Open Distance-Pattern Uniform Graphs

Bibin K. Jose

(Department of Mathematics of Union Christian College, Post Box No.5, Aluva-683102, Kerala, India.) Email: bibinkjose2002@yahoo.com

Abstract: Given an arbitrary non-empty subset M of vertices in a graph G = (V, E), each vertex u in G is associated with the set $f_M^o(u) = \{d(u,v) : v \in M, u \neq v\}$, called its open M-distance-pattern. A graph G is called a S and S and S and S are integer S and S and S are integer S and S and S are called a S and S are called the S and S and S and S and S and S and S are called the S and S and S are called the S and S and S and S are called the S and S and S are called the S and S are called an S and S are called the S and S are called an S are called the S and S are called an S are called the S and S are called an S and S are called the S are called an S and S are called the S are called an S and S are called the S are called an S and S are called the S are called an S and S are called the S are called an S and S are called the S and S are called an S and S are called the S are called an S and S are called the S are called an S and S are called an S are called the S are called an S and S are called an S and S are called an S and S are called an S

Key Words: Smarandachely uniform k-graph, open distance-pattern, open distance-pattern, uniform graphs, open distance-pattern uniform (odpu-) set, Smarandachely odpunumber, odpu-number.

AMS(2000): 05C12

§1. Introduction

All graphs considered in this paper are finite, simple, undirected and connected. For graph theoretic terminology we refer to Harary [6].

The concept of open distance-pattern and open distance-pattern uniform graphs were suggested by B.D. Acharya. Given an arbitrary non-empty subset M of vertices in a graph G = (V, E), the open M-distance-pattern of a vertex u in G is defined to be the set $f_M^o(u) = \{d(u,v): v \in M, u \neq v\}$, where d(x,y) denotes the distance between the vertices x and y in G. A graph G is called a *Smarandachely uniform* k-graph if there exist subsets M_1, M_2, \cdots, M_k for an integer $k \geq 1$ such that $f_{M_i}^o(u) = f_{M_j}^o(u)$ and $f_{M_i}^o(u) = f_{M_j}^o(v)$ for $1 \leq i, j \leq k$ and $\forall u, v \in V(G)$. Such subsets M_1, M_2, \cdots, M_k are called a k-family of open distance-pattern uniform (odpu-) set of G and the minimum cardinality of odpu-sets in G, if they exist, is called the Smarandachely odpu-number of G, denoted by $od_k^S(G)$. Usually, a Smarandachely uniform 1-graph G is called an open distance-pattern uniform (odpu-) graph. In this case, its odpu-number $od_k^S(G)$ of G is abbreviated to od(G). We need the following theorem.

¹Received May 28, 2009. Accepted Aug.31, 2009.

Theorem 1.1([5]) Let G be a graph of order $n, n \geq 4$. Then the following conditions are equivalent.

- (i) The graph G is self-centred with radius $r \geq 2$ and for every $u \in V(G)$, there exists exactly one vertex v such that d(u, v) = r.
- (ii) The graph G is r-decreasing.
- (iii) There exists a decomposition of V(G) into pairs $\{u,v\}$ such that d(u,v) = r(G) > max(d(u,x),d(x,v)) for every $x \in V(G) \{u,v\}$.

In this paper we present several fundamental results on odpu-graphs and odpu-number of a graph G.

§2. Odpu-Sets in Graphs

It is clear that an odpu-set in any nontrivial graph must have at least two vertices. The following theorem gives a basic property of odpu-sets.

Theorem 2.1 In any graph G, if there exists an odpu-set M, then $M \subseteq Z(G)$ where Z(G) is the center of the graph G. Also $M \subseteq Z(G)$ is an odpu-set if and only if $f_M^o(v) = \{1, 2, ..., r(G)\}$, for all $v \in V(G)$.

proof Let G have an odpu-set $M \subseteq V(G)$ and let $v \in M$. Suppose $v \notin Z(G)$. Then e(v) > r(G). Hence there exists a vertex $u \in V(G)$ such that d(u,v) > r(G). Since $v \in M$, $f_M^o(u)$ contains an element, which is greater than r(G). Now let $w \in V(G)$ be such that e(w) = r(G). Then $d(w,v) \le r(G)$ for all $v \in M$. Hence $f_M^o(w)$ does not contain an element greater than r(G), so that $f_M^o(u) \ne f_M^o(w)$. Thus M is not an odpu-set, which is a contradiction. Hence $M \subseteq Z(G)$.

Now, let $M \subseteq Z(G)$ be an odpu-set. Then $\max f_M^o(v) = r(G)$. Let $u \in M$ be such that d(u,v) = r(G). Let the shortest u-v path be $(u=v_1,v_2,\cdots,v_{r(G)}=v)$. Then v_1 is adjacent to u. Therefore, $1 \in f_M^o(v_1)$. Since M is an odpu-set, $1 \in f_M^o(x)$ for all $x \in V(G)$. Now, $d(v_2,u) = 2$, whence $2 \in f_M^o(v_2)$. Since M is an odpu-set, $2 \in f_M^o(x)$ for all $x \in V(G)$. Proceeding like this, we get $\{1,2,3,\cdots,r(G)\}\subseteq f_M^o(x)$ and since $M\subseteq Z(G)$, $f_M^o(x)=\{1,2,3,\cdots,r(G)\}$ for all $x \in V$. The converse is obvious.

Corollary 2.2 A connected graph G is an odpu-graph if and only if the center Z(G) of G is an odpu-set.

