *
x)), 1(0)} = p(z * (y * x)), for all x,y € P. Hence the condition (ii) holds.

(ii) = (iii): Since X is a Smarandache BCI-algebra, we have z  (y xz) < z
for all z,y € P. It follows from Lemma 5.4 that p(z) < p(z x (y *xx)). By (ii),

p(x) > p(x * (y * x)). Thus the condition (iii) holds.
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(iii) = (i): Suppose that the condition (iii) holds. Since pup is a Smarandache
fuzzy ideal, by (SFs), we have pu(x * (y x x)) > min{u((x * (y x x)) * 2), u(2) }.

By assumption, we obtain p(x) > min{u((x*(y*x))*z), u(z)}. Hence p satisfies
the condition (SF3). Obviously, u satisfies (SFy). Therefore p is a fuzzy clean

ideal of X. Hence the condition (i) holds. The proof is complete. O

For any fuzzy sets p and v in X, we write u < v if and only if u(z) < v(x)

for any z € X.

Definition 5.15. Let X be a Smarandache BCI-algebra and let pup : P — [0, 1]
be a Smarandache fuzzy BCI-algebra of X. For ¢t < n(0), the set p; := {x €

P|u(x) >t} is called a level subset of pp.

Theorem 5.16. A fuzzy set y in P is a Smarandache fuzzy clean ideal of X if
and only if, for all t € [0, 1], p; is either empty or a Smarandache clean ideal of

X.

Proof. Suppose that pp is a Smarandache fuzzy clean ideal of X and u; # ) for
any t € [0,1]. It is clear that 0 € p; since u(0) > t. Let p((x* (y*x))*2) >t
and p(z) > t. It follows from (SF3) that wp(x) > min{u((z * (y * z)) * z),
w(z)} > t, namely, © € p;. This shows that y; is a Smarandache clean ideal of
X.

Conversely, assume that for each ¢ € [0, 1], p; is either empty or a Smaran-
dache clean ideal of X. For any = € P, let pu(z) = ¢t. Then = € p;. Since
pt(# 0) is a Smarandache clean ideal of X, 0 € p; and hence p(0) > p(z) = t.

Thus ©(0) > u(x) for all x € P. Now we show that u satisfies (SF3). If not,
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then there exist 2, ¢/, 2/ € P such that p(z') < min{u((z'*(y' *2")) x2"), u(z')}.
Taking to := 3{u(2) + min{u((z’ * (v * 2')) x 2’), u(2') }}, we have p(z') < to <
min{p((a’ * (v * 2')) x 2'), u(2")}. Hence 2’ ¢ py,, (' * (v x2')) * z € py,, and
2 € puy, 1e., uy, is not a Smarandache clean of X, which is a contradiction.

Therefore, up is a Smarandache fuzzy clean ideal, completing the proof. ]

Theorem 5.17. (/9]) (Extension Property) Let X be a Smarandache BCI-
algebra. Let I and J be QQ-Smarandache ideals of X and I C J C Q. If1 is a

QQ-Smarandache clean ideal of X, then so is J.
Next we give the extension theorem of Smarandache fuzzy clean ideals.

Theorem 5.18. Let X be a Smarandache BCI-algebra. Let p and v be
Smarandache fuzzy ideals of X such that p < v and p(0) = v(0). If p is a

Smarandache fuzzy clean ideal of X, then so is v.

Proof. 1t suffices to show that for any ¢t € [0, 1], v; is either empty or a Smaran-
dache clean ideal of X. If the level subset v; is non-empty, then p; # () and
pe C vy In fact, if @ € py, then ¢ < p(x); hence t < v(x), ie, x € v. So py C vy,
By the hypothesis, since p is a Smarandache fuzzy clean ideal of X, u; is a
Smarandache clean of X by Theorem 5.16. It follows from Theorem 5.17 that
v¢ is a Smarandache clean ideal of X. Hence v is a Smarandache fuzzy clean of

X. The proof is complete. O
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5.3 Smarandache fuzzy fresh ideals

Definition 5.19. Let X be a Smarandache BCI-algebra. A map p: X — [0, 1]

is called a Smarandache fuzzy fresh ideal of X if it satisfies (SF;) and
(SFy) p(xxz) > min{pu((z*xy) *2), u(y *x 2)} for all x,y,z € P,

where P is a BCK-algebra with P C X and |P| > 2. This Smarandache fuzzy
ideal is denoted by pp, i.e., up : P — [0, 1] is a Smarandache fuzzy fresh ideal

of X.

Example 5.20. ([9]) Let X :={0,1,2,3,4,5} be a Smarandache BC'I-algebra

with the following table:

QL s W N~ O %
L W N~ OO
G = NN O O
UL W O~ Ol
T O N O OfWw
TGO W O~ Ol
S Ot Ot Ot Ot Ot Ot

Define a map p: X — [0,1] by

0.5 ifze{0,1,3},
wle) = 01,3}
0.9 otherwise.

Clearly p is a Smarandache fuzzy fresh ideal of X. But it is not a fuzzy fresh
ideal of X, since pu(2%4) = p(0) = 0.5 ¥ min{u( (2%5)x4), u(5*x4)} = u(5) =
0.9.
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Theorem 5.21. Every Smarandache fuzzy fresh ideal of a Smarandache BC'I-

algebra X is a Smarandache fuzzy ideal of X.

Proof. Taking z := 0 in (SFy) and x x 0 = z, we have p(x *0) > min{u((z *

y) *0), u(y x0)}. Hence pu(x) > min{u(x *y), u(y)}. Thus (SF») holds. O

The converse of Theorem 5.21 need not be true in general.

Example 5.22. ([9]) Let X :={0,1,2,3,4,5} be a Smarandache BCI-algebra

with the following table:

T W N~ O %
DL W N~ OO
CU b kR =) O O
Uk = O O Ol
U O = O OlWw
GO W N~ Ok
S Ot Ot Ot Ot Ot Ot

Define a map p : X — [0,1] by

T) =
H) 0.4 otherwise.

{0.5 if z € {0,4},

Clearly pu(x) is a Smarandache fuzzy ideal of X. But p(z) is not a Smarandache

fuzzy fresh ideal of X, since p(2 *3) = p(l) = 0.4 ¥ min {p((2 * 1) * 3),

u(1%3)} = min{pu(1# 3), u(0)} = u(0) = 0.5.

