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Abstract: Given an arbitrary non-empty subset M of vertices in a graph G = (V, E), each
vertex u in G is associated with the set fi;(u) = {d(u,v) : v € M, u # v}, called its open M-
distance-pattern. A graph G is called a Smarandachely uniform k-graph if there exist subsets
My, Ma, - -+, My, for an integer k > 1 such that fr;, (u) = f3;, (v) and fy, (u) = fyy, (v) for
1 <i,7 <k and Yu,v € V(G). Such subsets M1, Ma,--- , M}, are called a k-family of open
distance-pattern uniform (odpu-) set of G and the minimum cardinality of odpu-sets in G,
if they exist, is called the Smarandachely odpu-number of G, denoted by odf(G). Usually, a
Smarandachely uniform 1-graph G is called an open distance-pattern uniform (odpu-) graph.
In this case, its odpu-number od§ (G) of G is abbreviated to od(G). In this paper we present

several fundamental results on odpu-graphs and odpu-number of a graph.
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81. Introduction

All graphs considered in this paper are finite, simple, undirected and connected. For graph
theoretic terminology we refer to Harary [6].

The concept of open distance-pattern and open distance-pattern uniform graphs were
suggested by B.D. Acharya. Given an arbitrary non-empty subset M of vertices in a graph
G = (V, E), the open M-distance-pattern of a vertex w in G is defined to be the set f9,(u) =
{d(u,v) : v € M, u# v}, where d(z,y) denotes the distance between the vertices z and y in G.
A graph G is called a Smarandachely uniform k-graph if there exist subsets My, My, -+ , My
for an integer k > 1 such that f§, (u) = f§, (u) and fy, (u) = f3; (v) for 1 < i,j < k and
Vu,v € V(G). Such subsets My, Ma,---, My are called a k-family of open distance-pattern
uniform (odpu-) set of G and the minimum cardinality of odpu-sets in G, if they exist, is
called the Smarandachely odpu-number of G, denoted by ody (G). Usually, a Smarandachely
uniform 1-graph G is called an open distance-pattern uniform (odpu-) graph. In this case, its
odpu-number odf (G) of G is abbreviated to od(G). We need the following theorem.
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Theorem 1.1([5]) Let G be a graph of order n,n > 4. Then the following conditions are

equivalent.

(i) The graph G is self-centred with radius r > 2 and for every u € V(G), there exists exactly

one vertex v such that d(u,v) = r.
(ii) The graph G is r-decreasing.

(iii) There exists a decomposition of V(G) into pairs {u,v} such that d(u,v) = r(G) >
mazx(d(u,x),d(z,v)) for every z € V(G) — {u,v}.

In this paper we present several fundamental results on odpu-graphs and odpu-number of

a graph G.

82. Odpu-Sets in Graphs

It is clear that an odpu-set in any nontrivial graph must have at least two vertices. The following

theorem gives a basic property of odpu-sets.

Theorem 2.1 In any graph G, if there exists an odpu-set M, then M C Z(G) where Z(G) is the
center of the graph G. Also M C Z(G) is an odpu-set if and only if f5;(v) ={1,2,...,r(G)},
for all v € V(G).

proof Let G have an odpu-set M C V(@) and let v € M. Suppose v ¢ Z(G). Then
e(v) > r(G). Hence there exists a vertex u € V(G) such that d(u,v) > r(G). Since v € M,
f5r(uw) contains an element, which is greater than r(G). Now let w € V(G) be such that
e(w) = r(G). Then d(w,v) < r(G) for all v € M. Hence f7;(w) does not contain an element
greater than r(G), so that f§,(u) # f5;(w). Thus M is not an odpu-set, which is a contradiction.
Hence M C Z(G).

Now, let M C Z(G) be an odpu-set. Then max f§,(v) = r(G). Let u € M be such
that d(u,v) = r(G). Let the shortest u — v path be (u = vi,vs, - ,v,(g) = v). Then vy is
adjacent to u. Therefore, 1 € f§;(v1). Since M is an odpu-set, 1 € f§(z) for all x € V(G).
Now, d(va,u) = 2, whence 2 € f§,(v2). Since M is an odpu-set, 2 € f3,(z) for all z € V(G).
Proceeding like this, we get {1,2,3,---,r(G)} C fy;(z) and since M C Z(G), fo(x) =
{1,2,3,--- ,r(G)} for all z € V. The converse is obvious. O

Corollary 2.2 A connected graph G is an odpu-graph if and only if the center Z(G) of G is

an odpu-set.