Proof Let G be an odpu-graph with an odpu-set M. Then $f_M^o(v) = \{1, 2, ..., r(G)\}$ for all $v \in V(G)$. Since $f_{Z(G)}^o(v) \supseteq f_M^o(v)$ and $d(u, v) \le r(G)$ for every $v \in V$ and $u \in Z(G)$, it follows that Z(G) is an odpu set of G. The converse is obvious.

Corollary 2.3 Every self-centered graph is an odpu-graph.

Proof Let G be a self-centered graph. Take M = V(G). Since G is self-centered, e(v) = r(G) for all $v \in V(G)$. Therefore, $f_M^o(v) = \{1, 2, \dots, r(G)\}$ for all $v \in V(G)$, so that M is an odpu-set for G.

Remark 2.4 The converse of Corollary 2.3 is not true. For example the graph $K_2 + \overline{K_2}$, is not self-centered but it is an odpu-graph. Moreover, there exist self-centered graphs having a proper subset of Z(G) = V(G) as an odpu-set.

Theorem 2.5 If G is an odpu-graph with $n \geq 3$, then $\delta(G) \geq 2$ and G is 2-connected.

Proof Let G be an odpu-graph with $n \geq 3$ and let M be an odpu-set of G. If G has a pendant vertex v, it follows from Theorem 2.1 that $v \notin M$. Also, v is adjacent to exactly one vertex $w \in V(G)$. Since M is an odpu-set, $\max f_M^o(w) = r(G)$. Therefore, there exists $u \in M$ such that d(u, w) = r(G). Now d(u, v) = r(G) + 1 and $f_M^o(v)$ contains r(G) + 1. Hence $f_M^o(v) \neq f_M^o(w)$, a contradiction. Thus $\delta(G) \geq 2$.

Now suppose G is not 2-connected. Let B_1 and B_2 be blocks in G such that $V(B_1) \cap V(B_2) = \{u\}$. Since, the center of a graph lies in a block, we may assume that the center $Z(G) \subseteq B_1$. Let $v \in B_2$ be such that $uv \in E(G)$. Then there exists a vertex $w \in M$ such that d(u, w) = r(G) and d(v, w) = r(G) + 1, so that $r(G) + 1 \in f_M^o(u)$, which is a contradiction. Hence G is 2-connected.

Corollary 2.6 A tree T has an odpu-set M if and only if T is isomorphic to P_2 .

Corollary 2.7 If G is a unicyclic odpu-graph, then G is isomorphic to a cycle.

Corollary 2.8 A block graph G is an odpu-graph if and only if G is complete.

Corollary 2.9 In any graph G, if there exists an odpu-set M, then every subset M' of Z(G) such that $M \subseteq M'$ is also an odpu-set.

Thus Corollary 2.9 shows that in a limited sense the property of subsets of V(G) being odpu-sets is *super-hereditary* within Z(G). The next remark gives an algorithm to recognize odpu-graphs.

Remark 2.10 Let G be a finite simple connected graph. The the following algorithm recognizes odpu-graphs.

Step-1: Determine the center of the graph G.

Step-2: Generate the $c \times n$ distance matrix D(G) of G where c = |Z(G)|.

Step-3: Check whether each column C_i has the elements $1, 2, \ldots, r$.

Step-4: If then, G is an odpu-graph.

Or else G is not an odpu-graph.

The above algorithm is efficient since we have polynomial time algorithm to determine Z(G) and to compute the matrix D(G).

Theorem 2.11 Every odpu-graph G satisfies, $r(G) \le d(G) \le r(G) + 1$. Further for any positive integer r, there exists an odpu-graph with r(G) = r and d(G) = r + 1.

Proof Let G be an odpu-graph. Since $r(G) \leq d(G)$ for any graph G, it is enough to prove that $d(G) \leq r(G) + 1$. If G is a self-centered graph, then r(G) = d(G). Assume G is not self-centered and let u and v be two antipodal vertices of G. Since G is an odpu-graph, Z(G) is an odpu-set and hence there exist vertices $u', v' \in Z(G)$ such that d(u, u') = 1 and d(v, v') = 1. Now, G is not self-centered, and d(u, v) = d, implies $u, v \notin Z(G)$. If d > r + 1; since d(u, u') = d(v, v') = 1, the only possibility is d(u', v') = r, which implies d(u, v') = r + 1. But $v' \in Z(G)$ and hence $r + 1 \in f_M^o(u)$, which is not possible. Hence $d(u, v) = d \leqslant r + 1$ and the result follows.

Now, let r be any positive integer. For r = 1 take $G = K_2 + \overline{K_n}, n \ge 2$. For $r \ge 2$, let G be the graph obtained from C_{2r} by adding a vertex v_e corresponding to each edge e in C_{2r} and joining v_e to the end vertices of e. Then, it is easy to check that an odpu-set of the resulting graph is $V(C_{2r})$.

However, it should be noted that d = r + 1 is not a sufficient condition for the graph to be an odpu-graph. For the graph G consisting of the cycle C_r with exactly one pendent edge at one of its vertices, d = r + 1 but G is not an odpu-graph.

Remark 2.12 Theorem 2.11 states that there are only two classes of odpu-graphs, those which are self-centered or those for which d(G) = r(G) + 1. Hence, the problem of characterizing odpu-graphs reduces to the problem of characterizing odpu-graphs with d(G) = r(G) + 1.

The following theorem gives a complete characterization of odpu-graphs with radius one.