Proposition 5.23. Let X be a Smarandache BCI-algebra. A Smarandache
fuzzy ideal pp of X is a Smarandache fuzzy fresh ideal of X if and only if it

satisfies the condition p(x xy) > pu((z *y) xy) for all x,y € P.
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Proof. Assume that up is a Smarandache fuzzy fresh ideal of X. Putting z := y

in (SFy), we have pu(x * y) > min{u((z * y) * y), pu(y * y)} = min{p((z * y) *
), w(0)} = p((z *y) *y), for all z,y € P.

Conversely, let up be a Smarandache fuzzy ideal of X such that pu(z *y) >
p((z * y) * y). Since, forall z,y,z € P, ((zx2)*2) * (yxz2) < (x*x2)*xy =
(x *y) * z, we have p((zxy) *z) < pu(((x *2) * z) * (y * 2)). Hence pu(x * z) >

ul(@x2) * 2) > minfu(((@x2)*2)* (ye2), p (y=2)} > minfu((exy) =),

w(y = z)}. This completes the proof. O

Since (z*y)*y < xxy, it follows from Lemma 5.4 that p(x*xy) < p((zxy)=*y).

Thus we have the following theorem.

Theorem 5.24. Let X be a Smarandache BCI-algebra. A Smarandache fuzzy

ideal up of X is Smarandache fuzzy fresh if and only if it satisfies the equality

u(xxy) = p((z*y)*y), forallz,yeX.

We give an equivalent condition for which a Smarandache fuzzy subalgebra

of a Smarandache BC'I-algebra to be a Smarandache fuzzy clean ideal of X.

Theorem 5.25. A Smarandache fuzzy subalgebra up of X is a Smarandache

fuzzy clean ideal of X if and only if it satisfies

(x* (y*x))* 2z <u implies p(x) > min{u(z), u(u)} for all x,y,z,u € P. (*x*)
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Proof. Assume that pp is a Smarandache fuzzy clean ideal of X. Let x,y, z,u €
P be such that (z % (y *z)) *x z < u. Since p is a Smarandache fuzzy ideal of
X, we have p(z * (y*x)) > min{p(z), u(u)} by Theorem 5.7. By Theorem 5.14
(iii), we obtain u(x) > min{u(z), p(u)}.

Conversely, suppose that pp satisfies (x*). Obviously, pup satisfies (SFy),
since (zx (yxxz)) * (xx(yxxz))*x2) < 2z by (f), we obtain p(z) >
min{y ((z* (y*x))*2), pu(z)}, which shows that up satisfies (SF3). Hence pup

is a Smarandache fuzzy clean ideal of X. The proof is complete. O
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Background
The notions of BCK-algebras and BCI-algebras were introduced by Iséki and Iséki and
Tanaka (1980, 1978). The class of BCK-algebras is a proper subclass of the class of BCI-
algebras. We refer useful textbooks for BCK-algebras and BCl-algebras (Lorgulescu
2008); Meng and Jun (1994); Yisheng (2006). The notion of d-algebras which is another
useful generalization of BCK-algebras was introduced by Neggers and Kim (1999), and
some relations between d-algebras and BCK-algebras as well as several other relations
between d-algebras and oriented digraphs were investigated. Several aspects on d-alge-
bras were studied (Allen et al. 2007; Han et al. 2010; Kim et al. 2012; Lee and Kim 1999;
Neggers et al. 1999, 2000). Simply d-algebras can be obtained by deleting two identities
as a generalization of BCK-algebras, but it gives more wide ranges of research areas in
algebraic structures. Allen et al. (2007) developed a theory of companion d-algebras in
sufficient detail to demonstrate considerable parallelism with the theory of BCK-alge-
bras as well as obtaining a collection of results of a novel type. Han et al. (2010) defined
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d-algebras and pre-d-algebras, and they showed that the squared algebra (X,[J,0) of a
pre-d-algebra (X, %, 0) is a strong d-algebra if and only if (X, *,0) is strong. Allen et al.
(2011) introduced the notion of deformations in d / BCK-algebras. Using such deforma-
tions, d-algebras were constructed from BCK-algebras. Kim et al. (2012) studied proper-
ties of d-units in d-algebras, and they showed that the d-unit is the greatest element in
bounded BCK-algebras, and it is equivalent to the greatest element in bounded commu-
tative BCK-algebras. They obtained several properties related with the notions of weakly
associativity, d-integral domain, left injective in d-algebras also.

In this paper we construct some real algebras by using elementary functions, and dis-
cuss some relations between several axioms and its related conditions for such func-

tions. We obtain some conditions for real-valued functions to be a (edge) d-algebra.
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Preliminaries
A d-algebra (Neggers and Kim 1999) is a non-empty set X with a constant 0 and a binary
operation "x" satisfying the following axioms:

I) x*kx =0,
(1) O0%x=0,
(II) xxy=0and y*x=0implyx = yforallx,y € X.

For brevity we also call X a d-algebra. In X we can define a binary relation "<" by x < y if
and only if x x y = 0.

An algebra (X, *,0) of type (2,0) is said to be a strong d-algebra (Han et al. 2010) if it
satisfies (I), (IT) and (IIT*) hold for all x, y € X, where

(III*) x *y = y * x implies x = y.

Obviously, every strong d-algebra is a d-algebra, but the converse need not be true (Han
et al. 2010).

Example 1 (Han et al. 2010) Let R be the set of all real numbers and e € R. Define
x*%y:=(x—y)- - (x—e)+e for all x,y € R where "" and "—" are the ordinary prod-
uct and subtraction of real numbers. Then x xx = e;exx = e; x *y = y xx = e yields
x—y) - x—e)=0,(y—x)-(y—e)=0andx =yorx =e =y, ie,x =y, ie, (R, *e)
is a d-algebra.

However, (R,*,e) is not a strong d-algebra. If xxy=y*xx < (x—y)-(x —e) +e
=@)-x)-@-—ete S@x—yxx—e)=—x—N-0—-e & x—y)-x—et+y—e)
=0 x—y) - x+y—2) =04 (x=y or x+y=2e), then there exist x = e+«
and y = e — a such that x + y = 2¢, i.e., x *x y = y x x and x # y. Hence, axiom (IIT*) fails
and thus the d-algebra (R, %, e) is not a strong d-algebra.