Proof Let G be an odpu-graph with an odpu-set M. Then f§,(v) = {1,2,..., r(G)} for all
v € V(G). Since f3 5 (v) 2 f;(v) and d(u,v) < r(G) for every v € V and u € Z(G), it follows
that Z(QG) is an odpu set of G. The converse is obvious. O

Corollary 2.3 FEvery self-centered graph is an odpu-graph.
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Proof Let G be a self-centered graph. Take M = V(G). Since G is self-centered, e(v) =
r(Q) for all v € V(G). Therefore, f,(v) = {1,2,---,7(G)} for all v € V(G), so that M is an
odpu-set for G. 0

Remark 2.4 The converse of Corollary 2.3 is not true. For example the graph K, + Ko, is
not self-centered but it is an odpu-graph. Moreover, there exist self-centered graphs having a
proper subset of Z(G) = V(G) as an odpu-set.

Theorem 2.5 If G is an odpu-graph with n > 3, then §(G) > 2 and G is 2-connected.

Proof Let G be an odpu-graph with n > 3 and let M be an odpu-set of G. If G has
a pendant vertex v, it follows from Theorem 2.1 that v ¢ M. Also, v is adjacent to exactly
one vertex w € V(G). Since M is an odpu-set, maz fg;(w) = r(G). Therefore, there exists
u € M such that d(u, w) = r(G). Now d(u,v) = r(G) + 1 and f§,(v) contains 7(G) + 1. Hence
e (v) # for(w), a contradiction. Thus 6(G) > 2.

Now suppose G is not 2-connected. Let By and Bs be blocks in G such that V(B;) N
V(Bz) = {u}. Since, the center of a graph lies in a block, we may assume that the center
Z(G) C By. Let v € By be such that uv € E(G). Then there exists a vertex w € M such that
d(u,w) = 7(G) and d(v,w) = r(G) + 1, so that r(G) + 1 € f§;(u), which is a contradiction.
Hence G is 2-connected. O

Corollary 2.6 A tree T has an odpu-set M if and only if T is isomorphic to Ps.
Corollary 2.7 If G is a unicyclic odpu-graph, then G is isomorphic to a cycle.
Corollary 2.8 A block graph G is an odpu-graph if and only if G is complete.

Corollary 2.9 In any graph G, if there exists an odpu-set M, then every subset M’ of Z(QG)
such that M C M’ is also an odpu-set.

Thus Corollary 2.9 shows that in a limited sense the property of subsets of V(G) being
odpu-sets is super-hereditary within Z(G). The next remark gives an algorithm to recognize

odpu-graphs.

Remark 2.10 Let G be a finite simple connected graph. The the following algorithm recognizes
odpu-graphs.

Step-1: Determine the center of the graph G.

Step-2: Generate the ¢ x n distance matrix D(G) of G where ¢ = |Z(G)|.

Step-3: Check whether each column C; has the elements 1,2,...,7.

Step-4: If then, G is an odpu-graph.

Or else G is not an odpu-graph.

The above algorithm is efficient since we have polynomial time algorithm to determine
Z(@) and to compute the matrix D(G).



106 Bibin K Jose

Theorem 2.11 Every odpu-graph G satisfies, r(G) < d(G) < r(G)+1. Further for any positive
integer r, there exists an odpu-graph with r(G) = r and d(G) = r + 1.

Proof Let G be an odpu-graph. Since r(G) < d(G) for any graph G, it is enough to
prove that d(G) < r(G) + 1. If G is a self-centered graph, then r(G) = d(G). Assume G is
not self-centered and let v and v be two antipodal vertices of G. Since G is an odpu-graph,
Z(G) is an odpu-set and hence there exist vertices u’,v" € Z(G) such that d(u,u’) = 1 and
d(v,v") = 1. Now, G is not self-centered, and d(u,v) = d, implies u,v & Z(G). Iif d > r + 1;
since d(u,u’) = d(v,v") = 1, the only possibility is d(v’,v") = r, which implies d(u,v") = r + 1.
But v € Z(G) and hence r + 1 € f3,(u), which is not possible. Hence d(u,v) =d < r+ 1 and
the result follows.