Theorem 2.13 A graph with radius 1 and diameter 2 is an odpu-graph if and only if there exists a subset $M \subset V(G)$ with $|M| \geq 2$ such that the induced subgraph $\langle M \rangle$ is complete, $\langle V - M \rangle$ is not complete and any vertex in V - M is adjacent to all the vertices of M.

Proof Assume that G is an odpu-graph with radius r=1 and diameter d=2. Then, $f_M^o(v)=\{1\}$ for all $v\in V(G)$. If $\langle M\rangle$ is not complete, then there exist two vertices $u,v\in M$ such that $d(u,v)\geq 2$. Hence, both $f_M^o(u)$ and $f_M^o(v)$ contains a number greater than 1, which is not possible. Therefore, $\langle M\rangle$ is complete. Next, if $x\in V-M$ then, since $f_M^o(x)=\{1\}$, x is adjacent to all the vertices of $\langle M\rangle$. Now, if $\langle V-M\rangle$ is complete, then since $\langle M\rangle$ is complete the above argument implies that G is complete, whence diameter of G would be one, a contradiction. Thus, $\langle V-M\rangle$ is not complete.

Conversely assume $\langle M \rangle$ is complete with $|M| \geq 2$, $\langle V - M \rangle$ is not complete and every vertex of $\langle V - M \rangle$ is adjacent to all the vertices in $\langle M \rangle$. Then, clearly, the diameter of G is two and radius of G is one. Also, since $|M| \geq 2$, there exist at least two universal vertices in M (i.e. Each is adjacent to every other vertices in M). Therefore $f_M^o(v) = \{1\}$ for every $v \in V(G)$. Hence G must be an odpu-graph with M as an odpu-set.

Theorem 2.14 Let G be a graph of order $n \geq 3$. Then the following are equivalent.

(i) Every k-element subset of V(G) forms an odpu-set, where $2 \le k \le n$.

- (ii) Every 2-element subset of V(G) forms an odpu-set.
- (iii) G is complete.

Proof Trivially (i) implies (ii)

If every 2-element subset M of V(G) forms an odpu-set, then $f_M^o(v) = \{1\}$ for all $v \in V(G)$ and hence G is complete.

Obviously (iii) implies (i).

Theorem 2.15 Any graph $G(may \ or \ may \ not \ be \ connected)$ with $\delta(G) \geq 1$ and having no vertex of full-degree can be embedded into an odpu-graph H with G as an induced subgraph of H of order |V(G)| + 2 such that V(G) is an odpu-set of the graph H.

Proof Let G be a graph with $\delta(G) \geq 1$ and having no vertex of full-degree. Let $u, v \in V(G)$ be any two adjacent vertices and let $a, b \notin V(G)$. Let H be the graph obtained by joining a to b and also, joining a to all vertices of G except u and joining the vertex b to all vertices of G except v. Let $M = V(G) \subset V(H)$. Since a is adjacent to all the vertices except u and d(a, u) = 2, implies $f_M^o(a) = \{1, 2\}$. Similarly $f_M^o(b) = \{1, 2\}$. Since u is adjacent to v, $1 \in f_M^o(u)$. Since u does not have full degree, there exists a vertex x, which is not adjacent to u. But (u, b, x) is a path in H and hence d(u, x) = 2 in H for all such $x \in V(G)$. Therefore $f_M^o(u) = \{1, 2\}$. Similarly $f_M^o(v) = \{1, 2\}$. Now let $w \in V(G)$, $w \neq u, v$. Now since no vertex w is an isolated vertex and w does not have full-degree, there exist vertices x and y in V(G) such that $wx \in E(H)$ and $wy \notin E(H)$. But then, there exists a path (w, a, y) or (w, b, y) with length 2 in H. Also every vertex which is not adjacent to w is at a distance 2 in H. Therefore $f_M^o(w) = \{1, 2\}$. Hence $f_M^o(x) = \{1, 2\}$ for all $x \in V(H)$. Hence H is an odpu-graph and V(G) is an odpu-set of H. \square

Remark 2.16 Bollobás [1] proved that almost all graphs have diameter 2 and almost no graph has a node of full degree. Hence almost no graph has radius one. Since $r(G) \leq d(G)$, almost all graphs have r(G) = d(G) = 2, that is, almost all graphs are self-centered with diameter 2. Since self-centered graphs are odpu-graphs, the following corollary is immediate.

Corollary 2.17 Almost all graphs are odpu-graphs.

§3. Odpu-Number of a Graph

As we have observed in section 2, if G has an odpu-set M then $M \subseteq Z(G)$ and if $M \subseteq M' \subseteq Z(G)$, then M' is also an odpu-set. This motivates the definition of odpu-number of an odpu-graph.

Definition 3.1 The Odpu-number of a graph G, denoted by od(G), is the minimum cardinality of an odpu-set in G.

In this section we characterize odpu-graphs which have odpu-number 2 and also prove that

there is no graph with odpu-number 3 and for any positive integer $k \neq 1, 3$, there exists a graph with odpu-number k. We also present several embedding theorems. Clearly,

$$2 \le od(G) \le |Z(G)|$$
 for any odpu – graph G . (3.1)

Since the upper bound for |Z(G)| is |V(G)|, the above inequality becomes,

$$2 \leqslant od(G) \leqslant |V(G)|. \tag{3.2}$$

The next theorem gives a characterization of graphs attaining the lower bound in the above inequality.