A BCK-algebra is a d-algebra X satisfying the following additional axioms:

V) (x*y) * (x*2)* (z*y) =0,
(V) (e*x(xxy)*xy=0forallx,y,z € X.

Example 2 (Neggers et al. 1999) Let X := {0, 1,2, 3,4} be a set with the following table:

* 0 1 2 3 4
0 0 0 0 0 0
1 1 0 1 0 1
2 2 2 0 3 0
3 3 3 2 0 3
4 4 4 1 1 0

Then (X, %, 0) is a d-algebra which is not a BCK-algebra.

Let X be a d-algebra and x € X. X is said to be edge if for any x € X, x * X = {«,0}. It is
known that if X is an edge d-algebra, then x % 0 = x for any x € X (Neggers et al. 1999).
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Analytic real algebras
Let R be the set of all real numbers and let “«” be a binary operation on R. Define a map
A:R x R — R.If we define x x y := A(x,y) for all x,y € R, then we call such a groupoid
(R, %) an analytic real algebra.

Given an analytic groupoid (R, *), we define

tr(x,A) = / Alx,x) dx

—00

We call tr(x, 1) a trace of 1. Note that the trace tr (%, A) may or may not converge. Given an
analytic groupoid (R, ), where x x y := A(x,y),if x xx = Oforallx € R, thentr(x, 1) =0,
but the converse need not be true in general.

Example 3 Let xg € R. Define

_Jo if x # xo,
A, %) = { 1 otherwise

Then tr(x, ) = ffo Ax, x) dx = 0, but A(xg,x0) = 1 # 0, i.e., xg * x9 %~ O.

o0

Proposition 4 Let (R,*) be an analytic real algebra and let a,b,c € R, where
xxy:=ax+by+c for all x,yeR. If |tr(x,1)| <oo, then tr(x,A) =0 and
xxy=a(x—y)forallx,y € R.

Proof Given x € R, we have xxx = (a+ b)x +c. Since |tr(x,1)| < oo, we have
| %, [(@ + b)x + cldx| < 0o.Now [[(a+ b)x + ] dx = (a+ b)A: + cA = A[“F2A + ¢]
for a large number A, so that if |¢r(%, 4)| < oo, then a +b =0 and ¢ = 0, i.e., we have
xxy=a(x —y),and thus x xx = 0 forall x € R. (]

n,n

Theorem 5 Leta,b,c,d,e,f € R. Define a binary operation "x" on R by
x*y:=ax’ +bxy+cy* +dx+ey+f

forall x,y € R If|tr(x, 1) < coand 0xx = 0 for all x € R, then x xy = ax(x — y) for all
x,7 € R.

Proof Given x € R, wehave x xx = (@a+b+c)x> +(d+e)x+f. Let A:=a+b+c,
B:=d+e If we assume |tr(x,A)| < oo, then |f_°°oo(Ax2 + Bx + f) dx| < co. Now
fOL(Ax2 +Bx+f) dx = %L3 + ng +fL = L(%L2 + g + f) for a large number L so that
[tr(*, )] < coimplies A=B=f =0,ie,a+b+c=0,d+e=0,f =0.It follows that

xxy=(ax—cy+d)(x—y) (D

If we assume 0 * x = 0 for all x € R, then, by (1), we have

0=0xx
= (a0 —cx+d)(0—x)

= cx? — dx,

for all x € R. This shows thatc = d = 0. Hence x * y = ax(x — y) for all x,y € R.[J
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Corollary 6 Leta,b,c,d,e,f € R. Define a binary operation “«” on R by
xxy =ax’+bxy+cy? +dx+ey+f

for all x,y e R.If x+xx=0and 0xx =0 for all x € R, then xxy = ax(x —y) for all
%,y € R.

Proof The condition, x x x = 0 for all x € R, implies |¢r(x, A)| < oo. The conclusion fol-
lows from Theorem 5. g

Proposition7 Leta,b,c,d,e,f € R. Define a binary operation “<’ on R by
xxy:i=ax’ +bxy+cy’ +dx+ey+f

for all x,y e R. If |tr(x,4)| < oo and the anti-symmetry law holds for “«, then
(ax —cy+d)> + (ay —cx +d)?> > Oforx # .

Proof If |tr(x, A)| < oo, then by (1) we obtain x *y = (ax — ¢y + d)(x — y). Assume
the anti-symmetry law holds for “«” Then either x % y % 0 or y x x # 0 for x # y. It fol-
lows that (x % )% > 0 or (y x x)> > 0, and hence (x * y)> + (y % x)> > 0. This shows that
(ax — cy+d)* + (ay — cx + d)> > 0. O

Note that in Proposition 7 it is clear that if (ax — cy + d)> + (ay — cx + d)> > 0 for
x # v, then the anti-symmetry law holds.

Corollary 8 If we define x x y := ax(x — y) for all x,y € R where a # 0, then (R, %) is a
d-algebra.

Proof It is easy to see that x xx = 0 = 0 xx for all x € R. Assume that x # y. Since
x %y = ax(x — y) = ax> — axy, by applying Proposition 7, we obtain b= —a,c =0,
d=e=f=0. It follows that (ax—0y+0)>+ (ay— O0x + 0)> = a’x? + a’y?
= a?(x®> + y*) > O when a # 0. By Proposition 7, (R, ) is a d-algebra. O

“w,»

Proposition9 Leta,b,c,d,e,f € R. Define a binary operation “<” on R by
xxy:=ax’+bxy+cy? +dx+ey+f

forall x,y € R. If|tr(x,A)| < coand x «0 =x for all x € R, then x xy = (1 — cy)(x — ¥)
forallx,y € R.

Proof If |tr(x,1)| < oo, then by (1) we obtain x*y = (ax — ¢y +d)(x — y) for all
x,9 € R.If we let y := 0, then x = x x 0 = (ax + d)x. It follows that ax? + (d — 1)x = 0
for all x € R. This shows thata = 0,d = 1. Hence x xy = (1 — cy)(x — y) for all x, y € R.

O

Theorem 10 If we define x xy :== (ax — ¢y +d)(x — y) for all x,y € R where a,c,d € R
with a + ¢ # 0, then the anti-symmetry law holds.
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Proof Assume that there exist x #y in R such that x*xy=0=yxx Then
(ax —cy+d)(x —y) =0and (ay — cx + d)(y — x) = 0. Since x # y, we have

ax—cy+d=0=ay—cx+d 2)
It follows that (a + ¢)(x — y) = 0. Since a + ¢ # 0, we obtain x = y, a contradiction. [

Remark The analytic algebra (R,*), xxy=ax(x—y) for all «x,y€R,
was proved to be a d-algebra in Corollary 8 by using Proposition 7. Since
x %y = ax(x —y) = (ax — 0y + 0)(x — y), we know that a + 0 = a # 0. Hence the alge-
bra (R, %) can be proved by using Theorem 10 also.