Now, let = be any positive integer. For r = 1 take G = Ky + K,,,n > 2. For r > 2, let G
be the graph obtained from C5,. by adding a vertex v, corresponding to each edge e in Cs, and
joining v, to the end vertices of e. Then, it is easy to check that an odpu-set of the resulting
graph is V(Cay). O

However, it should be noted that d = r + 1 is not a sufficient condition for the graph to be
an odpu-graph. For the graph G consisting of the cycle C, with exactly one pendent edge at
one of its vertices, d = r + 1 but G is not an odpu-graph.

Remark 2.12 Theorem 2.11 states that there are only two classes of odpu-graphs, those which
are self-centered or those for which d(G) = r(G) + 1. Hence, the problem of characterizing
odpu-graphs reduces to the problem of characterizing odpu-graphs with d(G) = r(G) + 1.

The following theorem gives a complete characterization of odpu-graphs with radius one.

Theorem 2.13 A graph with radius 1 and diameter 2 is an odpu-graph if and only if there exists
a subset M C V(G) with |[M| > 2 such that the induced subgraph (M) is complete, (V — M) is

not complete and any vertex in V. — M 1is adjacent to all the vertices of M.

Proof Assume that G is an odpu-graph with radius » = 1 and diameter d = 2. Then,
f5(v) = {1} for all v € V(G). If (M) is not complete, then there exist two vertices u,v € M
such that d(u,v) > 2. Hence, both f9,(u) and f$,;(v) contains a number greater than 1, which
is not possible. Therefore, (M) is complete. Next, if x € V' — M then, since fg,;(z) = {1}, = is
adjacent to all the vertices of (M). Now, if (V — M) is complete, then since (M) is complete the
above argument implies that G is complete, whence diameter of G would be one, a contradiction.
Thus, (V — M) is not complete.

Conversely assume (M) is complete with |[M| > 2, (V — M) is not complete and every
vertex of (V — M) is adjacent to all the vertices in (M). Then, clearly, the diameter of G is two
and radius of G is one. Also, since |M| > 2, there exist at least two universal vertices in M (i.e.
Each is adjacent to every other vertices in M). Therefore f7,(v) = {1} for every v € V(G).
Hence G must be an odpu-graph with M as an odpu-set. 0

Theorem 2.14 Let G be a graph of order n > 3. Then the following are equivalent.

(i) FEvery k-element subset of V(G) forms an odpu-set, where 2 < k < n.
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(i1) FEvery 2-element subset of V(G) forms an odpu-set.

(ii1) G is complete.

Proof Trivially (¢) implies (i)
If every 2-element subset M of V(G) forms an odpu-set, then f§,(v) = {1} for all v € V(G)
and hence G is complete.

Obviously (4i7) implies (4). O

Theorem 2.15 Any graph G(may or may not be connected) with 6(G) > 1 and having no
vertex of full-degree can be embedded into an odpu-graph H with G as an induced subgraph of
H of order |V(G)| + 2 such that V(Q) is an odpu-set of the graph H.

Proof Let G be a graph with §(G) > 1 and having no vertex of full-degree. Let u,v € V(QG)
be any two adjacent vertices and let a,b ¢ V(G). Let H be the graph obtained by joining a to b
and also, joining a to all vertices of G except u and joining the vertex b to all vertices of G except
v. Let M = V(G) C V(H). Since a is adjacent to all the vertices except u and d(a,u) = 2,
implies f9,(a) = {1,2}. Similarly f$,(b) = {1,2}. Since u is adjacent to v, 1 € f$,(u). Since u
does not have full degree, there exists a vertex x, which is not adjacent to u. But (u,b, z) is a
path in H and hence d(u, z) = 2 in H for all such z € V(G). Therefore f,(u) = {1,2}. Similarly
fer(v) ={1,2}. Now let w € V(G), w # u,v. Now since no vertex w is an isolated vertex and
w does not have full-degree, there exist vertices  and y in V(G) such that wr € E(H) and
wy ¢ E(H). But then, there exists a path (w,a,y) or (w,b,y) with length 2 in H. Also every
vertex which is not adjacent to w is at a distance 2 in H. Therefore f§,(w) = {1,2}. Hence
fo(x) ={1,2} for all x € V(H). Hence H is an odpu-graph and V(G) is an odpu-set of H. [J

Remark 2.16 Bollobds [1] proved that almost all graphs have diameter 2 and almost no graph
has a node of full degree. Hence almost no graph has radius one. Since r(G) < d(G), almost
all graphs have r(G) = d(G) = 2, that is, almost all graphs are self-centered with diameter 2.
Since self-centered graphs are odpu-graphs, the following corollary is immediate.

Corollary 2.17 Almost all graphs are odpu-graphs.