Theorem 3.2 For any graph G, od(G) = 2 if and only if there exist at least two vertices $x, y \in V(G)$ such that d(x) = d(y) = |V(G)| - 1.

Proof Suppose that the graph G has an odpu-set M with |M| = 2. Let $M = \{x, y\}$. We claim that d(x) = d(y) = n - 1, where n = |V(G)|. If not, there are two possibilities.

Case 1. d(x) = n - 1 and d(y) < n - 1.

Since d(x) = n - 1, x is adjacent to y. Therefore, $f_M^o(x) = \{1\}$. Also, since d(y) < n - 1, it follows that $2 \in f_M^o(w)$ for any vertex w not adjacent to v, which is a contradiction.

Case 2. d(x) < n-1 and d(y) < n-1.

If $xy \in E(G)$, then $f_M^o(x) = f_M^o(y) = \{1\}$ and for any vertex w not adjacent to u, $f_M^o(w) \neq \{1\}$.

If $xy \notin E(G)$, then $1 \notin f_M^o(x)$ and for any vertex w which is adjacent to x, $1 \in f_M^o(w)$, which is a contradiction. Hence d(x) = d(y) = n - 1.

Conversely, let G be a graph with $u, v \in V(G)$ such that d(u) = d(v) = n - 1. Let $M = \{u, v\}$. Then $f_M^o(x) = \{1\}$ for all $x \in V(G)$ and hence M is an odpu-set with |M| = 2.

Corollary 3.3 For any odpu-graph G if |M| = 2, then $\langle M \rangle$ is isomorphic to K_2 .

Corollary 3.4 $od(K_n) = 2$ for all $n \ge 2$.

Corollary 3.5 If a (p,q)-graph has an odpu-set M with odpu-number 2, then $2p-3 \le q \le \frac{p(p-1)}{2}$.

Proof By Theorem 3.2, there exist at least two vertices having degree p-1 and hence $q \ge 2p-3$. The other inequality is trivial.

Theorem 3.6 There is no graph with odpu-number three.

Proof Suppose there exists a graph G with od(G) = 3 and let $M = \{x, y, z\}$ be an odpu-set in G. Since G is connected, $1 \in f_M^o(x) \cap f_M^o(y) \cap f_M^o(z)$.

We claim that x, y, z form a triangle in G. Since $1 \in f_M^o(x)$, and $1 \in f_M^0(z)$, we may assume that $xy, yz \in E(G)$. Now if $xz \notin E(G)$, then d(x, z) = 2 and hence $2 \in f_M^o(x) \cap f_M^0(Z)$ and $f_M^o(y) = \{1\}$, which is not possible. Thus $xz \in E(G)$ and x, y, z forms a triangle in G.

Now $f_M^o(w) = \{1\}$ for any $w \in V(G) - M$ and hence w is adjacent to all the vertices of M. Thus G is complete and od(G) = 2, which is again a contradiction. Hence there is no graph G with od(G) = 3.

Next we prove that the existence of graph with odpu-numbers $k \neq 1, 3$. We need the following definition.

Definition 3.7 The shadow graph S(G) of a graph G is obtained from G by adding for each vertex v of G a new vertex v', called the shadow vertex of v, and joining v' to all the neighbors of v in G.

Theorem 3.8 For every positive integer $k \neq 1, 3$, there exists a graph G with odpu-number k.

Proof Clearly $od(P_2) = 2$ and $od(C_4) = 4$. Now we will prove that the shadow graph of any complete graph K_n , $n \ge 3$ is an odpu-graph with odpu-number n + 2.

Let the vertices of the complete graph K_n be v_1, v_2, \ldots, v_n and the corresponding shadow vertices be v_1', v_2', \cdots, v_n' . Since the shadow graph $S(K_n)$ of K_n is self-centered with radius 2 and $n \geq 3$, by Corollary 2.3, it is an odpu-graph. Let M be the smallest odpu-set of $S(K_n)$. We establish that |M| = n + 2 in the following three steps.

First, we show $\{v_1^{'}, v_2^{'}, \cdots, v_n^{'}\}\subseteq M$. If there is a shadow vertex $v_i^{'}\notin M$, then $2\notin f_M^o(v_i)$ since v_i is adjacent to all the vertices of $S(K_n)$ other than $v_i^{'}$, implying thereby that M is not an odpu-set, contrary to our assumption. Thus, the claim holds.

Now, we show that $M = \{v_1^{'}, v_2^{'}, \dots, v_n^{'}\}$ is not an odpu-set of $S(K_n)$. Note that $v_1^{'}, v_2^{'}, \dots, v_n^{'}$ are pairwise non-adjacent and if $M = \{v_1^{'}, v_2^{'}, \dots, v_n^{'}\}$, then $1 \notin f_M^o(v_i^{'})$ for all $v_i^{'} \in M$. But $1 \in f_M^o(v_i)$, $1 \le i \le n$, and hence M is not an odpu-set.