Note that the analytic real algebra (R, %) discussed in Corollary 8 need not be an edge
d-algebra, since x * 0 = ax(x — 0) = ax? # x.

Analytic real algebras with functions
Leta, B : R — R be real-valued functions. Define a binary operation “<” on R by

x*xy:=a@xx+ BO)y+c 3)
where ¢ € R.

Proposition 11  Let (R, x) be an analytic real algebra defined by (3). If x xx = 0= 0% x
forallx € R, thenx xy = 0forall x,y € R.

Proof Assume that x xx = O for all x € R. Then

O=xx*xx
=a@®)x+ x)x+c
=[ax) +pH)]x +c

If we let x := 0, then ¢ = 0. If x # 0, then a(x) + B(x) =0, i.e., B(x) = —a(x) for all
x # 0in R. It follows that

x*y=ax)x —a@®)y 4

Assume 0 % x = 0 for all x € R. Then

0=0xx
=a(0)0+ Bx)x + ¢
= B(x)x

It follows that 8(x) = O for all x # 0in R. Hence we have x *x y = O for all x,y € R. ]

Proposition 12 Let (R, *) be an analytic real algebra defined by (3). If x xx = 0 and
xx0=uxforallx e R, thenx xy=x —yforall x,y € R.
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Proof If we assume x * x = O for all x € R, then by (4) we obtain x % y = a(x)x — a(y)y.
Assume that x *0 =« for all x € R. Then x =x %0 = a(x)x — @(0)0 = a(x)x. This
shows that «(x) = 1forany x ## 0in R. Hence x xy = x — y for all x,y € R. O

Let a,b1,by,¢c,d,e : R — R be real-valued functions and let f € R. Define a binary
operation “«” on R by
xXxYy = a(x)x*> + by @) ba(y)xy + c(y)y2 +d@x)x+e()y+f (5)

forall x,y € R. Assume 0 * x = O for all x € R. Then

0=0x*xx

c(x)x? + e(x)x + f
= [c(@)x +e)]x + f

for all x € R. It follows that f =0 and c(x)x + e(x) =0 for all x # 0 in R. Hence
c(y)y* + e(y)y = 0 for all y € R. Hence
Xky= a(x)x* + b1 (x)by xy + d(x)x (6)
Assume x * x = 0 for all x € R. Then by (6) we obtain
O=xx*xx
= a(x)x> + by (x)by(x)x% + d(x)x
It follows that d(x)x = —[a(x)x? 4 by (x)ba (x)x*]. By (6) we obtain

x %y = b1(x)x[ba(y)y — ba(x)x] (7

Theorem 13 Let b1, by : R — R be real-valued functions. Define a binary operation “x”
on R as in (7). If we assume by (x)x # by(y)y and b3 (x)x> + b3 (y)y* > 0 for any x # y in
R, then (R, %) is a d-algebra.

Proof Assume the anti-symmetry law holds. Then it is equivalent to that if x # y then
xxy#£0or yxx #0, ie, if x # y then (x x y)% + (y xx)> > 0. Since x * y is defined by
(7), we obtain that if x # y then

(B3 x)x2 + B2(1)y?) (b2 (x)x — bay()y)* > 0

By assumption, we obtain that (R, %) is a d-algebra. O

Example 14 Consider x*y:=ax(x —y) for all x,y € R. If we compare it with
(7), then we have b1(x) = a,ba2(y) = —1 and ba(x) = —1 for all x € R. This shows
that  bo(x)x —by(y)y=(—Dx— (-1)y=y—x#0 when x#y  Moreover,
b2 (x)x2 + b2 (y)y* = a*x* + b (y)y* > 0 since a # 0. By applying Theorem 13, we see
that an analytic real algebra (R, %) where x * y := ax(x — ), a # 0is a d-algebra.

Example 15 Consider x xy := xtan2x[e’y — e*x] for all x,y € R. By comparing it
with (7), we obtain b; (x) = tan 2x, by(y) = € and ba(x) = €. If x # y, then it is easy to
see that xe* # ye¥ and b?(x)x% + b2 (y)y? = (tan 2x)%x2 + (tan 2y)%y*> > 0 when x # y.
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Hence an analytic real algebra (R, x) where x x y := x tan 2x[e’y — e*x] is a d-algebra by
Theorem 13.

In Theorem 13, we obtained some conditions for analytic real algebras to be d-alge-
bras. In addition, we construct an edge d-algebra from Theorem 13 as follows.

Theorem 16 If we define a binary operation “x” on R by

_bh® ;
xXxy = {x[l bi(}/)] 1fy#9’
X otherwise

where b1(x) is a real-valued function such that by (y) # 0 if y # 0. Then (R, %) is an edge
d-algebra.

Proof Define a binary operation “¢” on R as in (7) with additional conditions:
by (x)x # ba(y)y and b% (x)x% + b% (#)y? > 0 for any x # y in R. Assume x * 0 = x for all
x € R. Then

x=xx%x0
= b1(%)x[b2(0)0 — by (%)x]
= — bi(x)by(x)x>

Combining with (7) we obtain

x %y = by (%)ba(y)ay — b1 (%)by (x)x”
= b1 (x)ba(y)xy + x
= x[b1(X)ba(y)y + 1]

If we let xy # 0O, then

1
Xky= x{ln(x)(—) + 1}

b1(y)
. {1 3 bl(x)}
b1(y)
If we let x x y := x when y = 0, then (R, %) is an edge d-algebra. O

Example 17 Define a map bj(x) := e’ for all x€R. Then x xy=x[1— 2%]
= x(1 — e’ ) when y # 0. If we define a binary operation “+” on R by

[ x( =My ify £0,
rxy-= { x otherwise,

then (R, %) is an edge d-algebra.

Page 7 of 9
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Proposition 18 [fwe define a binary operation “x” on R by

_bh®y
x*y:={x[1 oyl 770

X otherwise

where by(x) is a real-valued function such that by (y) # 0 if y # 0. Assume that if x # v,
then either by (x * y) = b1(x) or by (x * (x x y)) = b1(y). Then

(xx(x*y)*xy=0 )]

forallx,y € R.