§3. Odpu-Number of a Graph

As we have observed in section 2, if G has an odpu-set M then M C Z(G) and if M C
M' C Z(G), then M’ is also an odpu-set. This motivates the definition of odpu-number of an
odpu-graph.

Definition 3.1 The Odpu-number of a graph G, denoted by od(QG), is the minimum cardinality
of an odpu-set in G.

In this section we characterize odpu-graphs which have odpu-number 2 and also prove that
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there is no graph with odpu-number 3 and for any positive integer k # 1, 3, there exists a graph

with odpu-number k. We also present several embedding theorems. Clearly,
2 < 0d(G) £ |Z(G)] for any odpu — graph G. (3.1)
Since the upper bound for |Z(G)| is |V (G)|, the above inequality becomes,
2 < od(G) < |V(G)]. (3.2)
The next theorem gives a characterization of graphs attaining the lower bound in the above

inequality.

Theorem 3.2 For any graph G, od(G) = 2 if and only if there exist at least two vertices
z,y € V(G) such that d(z) = d(y) = |V(G)| — 1.

Proof Suppose that the graph G has an odpu-set M with |M| = 2. Let M = {z,y}. We
claim that d(z) = d(y) = n — 1, where n = |V(G)|. If not, there are two possibilities.

Case 1. d(z)=n—-1andd(y) <n-—1.

Since d(x) =n — 1, x is adjacent to y. Therefore, f5,(z) = {1}. Also, since d(y) < n —1,
it follows that 2 € f§,(w) for any vertex w not adjacent to v, which is a contradiction.

Case 2. d(z) <n—1andd(y) <n—1.

If zy € E(G), then f(z) = f3;(y) = {1} and for any vertex w not adjacent to wu,
fir(w) # {1}

If zy ¢ E(G), then 1 ¢ f3,(z) and for any vertex w which is adjacent to z, 1 € f§;(w),
which is a contradiction. Hence d(x) = d(y) =n — 1.

Conversely, let G be a graph with u,v € V(G) such that d(u) = d(v)=n—1. Let M = {u,v}.
Then f§;(z) = {1} for all z € V(G) and hence M is an odpu-set with |[M| = 2. O

Corollary 3.3 For any odpu-graph G if |M| =2, then (M) is isomorphic to K.
Corollary 3.4 od(K,) =2 for alln > 2.

Corollary 3.5 If a (p,q)-graph has an odpu-set M with odpu-number 2, then 2p — 3 < q <

p(p—1)
-

Proof By Theorem 3.2, there exist at least two vertices having degree p — 1 and hence
q > 2p — 3. The other inequality is trivial. O

Theorem 3.6 There is no graph with odpu-number three.

Proof Suppose there exists a graph G with od(G) = 3 and let M = {z,y, z} be an odpu-set
in G. Since G is connected, 1 € f,(z) N f5;(y) N for(2).

We claim that z,y, 2 form a triangle in G. Since 1 € f§,(x), and 1 € f{,(z), we may assume
that zy,yz € E(G). Now if 2z ¢ E(G), then d(z,2) = 2 and hence 2 € f¢(z) N f$;(Z) and
8 (y) = {1}, which is not possible. Thus xz € E(G) and z,y, z forms a triangle in G.
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Now f9,(w) = {1} for any w € V(G) — M and hence w is adjacent to all the vertices of M.
Thus G is complete and od(G) = 2, which is again a contradiction. Hence there is no graph G
with od(G) = 3. O

Next we prove that the existence of graph with odpu-numbers k& # 1,3. We need the
following definition.

Definition 3.7 The shadow graph S(G) of a graph G is obtained from G by adding for each
vertex v of G a mew vertex v', called the shadow vertex of v, and joining v' to all the neighbors

of v in G.

Theorem 3.8 For every positive integer k # 1,3, there exists a graph G with odpu-number k.

Proof Clearly od(P2) = 2 and od(Cy) = 4. Now we will prove that the shadow graph of
any complete graph K,,, n > 3 is an odpu-graph with odpu-number n + 2.

Let the vertices of the complete graph K,, be vy, vs,...,v, and the corresponding shadow
vertices be vy, vy, - -+ ,v,,. Since the shadow graph S(K,) of K, is self-centered with radius 2
and n > 3, by Corollary 2.3, it is an odpu-graph. Let M be the smallest odpu-set of S(K,).
We establish that |[M| = n + 2 in the following three steps.