From the above two steps, we conclude that |M| > n. Now, $M = \{v'_1, v'_2, \ldots, v'_n\} \cup \{v_i\}$ where v_i is any vertex of K_n is not an odpu-set. Further, since all the shadow vertices are pairwise nonadjacent and v_i is not adjacent to v'_i , $1 \notin f_M^o(v'_i)$. Hence |M| > n+1. Let v_i , $v_j \in V(K_n)$ be any two vertices of K_n and let $M = \{v_i, v_j, v'_1, v'_2, \ldots, v'_n\}$. We prove that M is an odpu-set and thereby establish that od(G) = n+2. Now, $d(v_i, v_j) = 1$ and $d(v_i, v'_i) = d(v_j, v'_j) = 2$, so that $f_M^o(v_i) = f_M^o(v_j) = \{1, 2\}$. Also, for any vertex $v_k \in V(K_n)$, $d(v_k, v_i) = 1$ and $d(v_k, v'_k) = 2$, so that $f_M^o(v_k) = \{1, 2\}$. Again, $d(v'_i, v_j) = d(v'_j, v_i) = 1$ and for any shadow vertex $v'_k \in V(S(K_n))$, $d(v'_k, v_i) = 1$ and since all the shadow vertices are pairwise non-adjacent, $f_M^o(v'_k) = \{1, 2\}$. Thus, M is an odpu-set and od(G) = n+2.

Remark 3.9 We have proved that 3 cannot be the odpu number of any graph. Hence, by the above theorem, for an odpu-graph the numbers 1 and 3 are the only two numbers forbidden as odpu-numbers of any graph.

Theorem 3.10 $od(C_{2k+1}) = 2k$.

Proof Let $C_{2k+1} = (v_1, v_2, \dots, v_{2k+1}, v_1)$. Clearly $M = \{v_1, v_2, \dots, v_{2k}\}$ is an odpu-set of C_{2k+1} . Now, let M be any odpu-set of C_{2k+1} . Then, there exists a vertex $v_i \in V(C_{2k+1})$ such that $v_i \notin M$. Without loss of generality, assume that $v_i = v_{2k+1}$. Then, since $1 \in f_M^o(v_{2k+1})$, either $v_{2k} \in M$ or $v_1 \in M$ or both $v_1, v_{2k} \in M$. Without loss of generality, let $v_1 \in M$. Since

 $d(v_1, v_{2k+1}) = 1$ and $v_{2k+1} \notin M$, and v_2 is the only element other than v_{2k+1} at a distance 1 from v_1 , we see that $v_2 \in M$. Now, $d(v_2, v_{2k+1}) = 2$ and $v_{2k+1} \notin M$, and v_4 is the only element other than v_{2k+1} at a distance 2; this implies $v_4 \in M$. Proceeding in this manner, we get $v_2, v_4 \dots, v_{2k} \in M$. Now since $d(v_{2k}, v_{2k+1}) = 1$ and $v_{2k+1} \notin M$, and v_{2k-1} is the only element other than v_{2k+1} at a distance 1 from v_{2k} , we get $v_{2k-1} \in M$. Next, since $d(v_{2k-1}, v_{2k+1}) = 2$ and $v_{2k+1} \notin M$, and v_{2k-3} is the only element other than v_{2k+1} at a distance 2 from v_{2k-1} , we get $v_{2k-3} \in M$. Proceeding like this, we get $M = \{v_1, v_2, \dots, v_{2k}\}$. Hence $od(C_{2k+1}) = 2k$. \square

Definition 3.11([2]) A graph is an r-decreasing graph if r(G-v) = r(G) - 1 for all $v \in V(G)$.

We now proceed to characterize odpu-graphs G with od(G) = |V(G)|. We need the following lemma.

Lemma 3.12 Let G be a self-centered graph with $r(G) \geq 2$. Then for each $u \in V(G)$, there exist at least two vertices in every i^{th} neighborhood $N_i(u) = \{v \in V(G) : d(u,v) = i\}$ of u, i = 1, 2, ..., r - 1.

Proof Let G be a self-centered graph and let u be any arbitrary vertex of G. If possible, let for some $i, 1 \le i \le r - 1, N_i(u)$ contains exactly one vertex, say w. Then, since e(w) = r, there exists $x \in V(G)$ such that d(x, w) = r.

If $x \in N_j(u)$ for some j > i, then d(u, x) > r, which is a contradiction. Again if $x \in N_j(u)$ for some j < i, then $d(x, w) = r < i \le r - 1$, which is again a contradiction. Hence $N_i(u)$ contains at least two vertices.

Theorem 3.13 Let G be a graph of order n, $n \geq 4$. Then the following conditions are equivalent.

- (i) od(G) = n.
- (ii) the graph G is self-centered with radius $r \geq 2$ and for every $u \in V(G)$, there exists exactly one vertex v such that d(u, v) = r.
 - (iii) the graph G is r-decreasing.
- (iv) there exists a decomposition of V(G) into pairs $\{u,v\}$ such that $d(u,v) = r(G) > \max(d(u,x),d(x,v))$ for every $x \in V(G) \{u,v\}$.

Proof Let G be a graph of order $n, n \ge 4$. The equivalence of (ii), (iii) and (iv) follows from Theorem 1.1. We now prove that (i) and (ii) are equivalent.

$$(i) \Rightarrow (ii)$$

Let G be a graph with od(G) = n = |V(G)|. Hence, e(u) = r for all $u \in V(G)$ so that G is self-centered. Now, we show that for every $u \in V(G)$, there exists exactly one vertex $v \in V(G)$ such that d(u, v) = r.