Proof By Theorem 16, (R, ) is an edge d-algebra and hence (8) holds for x %y = 0 or
y = 0. Assume x * y # 0 and y # 0. Then

b1 (x) }

x*(x*y):x{l—bl(x*y)

It follows that

(o () %y = [ (3 )] [1— ’W}

{ by (x) H bl(x*(x*y))}
=x|1-— 1-—
bl(x*y) l’)l()/)

=0,

proving the proposition. ]

Conclusions

We constructed some algebras on the set of real numbers by using elementary functions.
The notions of (edge) d-algebras were developed from BCK-algebras, and widened the
range of research areas. It is useful to find linear (quadratic) polynomial real algebras
by using the real functions. In "Analytic real algebras" section, we obtained some linear
(quadratic) algebras related to some algebraic axioms, and found suitable binary opera-
tions for (edge) d-algebras. In "Analytic real algebras with functions" section, we devel-
oped the idea of analytic methods, and obtained necessary conditions for the real valued
function so that the real algebra is an edge d-algebra. We may apply the analytic method
discussed here to several algebraic structures, and it may useful for find suitable condi-
tions to construct several algebraic structures and many examples.
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Smarandache fuzzy BC'[-algebras

Sun Shin Ahn' and Young Joo Seo*?

IDepartment of Mathematics Education, Dongguk University, Seoul 04620, Korea
“Research Institute for Natural Sciences, Department of Mathematics, Hanyang University,
Seoul, 04763, Korea

Abstract. The notions of a Smarandache fuzzy subalgebra (ideal) of a Smarandache BCT-algebra, a Smarandache
fuzzy clean(fresh) ideal of a Smarandache BCI-algebra are introduced. Examples are given, and several related
properties are investigated.

1. Introduction

Generally, in any human field, a Smarandache structure on a set A means a weak structure W on A such that
there exists a proper subsct B of A with a strong structure S which is embedded in A. In [4], R. Padilla showed
that Smarandache semigroups are very important for the study of congruences. Y. B. Jun ([1,2]) introduced the
notion of Smarandache BC-algebras, Smarandache fresh and clean ideals of Smarandache BC[I-algebras, and
obtained many interesting results about them.

In this paper, we discuss a Smarandache fuzzy structure on BCI-algebras and introduce the notions of a
Smarandache fuzzy subalgebra (ideal) of a Smarandache BCI-algebra, a Smarandache fuzzy clean (fresh) ideal of

a Smarandache BC-algebra are introduced, and we investigate their properties.

2. Preliminaries

An algebra (X;x,0) of type (2,0) is called a BCT-algebra if it satisfies the following conditions:
(1) (%, € X)(( + ) » (%)) » (2 #9) = 0),
D) (Vr,y € X)((x * (x * (x xy)) xy = 0),
() (Ve € X)((x % = 0),
(IV) (Vo,y € X)(z*y = 0 and y x x = 0 imply = = y).
It a BCI-algebra X satisfies the following identity;
(V) (Vz e X)(0*z =0),
then X is said to be a BCK-algebra. We can define a partial order “<” on X by x <y if and only if z xy = 0.
Every BC'I-algebra X has the following properties:
(@) (Vo € X)(x*0 =),
(a1) (Vz,y,z€ X)(x <yimpliesc*xz <yx*xz,zxy < zxx).
A non-empty subset I of a BCT-algebra X is called an wdeal of X if it satisfies the following conditions:
(i) 0 eI,
(i) (Vz € X)(Vy € I)(x xy € I implies x € I).
9% Correspondence: Tel: +82 10 9247 6575 (Y. J. Seo).
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Definition 2.1. ([1]) A Smarandache BCI-alyebra is defined to be a BCI-algebra X in which there exists a
proper subset @@ of X such that

() 0€Qand Q| > 2,

(ii) @ is a BCK-algebra under the same operation of X.

By a Smuarandache positive implicative (resp. commutative and implicative) BCI-ulgebra, we mean a BCI-

algebra X which has a proper subset Q of X such that
(i) 0 € Q and |Q] > 2,
(i) Q is a positive implicative (resp. commutative and implicative) BC K-algebra under the same operation
of X.

Let (X;%,0) be a Smarandache BC[-algebra and H be a subset of X such that 0 € H and |[H| > 2. Then H
is called a Smarandache subalyebra of X if (H;*,0) is a Smarandache BCI-algebra.
A non-empty subset I of X is called a Smarandache ideal of X related to @ if it satisfies:
(i) e,
(i) (Ve € Q)(Vy € I)(x xy € I implies x € I),
where @ is a BC'K-algebra contained in X. If I is a Smarandache ideal of X related to every BC K-algebra

contained in X, we simply say that I is a Smarandache ideal of X.

In what [ollows, let X and @ denote a Smarandache BC[-algebra and a BCIK-algebra which is properly

contained in X, respectively.
Definition 2.2. ([2]) A non-empty subsct I of X is called a Smarandache ideal of X related to @ (or briefly, a
Q-Smarandache ideal) of X if it satisfies:

(Cl) 0e€ I,

(c2) (Ve e Q)(Vy € I)(x+y € I implies x € I).

If Iis a Smarandache ideal of X related to every BCK-algebra contained in X, we simply say that [ is a
Smarandache ideal of X.

Definition 2.3. ([2]) A non-empty subset I of X is called a Smarandache fresh ideal of X related to @ (or briefly,
a Q-Smarandache fresh ideal of X') if it satisfies the conditions (¢;) and

(e3) (Vo,y,z€ Q)(((x*xy)*xz) €l and y*xz € I imply z*z € I).
Theorem 2.4. ([2]) Every Q-Smarandache fresh ideal which is contained in Q is a QQ-Smarandache ideal.

The converse of Theorem 2.4 need not be {rue in general.
o

Theorem 2.5. ([2]) Let I and .J be Q-Smarandache ideals of X and I C J. If I is a Q-Smarandache fresh ideal
of X, then so is .J.