First, we show {v}, vy, -+ ,v,} C M. If there is a shadow vertex v, ¢ M, then 2 ¢ f2,(v;)
since v; is adjacent to all the vertices of S(K,,) other than v;, implying thereby that M is not
an odpu-set, contrary to our assumption. Thus, the claim holds.

’

Now, we show that M = {v,l, v;, ceey v;} is not an odpu-set of S(K,,). Note that v;,v;, ces Uy,
are pairwise non-adjacent and if M = {v},vy,...,v,}, then 1 ¢ f¢,(v;) for all v; € M. But
1€ fg(v), 1<i<n,andhence M is not an odpu-set.

From the above two steps, we conclude that [M| > n. Now, M = {v}, vy, ...,v,} U
{v;} where v; is any vertex of K, is not an odpu-set. Further, since all the shadow vertices
are pairwise nonadjacent and v; is not adjacent to v;, 1 ¢ f (v;). Hence |[M| > n + 1. Let
v, v; € V(K,) be any two vertices of K,, and let M = {vi,vj,vll,v;,...,v;}. We prove
that M is an odpu-set and thereby establish that od(G) = n + 2. Now, d(v;,v;) = 1 and
d(vi, v;) = d(vj,v;) = 2, so that f§;(v;) = f5,(v;) = {1,2}. Also, for any vertex v, € V(K,),
d(vg,v;) = 1 and d(vg, v,) = 2, so that £§,(vx) = {1,2}. Again, d(v;,v;) = d(v;,vi) =1 and for
any shadow vertex v, € V(S(K,)), d(v,,v;) = 1 and since all the shadow vertices are pairwise
non-adjacent, fg,(v,) = {1,2}. Thus, M is an odpu-set and od(G) = n + 2. O

Remark 3.9 We have proved that 3 cannot be the odpu number of any graph. Hence, by the
above theorem, for an odpu-graph the numbers 1 and 3 are the only two numbers forbidden as
odpu-numbers of any graph.

Theorem 3.10 o0d(Cax1) = 2k.

Proof Let Cori1 = (v1,v2,...,V2k41,01). Clearly M = {v1,va,..., v} is an odpu-set of
Cak+1.- Now, let M be any odpu-set of Cop41. Then, there exists a vertex v; € V(Cagt1) such
that v; ¢ M. Without loss of generality, assume that v; = vag11. Then, since 1 € f§,(vort1),
either vor, € M or v1 € M or both vy, ve, € M. Without loss of generality, let v1 € M. Since
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d(vi,ver41) = 1 and vary1 € M, and vy is the only element other than ver41 at a distance 1
from vy, we see that vo € M. Now, d(ve, var+1) = 2 and veg41 € M, and vy is the only element
other than vgr41 at a distance 2; this implies vy € M. Proceeding in this manner, we get
Vg, V4 ...,V € M. Now since d(vak,vog+1) = 1 and vor11 ¢ M, and vog_1 is the only element
other than vor41 at a distance 1 from wvar, we get vop—1 € M. Next, since d(vog—1,vop+1) = 2
and vor4+1 ¢ M, and voy_3 is the only element other than vor 41 at a distance 2 from wvap_1, we
get var_3 € M. Proceeding like this, we get M = {v1,va,...,va;}. Hence od(Copt1) =2k. O

Definition 3.11([2]) A graph is an r-decreasing graph if r(G —v) = r(G) — 1 for all v € V(G).

We now proceed to characterize odpu-graphs G with od(G) = |V(G)|. We need the following

lemma.

Lemma 3.12 Let G be a self-centered graph with r(G) > 2. Then for each u € V(G), there
exist at least two vertices in every it" neighborhood N;(u) = {v € V(G) : d(u,v) = i} of

u, t=1,2,...,r—1.

Proof Let G be a self-centered graph and let u be any arbitrary vertex of G. If possible,
let for some 4, 1 <4 < r —1, N;(u) contains exactly one vertex, say w. Then, since e(w) = r,
there exists x € V(G) such that d(z,w) = r.

If £ € N;(u) for some j > i, then d(u,x) > r, which is a contradiction. Again if z € N;(u)
for some j < 4, then d(z,w) = r < i < r — 1, which is again a contradiction. Hence N;(u)
contains at least two vertices. O

Theorem 3.13 Let G be a graph of order n, n > 4. Then the following conditions are equivalent.
(1) od(GQ) =n.
(13) the graph G is self-centered with radius v > 2 and for every u € V(G), there exists

exactly one verter v such that d(u,v) = r.
(iit) the graph G is r-decreasing.