First, we show that for some vertex $u_0 \in V(G)$, there exists exactly one vertex $v_0 \in V(G)$ such that $d(u_o, v_0) = r$. Suppose for every vertex $x \in V(G)$, there exist at least two vertices x_1 and x_2 in V(G) such that $d(x, x_1) = r$ and $d(x, x_2) = r$. Let $M = V(G) - \{x_1\}$. Then, since $d(x, x_2) = r$, $f_M^o(x) = \{1, 2, ..., r\}$. Further, since $d(x, x_1) = r$, $f_M^o(x_1) = \{1, 2, ..., r\}$. Also, since $d(x, x_2) = r$, and by Lemma 3.12, $f_M^o(x_2) = \{1, 2, ..., r\}$. Let y be any vertex other than

 x, x_1 and x_2 . Let $1 \le k \le r$, and if d(y,x) = k, then by Lemma 3.12 and by assumption, there exists another vertex $z \in M$ such that d(y,z) = k. Therefore, $f_M^o(y) = \{1,2,\ldots,r\}$. Thus $M = V(G) - \{x_1\}$ is an odpu-set for G, which is a contradiction to the hypothesis. Thus, there exists a vertex $u_0 \in V(G)$ such that there is exactly one vertex $v_0 \in V(G)$ with $d(u_0, v_0) = r$. Next, we claim that u_0 is the unique vertex for v_0 such that $d(u_0, v_0) = r$. Suppose there is a vertex $w_0 \neq u_0$ with $d(w_0, v_0) = r$. Let $M = V(G) - \{u_0\}$. Then, $d(u_0, v_0) = r$ implies $f_M^o(u_0) = \{1, 2, \ldots, r\}$ and $d(v_0, w_0) = r$ imply $f_M^o(v_0) = \{1, 2, \ldots, r\}$. Also, since $d(v_0, w_0) = r$, by Lemma 3.12, it follows that $f_M^o(w_0) = \{1, 2, \ldots, r\}$. Now let $x \in V(G) - \{u_0, v_0, w_0\}$. Since $d(x, u_0) < r$, we get $f_M^o(x) = \{1, 2, \ldots, r\}$. Hence, $M = V(G) - \{u_0\}$ is an odpu-set for G, which is a contradiction. Therefore, for the vertex v_0, u_0 is the unique vertex such that $d(u_0, v_0) = r$.

Next, we claim that there is some vertex $u_1 \in V(G) - \{u_0, v_0\}$ such that there is exactly one vertex $v_1 \in V(G)$ at a distance r from u_1 . If for every vertex $u_1 \in V(G) - \{u_0, v_0\}$, there are at least two vertices v_1 and w_1 in V(G) at a distance r from u_1 , then proceeding as above, we can prove that $M = V(G) - \{v_1\}$ is an odpu-set of G, a contradiction. Therefore, v_1 is the only vertex at a distance r from u_1 . Continuing the above procedure we conclude that for every vertex $u \in V(G)$ there exists exactly one vertex $v \in V(G)$ at a distance v from v and for the vertex v, v is the only vertex at a distance v. Thus v implies v implies v implies v implies v implies v in the vertex v is the only vertex at a distance v. Thus v implies v

Now, suppose (ii) holds. Then M is the unique odpu-set of G and hence od(G) = n. \square

Corollary 3.14 If G is an odpu-graph with od(G) = |V(G)| = n, then G is self-centered and n is even.

Corollary 3.15 If G is an odpu-graph with od(G) = |V(G)| = n then $r(G) \ge 3$ and u_1, u_2 are different vertices of G, then, $N(u_1) \ne N(u_2)$.

Proof If $N(u_1) = N(u_2)$, then $d(u_1, v_1) = d(u_2, v_1)$, which contradicts Theorem 3.13. \square

Corollary 3.16 The odpu-number od(G) = |V(G)| for the n-dimensional cube and for even cycle C_{2n} .

Corollary 3.17 Let G be a graph with r(G) = 2. Then od(G) = |V(G)| if and only if G is isomorphic to $K_{2,2,...,2}$.

Proof If $G = K_{2,2,...,2}$, then r(G) = 2 and G is self-centered and by Theorem 3.13, od(G) = |V(G)| = 2n.

Conversely, let G be a graph with r(G) = 2. Then G is self-centered and it follows from Theorem 3.13 that for each vertex, there exists exactly one vertex at a distance 2. Hence $G \cong K_{2,2,\ldots,2}$.

Problem 3.1 Characterize odpu-graphs for which od(G) = |Z(G)|.

Theorem 3.18 If a graph G has odpu-number 4, then r(G) = 2.

Proof Let G be an odpu-graph with odpu-number 4. Let $M = \{u, v, x, y\}$ be an odpu-set of G. If r(G) = 1, then $f_M^o(x) = \{1\}$ for all $x \in V(G)$. Therefore, $\langle M \rangle$ is complete. Hence, any two elements of M forms an odpu-set of G which implies od(G) = 2, which is a contradiction.

Hence $r(G) \geq 2$.

Since $r(G) \geq 2$, none of the vertices in M is adjacent to all the other vertices in M and $\langle M \rangle$ has no isolated vertex. Hence $\langle M \rangle = P_4$ or C_4 or $2K_2$.

If $\langle M \rangle = P_4$ or C_4 then the radius of $\langle M \rangle$ is 2. Hence, there exists a vertex v in M such that $f_M^o(v) = \{1,2\}$ so that r(G) = 2.

Suppose $\langle M \rangle = 2P_2$ and let $E(\langle M \rangle) = \{uv, xy\}$. Since |M| = 4, $r(G) \leq 3$. If r(G) = 3, then $3 \in f_M^o(x)$ and $3 \in f_M^o(u)$. Hence, there exists a vertex $w \notin M$ such that $xw, uw \in E(G)$. Hence, d(x, w) = d(u, w) = 1. Also, d(y, w) = d(v, w) = 2. Therefore, $3 \notin f_M^o(w)$, which is a contradiction. Thus, r(G) = 2.