Definition 2.6. ([2]) A non-empty subset I of X is called a Smarandache clean ideal of X related to @ (or briefly,
a Q-Smarandache clean ideal of X') if it satisfies the conditions (¢1) and
(cq) (Vr,y € Q)(z € I)((z* (y*x)) *z € I implies = € I).
620 Sun Shin Ahn et al 619-627
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Smarandache fuzzy BCI-algebras
Theorem 2.7. ([2]) Every Q-Smarandache clean ideal of X is a Q-Smarandache ideal.
The converse of Theorem 2.7 need not be true in general.
Theorem 2.8. ([2]) Every Q-Smarandache clean ideal of X is a Q-Smarandache fresh ideal.

Theorem 2.9. ([2]) Let I and J be Q-Smarandache ideals of X and I C J. If I is a Q-Smarandache clean ideal
of X, then so is .J.

A fuzzy set pin X is called a fuzzy subalgebra of a BCI-algebra X if u(x*y) > min{u(x), u(y)} for all z,y € X.
A fuzzy set p in X is called a fuzzy ideal of X if

() pu(0) > p(x) for all w € X,

(F%) p(x) > min{p(x xy), pu(y)} for all @,y € X.

Let p be a fuzzy set in a set X. For t € [0, 1], the set y := {x € X|u(z) >t} is called a level subset of p.

3. Smarandache fuzzy ideals

Definition 3.1. Let X be a Smarandache BC[-algebra. A map p: X — [0,1] is called a Smarundache fuzzy
subualgebra of X if it satisfies

(SF1) u(0) > p(z) for all z € P,

(SFy) px«y) > min{u(c), u(y)} for all z,y € P,
where P C X, P is a BC K-algebra with |P| > 2.
A map p: X = [0,1] is called a Smarandache fuzzy ideal of X if it satisfies (SFy) and

(SF2) p(x) > min{pu(e xy), u(y)} for all x,y € P,
where P C X, P is a BCK-algebra with |P| > 2. This Smarandache fuzzy subalgebra (ideal) is denoted by pp,
e, pp: P —[0,1] is a fuzzy subalgebra(ideal) of X.

Example 3.2. Let X := {0,1,2,3,4,5} be a Smarandache BC[-algebra ([1]) with the following Cayley table:

*x[0 1 2 3 4 5
0(0 0 0 3 3 3
1j]1 60 1 3 3 3
212 2 0 3 3 3
313 3 3 0 0 O
414 3 41 0 0
5% 3 5§ 1 1 0

Define a map p: X — [0,1] by
05 ifze{0,1,2,3),
pu(x) = .
0.7 otherwise
Clearly p is a Samrandache fuzzy subalgebra of X. It is verified that p restricted to a subset {0,1,2,3} which is
a subalgebra of X is a fuzzy subalgebra of X, i.e.. pu(o,1,23) : {0,1,2,3} — [0,1] is a fuzzy subalgebra of X. Thus
p: X —[0,1] is a Smarandache fuzzy subalgebra of X. Note that 1 : X — [0,1] is not a fuzzy subalgebra of X
since p(5 % 4) = pu(0) = 0.5 # min{u(5), u(4)} = 0.7.
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Example 3.3. Let X := {0,1.2,3,4,5} be a Smarandache BCT-algebra ([1]) with the following Cayley table:

*x|10 1 2 3 45
0(0 0 0 0 4 4
111 0 0 1 4 4
212 2 0 2 4 4
313 3 3 0 4 4
414 4 4 0 0

5(5 4 4 5 1 0

Define a map p: X — [0, 1] by

w(z) =
() 0.7 otherwise

{0.5 if z € {0,1,2}

Clearly 41 is a Samrandache fuzzy ideal of X . It is verified that p restricted to a subset {0, 1,2} which is an ideal of
X is a fuzzy ideal of X, i.c., pg 1,2y + {0. 1,2} = [0,1] is a fuzzy ideal of X. Thus p: X — [0,1] is a Smarandache
fuzzy ideal of X. Note that 1 : X — [0. 1] is not a fuzzy ideal of X, since p1(2) = 0.5 # min{pu(2%4) = pu(4), (1)} =
u(4) = 0.7.

Lemma 3.4. Every Smarandache fuzzy ideal jup of a Smarandache BCI-algebra X is order reversing.

Proof. Let P be a BCK-algebra with P C X and |P| > 2. If &,y € P with & <y, then & xy = 0. Hence we have
p(x) > min{p(x * y). p(y)} = min{pu(0), u(y)} = uly). B

Theorem 3.5. Any Smarandache fuzzy ideal jp of a Smarandache BCI-algebra X must be a Smarandache
fuzzy subalgebra of X .

Proof. Let P be a BCK-algebra with P € X and |X| > 2. Since z xy < x [or any =,y € P, il follows [rom
Lemma 3.4 that p(z) < p(x *y), so by (SF;) we obtain p(xxy) > p(z) > min{u(z*y). p(y)} > min{u(z), u(y)}.

This shows that p is a Smarandache [uzzy subalgebra of X, proving the theorem. O

Proposition 3.6. Let pp be a Smarandache [uzzy ideal of a Smarandache BC'I-algebra X . If the inequality
xxy < z holds in P, then p(x) > min{u(x), u(z)} lor all z,y,z € P.

Proof. Let P be a BCK-algebra with P C X and |P| > 2. lfl z+xy < zin P, then (z *y) * z = 0. Hence we
have p(x*y) > min{u((x *y) * 2), n(z)} = min{p(0), u(2)} = p(z). It follows that u(z) > min{p(x *y), u(y)} >
min{p(y). u(2)}. O
Theorem 3.7. Let X be a Smarandache BC'I-algebra. A Smarandache fuzzy subalgebra pup of X is a Smaran-
dache fuzzy ideal of X if and only if for all x.y € P, the inequality x «y < z implies p(x) > min{u(y), u(z)}.