(iv) there exists a decomposition of V(G) into pairs {u,v} such that d(u,v) = r(G) >
maz (d(u, x),d(z,v)) for every x € V(G) — {u,v}.

Proof Let G be a graph of order n, n > 4. The equivalence of (i), (¢i¢) and (iv) follows
from Theorem 1.1. We now prove that (i) and (i¢) are equivalent.

(1) = (i)

Let G be a graph with od(G) = n = |V(G)|. Hence, e(u) = r for all u € V(G) so that G is
self-centered. Now, we show that for every u € V(G), there exists exactly one vertex v € V(G)
such that d(u,v) =r.

First, we show that for some vertex ug € V(G), there exists exactly one vertex vy € V(G)
such that d(u,,v9) = r. Suppose for every vertex = € V(G), there exist at least two vertices x;
and zz in V(G) such that d(z,z1) = r and d(z,z2) = r. Let M = V(G) — {x1}. Then, since
d(z,z0) = r, f5(x) = {1,2,...,r}. Further, since d(z,z1) = r, f3;(z1) = {1,2,...,r}. Also,
since d(z,z2) = r, and by Lemma 3.12, f§;(z2) = {1,2,--- ,7}. Let y be any vertex other than
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z, x1 and xo. Let 1 < k < 7, and if d(y,z) = k, then by Lemma 3.12 and by assumption,
there exists another vertex z € M such that d(y, z) = k. Therefore, f,(y) = {1,2,...,r}. Thus
M =V(G)—{z1} is an odpu-set for G, which is a contradiction to the hypothesis. Thus, there
exists a vertex ug € V(G) such that there is exactly one vertex vy € V(G) with d(ug,vo) = r.
Next, we claim that ug is the unique vertex for vy such that d(ug,v9) = 7. Suppose there
is a vertex wg # ug with d(wg,vo) = 7. Let M = V(G) — {up}. Then, d(ug,vo) = r implies
f8(uo) ={1,2,...,7} and d(vo, wo) = rimply f,(vo) = {1,2,...,r}. Also, since d(vg, wo) = 7,
by Lemma 3.12, it follows that fg,(wo) = {1,2,...,r}. Now let x € V(G) — {wo, vo, wo}. Since
d(z,up) < r,weget fo,(x) ={1,2,...,7}. Hence, M = V(G) —{wo} is an odpu-set for G, which
is a contradiction. Therefore, for the vertex vy, ug is the unique vertex such that d(ug, vo) = r.

Next, we claim that there is some vertex u; € V(G) — {ug,vo} such that there is exactly
one vertex v; € V(G) at a distance r from uy. If for every vertex uy € V(G) — {uo, vo}, there
are at least two vertices v; and wy in V(G) at a distance r from wuq, then proceeding as above,
we can prove that M = V(G) — {v1} is an odpu-set of G, a contradiction. Therefore, v, is the
only vertex at a distance r from u;. Continuing the above procedure we conclude that for every
vertex u € V(G) there exists exactly one vertex v € V(G) at a distance r from w and for the
vertex v, u is the only vertex at a distance r. Thus (i) implies ().

Now, suppose (i¢) holds. Then M is the unique odpu-set of G and hence od(G) =n. O

Corollary 3.14 If G is an odpu-graph with od(G) = |V (G)| = n, then G is self-centered and n

s even.

Corollary 3.15 If G is an odpu-graph with od(G) = |[V(G)| = n then r(G) > 3 and uy,uq are
different vertices of G, then, N(uy) # N (uz).

Proof If N(u1) = N(us), then d(u1,v1) = d(uz, v1), which contradicts Theorem 3.13. O

Corollary 3.16 The odpu-number od(G) = |V(G)| for the n-dimensional cube and for even
cycle Cop,.

Corollary 3.17 Let G be a graph with r(G) = 2. Then od(G) = |V(G)| if and only if G is
1somorphic to Koo . .

Proof If G = Kz . 2, then r(G) = 2 and G is self-centered and by Theorem 3.13,
0d(G) = |V (G)| = 2n.

Conversely, let G be a graph with r(G) = 2. Then G is self-centered and it follows from
Theorem 3.13 that for each vertex, there exists exactly one vertex at a distance 2. Hence
G = K272)m)2. [l

Problem 3.1 Characterize odpu-graphs for which od(G) = |Z(G)|.
Theorem 3.18 If a graph G has odpu-number 4, then r(G) = 2.