A set S of vertices in a graph G = (V, E) is called a *dominating set* if every vertex of G is either in S or is adjacent to a vertex in S; further, if $\langle S \rangle$ is isolate-free then S is called a *total dominating set* of G (see Haynes *et al*[7]). The next result establishes the relation between odpu-sets and total dominating sets in an odpu-graph.

Theorem 3.19 For any odpu-graph G, every odpu-set in G is a total dominating set of G.

Proof Let M be an odpu-set of the graph G. Since $1 \in f_M^o(u)$, for all $u \in V(G)$, for any vertex $u \in V(G)$ there exists a vertex $v \in M$ such that $uv \in E(G)$. Hence, M is a total dominating set of G.

Recall that the total domination number $\gamma_t(G)$ of a graph G is the least cardinality of a total dominating set in G.

Corollary 3.20 For any odpu-graph G, $\gamma_t(G) \leq od(G)$.

Problem 3.2 Characterize odpu-graphs G such that $\gamma_t(G) = od(G)$.

Let H be a graph with vertex set $\{x_1, x_2, \ldots, x_n\}$ and let G_1, G_2, \ldots, G_n be a set of vertex disjoint graphs. Then the graph obtained from H by replacing each vertex x_i of H by the graph G_i and joining all the vertices of G_i to all the vertices of G_j if and only if $x_i x_j \in E(H)$, is denoted as $H[G_1, G_2, \ldots, G_n]$.

Theorem 3.21 Let H be a connected odpu-graph of order $n \geq 2$ and radius $r \geq 2$. Let $K = H[G_1, G_2, \ldots, G_n]$. Then od(H) = od(K).

Proof Let $V(H) = \{x_1, x_2, \dots, x_n\}$. Let G_i be the graph replaced at the vertex x_i in H. It follows from the definition of K that if $(x_{i1}, x_{i2}, \dots, x_{ir})$ is a shortest path in H, then $(x_{i1,j1}, x_{i2,j2}, \dots, x_{ir,jr})$ is a shortest path in K where $x_{ik,jk}$ is an arbitrary vertex in G_{ik} . Hence $M \subseteq V(H)$ is odpu-set in H if and only if the set $M_1 \subseteq V(K)$, where M_1 has exactly one vertex from G_i if and only if $x_i \in M$, is an odpu-set for K. Hence od(H) = od(K).

Corollary 3.22 A graph G with radius $r(G) \ge 2$ is an odpu-graph if and only if its shadow graph is an odpu-graph.

Theorem 3.23 Given a positive integer $n \neq 1, 3$, any graph G can be embedded as an induced subgraph into an odpu-graph K with odpu-number n.

Proof If n=2, then $K=C_3[G,K_1,K_1]$ is an odpu-graph with $od(K)=od(C_3)=2$ and G is an induced subgraph of K. Suppose $n\geq 4$. Then by Theorem 3.8, there exists an odpu-graph H with od(H)=n. Now by Theorem 3.21, $K=H[G,K_1,K_1,\cdots,K_1]$ is an odpu-graph with od(K)=od(H)=n and G is an induced subgraph of K.

Remark 3.24 If G and K are as in Theorem 3.23, we have

- (1) $\omega(H) = \omega(G) + 2,$
- (2) $\chi(H) = \chi(G) + 2$,
- (3) $\beta_1(H) = \beta_1(G) + 1$ and
- $(4) \qquad \beta_0(H) = \beta_0(G)$

where $\omega(G)$ is the clique number, $\chi(G)$ is the chromatic number, $\beta_1(G)$ is the matching number and $\beta_0(G)$ is the independence number of G. Since finding these parameters are NP-complete for graphs, finding these four parameters for an odpu-graph is also NP-complete.

§4. Bipartite Odpu-Graphs

In this section we characterize complete multipartite odpu-graphs and bipartite odpu-graphs with odpu-number 2 and 4. Further we prove that there are no bipartite graph with odpunumber 5.

Theorem 4.1 The complete n-partite graph K_{a_1,a_2,\dots,a_n} is an odpu-graph if and only if either $a_i = a_j = 1$ for some i and j or $a_1, a_2, a_3, \dots a_n \ge 2$. Hence $od(K_{a_1,a_2,\dots,a_n}) = 2$ or 2n.

Proof Suppose $G=K_{a_1,a_2,\cdots,a_n}$ is an odpu-graph. If $a_1=1$ for exactly one i, then $|Z(K_{a_1,a_2,\cdots,a_n})|=1$. Hence G is not an odpu-graph, which is a contradiction.

Conversely assume, either $a_i = a_j = 1$ for some i and j or $a_1, a_2, a_3, \cdots a_n \geq 2$. If $a_i = a_j = 1$ for some i and j, then there exist two vertices of full degree and hence G is an odpu-graph with odpu-number 2. If $a_1, a_2, a_3, \cdots a_n \geq 2$, then for any set M which contains exactly two vertices from each partite set, we have $f_M^o(v) = \{1, 2\}$ for all $v \in V(G)$ and hence M is an odpu-set with |M| = 2n. Further if M is any subset of V(G) with |M| < 2n, there exists a partite set V_i such that $|M \cap V_i| \leq 1$ and $f_M^0(v) = \{1\}$ for some $v \in V_i$ and M is not an odpu-set. Hence od(G) = 2n.