Proof. Suppose that pp is a Smarandache fuzzy subalgebra of X satisfying the condition = x y < z implies
w(x) > min{pu(y), u(z)}. Since @ * (z xy) <y for all .y € P, it follows that p(x) > min{u(z * y), u(y)}. Hence

pup is a Smarandache fuzzy ideal of X. The converse follows from Proposition 3.6. [

Definition 3.8. Let X be a Smarandache BCT-algebra. A map pu: X — [0,1] is called a Smarandache fuzzy
clean ideal of X if it satisfies (SF}) and
(SFs) p(z) > min{p(z = (y xx)) * z), u(z)} for all z,y,z € P,
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where P C X and P is a BCK-algebra with |P| > 2. This Smarandache fuzzy clean ideal is denoted by jup, i.c.,

pup : P —[0,1] is a Smarandache fuzzy clean ideal of X

Example 3.9. Let X := {0,1.2,3,4,5} be a Smarandache BCI-algebra ([2]) with the following Cayley table:

*x10 1 2 3 4 5
0(0 0 0 0 0 5
111 0 0 0 0 5
212 1.0 1 0 5
313 4 4 4 0 5
414 4 4 4 0 5
505 5 5 5 5 0

Define a map p: X — [0,1] by

0.8 otherwise

04 ifze{0,1,2,3}
p(x) =

Clearly p is a Samrandache fuzzy clean ideal of X, but x is not a fuzzy clean ideal of X, since u(3) = 0.4 %
min{u((3 % (0% 3)) *5),1(5)} = min{u(5), u(5)} = u(5) =0.8.
Theorem 3.10. Let X be a Smarandache BCI-algebra. Any Smarandache fuzzy clean ideal up of X must be a

Smarandache fuzzy ideal of X.

Proof. Let X be a BCK-algebra with P C X and |P| > 2. Let up : P — [0,1] be a Smarndache [uzzy clean
ideal of X. If we let y := x in (SF3), then p(xz) > min{u((z * (x * x)) * z), u(z)} = min{p((x * 0) * 2), u(2)} =
min{u(z * z), u(z)}, for all x,y, z € P. This shows that y satisfies (S£3). Combining (SF)), up is a Smarandache

fuzzy ideal of X, proving the theorem. O

Corollary 3.11. Every Smarandache fuzzy clean ideal jup of a Smarndache BCI-algebra X must be a Smaran-
dache fuzzy subalgebra of X.

Proof. 1t follows from Theorem 3.5 and Theorem 3.10. 0
The converse of Theorem 3.10 may not, be true as shown in the following example.

Example 3.12. Let X :={0,1,2,3.4,5} be a Smarandache BCT-algebra with the following Cayley table:

*x10 1 2 3 4 5
010 0 0 0 0 5
{10 1 0 0 5
212 2 0 0 0 5
313 3 3 0 0 5
414 3 41 0 5
515 5 5 5 5 0

Let pp be a fuzzy set in P = {0.1,2,3,4} defined by p(0) = p(2) = 0.8 and p(1) = u(3) = pu(4) = 0.3. It is casy
to check that pp is a fuzzy ideal of X. Hence p: X — [0,1] is a Smarandache fuzzy ideal of X. But it is not a
Smarandache fuzzy clean ideal of X since p(1) = 0.3 % min{p((1 * (3 % 1)) * 2), (2)} = min{pu(0). 1(2)} = 0.8.

Theorem 3.13. Let X be a Smarandache implicative BCI-algebra. Every Smarandache fuzzy ideal pup of X is

a Smarandache fuzzy clean ideal of X.
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Proof. Let P be a BCK-algebra with P C X and |P| > 2. Since X is a Smarandache implicative BCT-algebra,
we have x = @ * (y *x) for all x,y € P. Let pp be a Smarandache fuzzy ideal of X. It follows from (SF) that
p(x) > min{p(e * 2), p(z)} > min{p((x « (y = x)) * z), u(z) }, tor all &, y, z € P. Hence pp is a Smarandache clean
ideal of X. The proof is complete. O

In what follows, we give characterizations of fuzzy implicative ideals.

Theorem 3.14. Let X be a Smarandache BCI-algebra. Suppose that pp is a Smarandache fuzzy ideal of X .
Then the following equivalent:
(i) pp is Smarandache fuzzy clean,

(it) p(x) > p(e* (y*z)) for all z,y € P,

(i) p(x) = p(e* (y = x)) for all ¢,y € P.
Proof. (i) = (ii): Let pp be a Smarandache fuzzy clean ideal of X. It follows from (SI%) that p(x) > min{pu((x
(y*x))*0),12(0)} = min{p(x = (y * x)), 1(0)} = p(x = (y xx)), V,y € P. Hence the condition (ii) holds.
(i) = (iii): Since X is a Smarnadache BCI-algebra, we have x * (y * x) < x for all w.y € P. It follows from
Lemma 3.4 that pu(x) < p(e = (y*x)). By (i), p(r) > p(z * (y xx)). Thus the condition (iii) holds.
(i) = (i): Suppose that the condition (iii) holds. Since pp is a Smarandache fuzzy ideal, by (SF3), we have
p(rx (y+x)) > min{pu((z * (y * x)) * z), 1(2)}. Combining (iii), we obtain p(x) > min{u((z * (y * x)) * 2), u(2)}.
Hence p satisfies the condition (SF3). Obviously, p satisfies (SF)). Therefore j is a fuzzy clean ideal of X. Hence

the condition (i) holds. The prool is complete. a
For any fuzzy sets p and v in X, we write u < v if and only if u(z) < v(z) for any x € X.

Definition 3.15. Let X be a Smarandache BCI-algebra and let up : P — [0,1] be a Smarandache fuzzy
BCI-algebra of X. For t < pu(0), the set p := {& € P|u(x) >t} is called a level subset of up.

Theorem 3.16. A [uzzy sel p in P is a Smarandache fuzzy clean ideal of X il and only il, for all { € [0,1], p is

either empty or a Smarandache clean ideal of X.

Proof. Suppose that pup is a Smarandache fuzzy clean ideal of X and p, # 0 for any ¢ € [0,1]. It is clear
that 0 € p, since u(0) > t. Let p((z * (y * x)) * z) > t and p(z) > t. It follows from (SF3) that u(z) >
min{u((x * (y * z)) * z), u(z)} > t, namely, = € p,. This shows that y, is a Smarandache clean ideal of X .
Conversely, assume that for each ¢ € [0, 1], y, is either empty or a Smaranadche clean ideal of X. For any z € P,
let pu(z) =t. Then = € ;. Since py(# 0) is a Smarandache clean ideal of X, therefore 0 € y, and hence ;(0) >
p(x) =t. Thus u(0) > p(z) for all z € P. Now we show that u satisfies (SF3). If not, then there exist z’, 1/, 2 € P
such that pu(z') < min{u((z' * (y' * 2')) * 2'), u(2')}. Taking to := ${p(x’) + min{u((z’ * (v * 2')) * 2'), u(z')}}, we
have p(x') < to < min{u((z" * (y' * 2")) * 2’), u(z')}. Hence ©’ ¢ pu,, («/ * (y' *x')) * 2 € wy,, and 2’ € py,, ie.,
M, is not a Smaraqndache clean of X, which is a contradiction. Therefore, up is a Smarnadche fuzzy clean ideal,

completing the proof. 0

Theorem 3.17. ([2]) (Extension Property) Let X he a Smarandache BCI-algebra. Let I and J be Q-
Smarandache ideals of X and I C J C Q. If I is a Q-Smarandache clean ideal of X. then so is .J.