Proof Let G be an odpu-graph with odpu-number 4. Let M = {u,v,z,y} be an odpu-set
of G. If r(G) = 1, then f3,(z) = {1} for all x € V(G). Therefore, (M) is complete. Hence, any
two elements of M forms an odpu-set of G which implies od(G) = 2, which is a contradiction.
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Hence r(G) > 2.

Since r(G) > 2, none of the vertices in M is adjacent to all the other vertices in M and
(M) has no isolated vertex. Hence (M) = P4 or Cy or 2K>.

If (M) = P4 or Cy then the radius of (M) is 2. Hence, there exists a vertex v in M such
that f9,(v) = {1,2} so that 7(G) = 2.

Suppose (M) = 2P, and let E((M)) = {uv,zy}. Since |M| = 4, r(G) < 3. If r(G) = 3,
then 3 € f¢,(z) and 3 € f§,;(u). Hence, there exists a vertex w ¢ M such that 2w, uw € E(G).
Hence, d(z,w) = d(u,w) = 1. Also, d(y,w) = d(v,w) = 2. Therefore, 3 € f3;(w), which is a
contradiction. Thus, 7(G) = 2. O

A set S of vertices in a graph G = (V, E) is called a dominating set if every vertex of G is
either in S or is adjacent to a vertex in S; further, if (S) is isolate-free then S is called a total
dominating set of G (see Haynes et al[7]). The next result establishes the relation between

odpu-sets and total dominating sets in an odpu-graph.

Theorem 3.19 For any odpu-graph G, every odpu-set in G is a total dominating set of G.

Proof Let M be an odpu-set of the graph G. Since 1 € f7,(u), for all v € V(G), for
any vertex u € V(G) there exists a vertex v € M such that uwv € E(G). Hence, M is a total
dominating set of G. O

Recall that the total domination number ;(G) of a graph G is the least cardinality of a
total dominating set in G.

Corollary 3.20 For any odpu-graph G, v(G) < od(G).
Problem 3.2 Characterize odpu-graphs G such that v(G) = 0d(G).

Let H be a graph with vertex set {x1,x2,...,2,} and let G1,Ga, ..., G, be a set of vertex
disjoint graphs. Then the graph obtained from H by replacing each vertex x; of H by the graph
G; and joining all the vertices of G; to all the vertices of G; if and only if z;2; € E(H), is
denoted as H[G1,Ga,...,G,).

Theorem 3.21 Let H be a connected odpu-graph of order n > 2 and radius r > 2. Let
K = H[G1,Ga,...,Gy]. Then od(H) = od(K).

Proof Let V(H) = {x1,x2,...,2,}. Let G; be the graph replaced at the vertex z; in
H. Tt follows from the definition of K that if (z;1,2;2,..., %) is a shortest path in H, then
(1,41, %i2,52, - - - » Tir jr) 1S & shortest path in K where ;5 is an arbitrary vertex in G;. Hence
M C V(H)is odpu-set in H if and only if the set My C V(K), where M; has exactly one vertex
from G; if and only if z; € M, is an odpu-set for K. Hence od(H) = od(K). O

Corollary 3.22 A graph G with radius r(G) > 2 is an odpu-graph if and only if its shadow
graph is an odpu-graph.

Theorem 3.23 Given a positive integer n # 1,3, any graph G can be embedded as an induced

subgraph into an odpu-graph K with odpu-number n.
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Proof If n =2, then K = C3|G, K1, K1] is an odpu-graph with od(K) = od(C5) = 2 and G
is an induced subgraph of K. Suppose n > 4. Then by Theorem 3.8, there exists an odpu-graph
H with od(H) = n. Now by Theorem 3.21, K = H[G, K1, K1, -+, K1] is an odpu-graph with
od(K) = 0d(H) = n and G is an induced subgraph of K. O

Remark 3.24 If G and K are as in Theorem 3.23, we have

(4)  Bo(H) = bo(G)

where w(G) is the clique number, x(G) is the chromatic number, 8;(G) is the matching number
and [y(G) is the independence number of G. Since finding these parameters are NP-complete

for graphs, finding these four parameters for an odpu-graph is also NP-complete.

84. Bipartite Odpu-Graphs

In this section we characterize complete multipartite odpu-graphs and bipartite odpu-graphs
with odpu-number 2 and 4. Further we prove that there are no bipartite graph with odpu-

number 5.