Theorem 4.2 Let G be a bipartite odpu-graph. Then od(G) = 2 if and only if G is isomorphic to P_2 .

Proof Let G be a bipartite odpu-graph with bipartition (X,Y). Let od(G)=2. Then, by Theorem 3.2, there exist at least two vertices of degree n-1. Hence |X|=|Y|=1 and G is isomorphic to P_2 . The converse is obvious.

Theorem 4.3 A bipartite odpu-graph G with bipartition (X,Y) has odpu-number 4 if and only if the set X has at least two vertices of degree |Y| and the set Y has at least two vertices of degree |X|.

Proof Suppose od(G) = 4. Let M be an odpu-set of G with |M| = 4. Then, by Theorem 3.18, r(G) = 2 and hence $f_M^o(x) = \{1, 2\}$ for all $x \in V(G)$.

First, we show that $|M \cap X| = |M \cap Y| = 2$. If $|M \cap X| = 4$, then $1 \notin f_M^o(v)$ for all $v \in M$. If $|M \cap X| = 3$ and $|M \cap Y| = 1$ then $2 \notin f_M^o(v)$ for the vertex $v \in M \cap Y$. Hence it follows that $|M \cap X| = |M \cap Y| = 2$. Let $M \cap X = \{u, v\}$ and $M \cap Y = \{x, y\}$. Since $f_M^0(w) = \{1, 2\}$ for all $w \in V$, it follows that every vertex in X is adjacent to both x and y and every vertex in Y is adjacent to both u and v. Hence, deg(u) = deg(v) = |Y| and deg(x) = deg(y) = |X|.

Conversely, suppose $u, v \in X$, $x, y \in Y$, deg(u) = deg(v) = |Y| and deg(x) = deg(y) = |X|. Let $M = \{u, v, x, y, \}$. Clearly $f_M^0(w) = \{1, 2\}$ for all $w \in V$. Hence M is an odpu-set. Also, since there exists no full degree vertex in G, by Theorem 3.2 the odpu-number cannot be equal to 2. Also, since 3 is not the odpu-number of any graph. Hence the odpu-number of G is 4. \square

Theorem 4.4 The number 5 cannot be the odpu-number of a bipartite graph.

Proof Suppose there exists a bipartite graph G with bipartition (X,Y) and od(G) = 5. Let $M = \{u, v, x, y, z\}$ be a odpu-set for G.

First, we shall show that $|X \cap M| \ge 2$ and $|Y \cap M| \ge 2$. Suppose, on the contrary, one of these inequalities fails to hold, say $|X \cap M| \le 1$. If X has no element in M, then $1 \notin f_M^o(a)$ for all $\in M$, which is a contradiction. Therefore, $|X \cap M| = 1$. Without loss of generality, let $\{u\} = X \cap M$. Then, since $1 \in f_M^o(v) \cap f_M^o(x) \cap f_M^o(y) \cap f_M^o(z)$, all the vertices v, x, y, z should be adjacent to u. Hence $2 \notin f_M^o(u)$, a contradiction. Thus, we see that each of X and Y must have at least two vertices in M. Without loss of generality, we may assume $u, v \in X$ and $x, y, z \in Y$.

Case 1. r(G) = 2.

Then $f_M^o(w) = \{1,2\}$ for all $w \in Y$. Then proceeding as in Theorem 4.3, we get deg(u) = deg(v) = |Y| and deg(x) = deg(y) = deg(z) = |X|. Therefore, by Theorem 4.3, $\{u, v, x, y\}$ forms an odpu-set of G, a contradiction to our assumption that M is a minimum odpu-set of G. Therefore, r = 2 is not possible.

Case 2. r(G) > 3.

Since M is an odpu-set of G, $f_M^o(a) = \{1, 2, \dots, r\}$ for all $a \in V(G)$. Then, since $2 \in f_M^o(u)$, there exists a vertex $b \in Y$ such that $ub, bv \in E(G)$. But since $b \in Y$ and $ub, bv \in E(G)$, $3 \notin f_M^o(b)$, which is a contradiction. Hence the result follows.

Conjecture 4.5 For a bipartite odpu-graph the odpu-number is always even.

Acknowledgment

The author is very much thankful to the Department of Science and Technology, Government of

India for its support as JRF under the projects SR/S4/MS:287/05 and SR/S4/277/06 at Centre for Mathematical Sciences, Pala and Mary Matha Arts & Science College, Mananthavady. I am thankful to Dr.B.D. Acharya, who suggested the concept of odpu-sets and to Prof. S.B. Rao and Dr.K.A. Germina for their helpful suggestions. I am thankful to Prof. S. Arumugam whose valuable suggestions led to substantial improvement in the presentation of the paper.

References

- [1] B. Bollobás, The Diameter of Random Graphs, Trans. Amer. Math. Soc., 267(2005), 51-60
- [2] F. Buckley and F. Harary, *Distance in Graphs*, Addison Wesley Publishing Company, CA, 1990.
- [3] R. Frucht and F. Harary, On the corona of two graphs, Aequationes Math. 4 (1970), 322-324.
- [4] G. Chartrand and P. Zhang, *Introduction to Graph Theory*, McGraw-Hill, International Edition, 2005.
- [5] F. Gliviac, On radially critical graphs, In: Recent Advances in Graph Theory, Proc. Sympos. Prague, Academia Praha, Prague (1975) 207-221.
- [6] F. Harary, Graph Theory, Addison Wesley, Reading, Massachusetts, 1969.
- [7] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, 1998.