Next we give the extension theorem of Smarandache fuzzy clean ideals.
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Theorem 3.18. Let X be a Smarandache BCI-algebra. Let p and v be Smarandache fuzzy ideals of X such

that pn < v and p(0) = v(0). If ju is a Smarndache fuzzy clean ideal of X, then so is v.

Proof. It suffices to show that for any ¢ € [0, 1], v, is either empty or a Smarandache clean ideal of X. If the level
subset v, is non-empty, then p # 0 and p, C v. In fact, if z € , then ¢ < p(z); hence t < v(x), ie, z € v. So
iy € v By the hypothesis, since p is a Smarandache fuzzy clean ideal of X, y, is a Smarandache clean of X by
Theorem 3.16. It follows from Theorem 3.17 that v; is a Smarandache clean ideal of X. Hence v is a Smarandache

fuzzy clean of X. The proof is complete. a
Definition 3.19. Let X be a Smarandache BC[-algebra. A map p: X — [0,1] is called a Smarandache fuzzy
fresh ideal of X if it satisfies (SF}) and

(SFy) p(x*z) > min{p((x*y) * z), u(y * 2)} lor all z.y,z € P,

where I is a BCK-algebra with 7 ¢ X and [I’| > 2. This Smarandache fuzzy idcal is denoted by up, ic

pp P —[0,1] is a Smarandache fuzzy fresh ideal of X.

£

Example 3.20. Let X := {0,1,2,3,4,5} be a Smarandache BC[-algebra ([2]) with the following Cayley table:

o Ol 2 3 o A5
ORIRO 2 ) SUB QN 06
|| IOl L (O )
20| 220 0 20005
313 1.3 0 3 5
4(4 4-4-4-0 5
5|5 15udSudbads 0

Define a map p: X — [0, 1] by

0.9 otherwise

05 ifze{0,1,3},
(A= {
Clearly p is a Samrandache fuzzy fresh ideal of X. But it is not a fuzzy fresh ideal of X since u(2%4) = p(0) =
0.5 % min{u((2%5) «4), u(5x4)} = u(5) =0.9.

Theorem 3.21. Any Smarandache fuzzy fresh ideal of a Smarandache BCI-algebra X must be a Smarandache
fuzzy ideal of X .

Proof. Taking z := 0 in (SF;) and z * 0 = z, we have p(x % 0) > min{u((z * y) * 0), u(y * 0)}. Hence u(z) >
min{u(x *y), u(y)}. Thus (SF2) holds. O

The converse of Theorem 3.21 may not be true as show in the following example.

Example 3.22. Let X := {0,1,2.3.4,5} be a Smarandache BCI-algebra ([2]) with the following Cayley table:

*x10 1 2 3 4 5
0|06 0 0 OG0 5
1({1 0 0 0 1 5
221 0 1L 2 &
313 11 0 3 5
414 4 4 4 0 5
539 5 5 5 5 0
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Define a map p: X — [0, 1] by

) =

0.5 ifx e {0,4},
{0.4 otherwise

Clearly p(z) is a Samrandache fuzzy ideal of X. But p(z) is not a Samrandache [uzzy [resh ideal of X, since
(2% 3) = p(l) = 0.4 % min{p((2% 1) *3), u(1 % 3)} = min{u(1 *3). x(0)} = u(0) = 0.5.

Proposition 3.23. Let X be a Smarandache BCI-algebra. A Smarandache fuzzy ideal up of X is a Smarandache

fuzzy fresh ideal of X if and only if it satisfies the condition p(x *y) > p((z *y) = y) for all z,y € P.

Proof. Assume that pp is a Smarandache fuzzy fresh ideal of X. Putting z := y in (SFy), we have u(z *y) >

min{u((z *y) *y), u(y * y)} = min{u((x * y) *y), u(0)} = u((z *y) *y), Yo,y € P.
Conversely, let up be Smarandache fuzzy ideal of X such that p(z*y) > u((;r'*y) xy). Since, for all z,y,z € P,

((xxz2)x2)x(y*z) < (xxz)*xy = (xxy) %2z, we have pu((z xy) * 2) < p(((z * 2) * 2) * (y * z)). Hence

p(x = z) > p((z* z) * z) > min{p(((z*2) x 2) * (y * 2)), 1y * 2)} > min{u((z*y) * z

the proof. O

), i(y * z)}. This completes

Since (x xy) *y < axy, it follows from Lemma 3.4 that p(x +y) < pu((x *y) * y). Thus we have the following

theorem.

Theorem 3.24. Let X be a Smarandache BCI-algebra. A Smarandache fuzzy ideal jup of X is a Smarandache
fuzzy fresh if and only if it satisfies the identity

w(xxy) = pl(xzxy) xy), textfor all x,y € X.

We give an equivalent condition for which a Smarandache [uzzy subalgebra of a Smarandache BC'I-algebra o

be a Smarandache fuzzy clean ideal of X.

Theorem 3.25. A Smarandache fuzzy subalghebra pup of X is a Smarandache fuzzy clean ideal of X if and only
if it satisfies

(x * (y*x)) * z <w implies p(x) > min{u(z), u(u)} for alle,y, z,u € P. (%)

Proof. Assume that pp is a Smarandache fuzzy clean ideal of X. Let x,y, z,u € P be such that (z*(y*x))*z < u.
Since p is a Smarandache fuzzy ideal of X', we have p(x* (y*x)) > min{u(z), u(u)} by Theorem 3.7. By Theorem
3.14-(iii). we obtain p(x) > min{pu(z), u(u)}.

Conversely, suppose that, pup satisfies (). Obviously, up satisfies (SF), since (z* (y*x))* ((x*(y*x))*z2) < z,
by (%), we obtain p(xz) > min{u((x * (y * z)) = z), u(z)}, which shows that up satisfies (SF3). Hence up is a

Smarandache fuzzy clean ideal of X. The proof is complete. a
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