Theorem 4.1 The complete n-partite graph Kq, 4, ... 0, 5 an odpu-graph if and only if either

a;, = aj =1 for some i and j or ai,as,as, - a, > 2. Hence od(Ka, a5, a,) = 2 0or 2n.

Proof Suppose G = Kg, a5, 0, i an odpu-graph. If a; = 1 for exactly one 4, then

|Z(Ka; a5, .a,, )| = 1. Hence G is not an odpu-graph, which is a contradiction.

Conversely assume, either a; = a; = 1 for some ¢ and j or a1, a2,a3,---an > 2. If a; = a; =
1 for some 7 and j, then there exist two vertices of full degree and hence G is an odpu-graph with
odpu-number 2. If a1, a9, as, - -a, > 2, then for any set M which contains exactly two vertices
from each partite set, we have f§,(v) = {1,2} for all v € V(G) ane hence M is an odpu-set
with |[M| = 2n. Further if M is any subset of V(G) with |M| < 2n, there exists a partite set
V; such that [M NV;| <1 and f3,(v) = {1} for some v € V; and M is not an odpu-set. Hence

od(G) = 2n. O

Theorem 4.2 Let G be a bipartite odpu-graph. Then od(G) = 2 if and only if G is isomorphic
to PQ.

Proof Let G be a bipartite odpu-graph with bipartition (X,Y"). Let od(G) = 2. Then, by
Theorem 3.2, there exist at least two vertices of degree n — 1. Hence | X| = |Y| = 1 and G is

isomorphic to P,. The converse is obvious. O
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Theorem 4.3 A bipartite odpu-graph G with bipartition (X,Y) has odpu-number 4 if and only
if the set X has at least two vertices of degree |Y| and the set Y has at least two vertices of
degree | X|.

Proof Suppose od(G) = 4. Let M be an odpu-set of G with |[M| = 4. Then, by Theorem
3.18, 7(G) = 2 and hence f§,(z) = {1,2} for all z € V(G).

First, we show that |[M NX|=|MNY|=2.If  MNX| =4, then 1 & f§,(v) for allv € M.
IfIMNnX|=3and |MNY|=1then 2 ¢ f3,(v) for the vertex v € M NY. Hence it follows that
IMNX|=|MNY|=2.Let MNX = {u,v} and MNY = {x,y}. Since f{,(w) = {1,2} for all
w € V, it follows that every vertex in X is adjacent to both z and y and every vertex in Y is
adjacent to both u and v. Hence, deg(u) = deg(v) = |Y| and deg(x) = deg(y) = | X|.

Conversely, suppose u,v € X, x,y € Y, deg(u) = deg(v) = |Y| and deg(z) = deg(y) = | X|.
Let M = {u,v,z,y, }. Clearly f9,(w) = {1,2} for all w € V. Hence M is an odpu-set. Also,
since there exists no full degree vertex in G, by Theorem 3.2 the odpu-number cannot be equal
to 2. Also, since 3 is not the odpu-number of any graph. Hence the odpu-number of G is 4. [J

Theorem 4.4 The number 5 cannot be the odpu-number of a bipartite graph.

Proof Suppose there exists a bipartite graph G with bipartition (X,Y") and od(G) = 5.
Let M = {u,v,x,y, 2} be a odpu-set for G.

First, we shall show that | X N M| > 2 and |Y N M| > 2. Suppose, on the contrary, one of
these inequalities fails to hold, say |X N M| < 1. If X has no element in M, then 1 ¢ fg,(a)
for all € M, which is a contradiction. Therefore, |X N M| = 1. Without loss of generality,
let {u} = X N M. Then, since 1 € fg,(v) N fy (@) N fo(y) N for(z), all the vertices v, z,y, 2
should be adjacent to u. Hence 2 ¢ f?,(u), a contradiction. Thus, we see that each of X and YV’
must have at least two vertices in M. Without loss of generality, we may assume u,v € X and

z,y,z €Y.
Case 1. r(G)=2.

Then f§;(w) = {1,2} for all w € Y. Then proceeding as in Theorem 4.3, we get deg(u) =
deg(v) = |Y| and deg(z) = deg(y) = deg(z) = |X|. Therefore, by Theorem 4.3, {u,v,z,y}
forms an odpu-set of GG, a contradiction to our assumption that M is a minimum odpu-set of

G. Therefore, r = 2 is not possible.
Case 2. r(G) > 3.

Since M is an odpu-set of G, fg,(a) = {1,2,...,r} for all a € V(G). Then, since 2 € fg,(u),
there exists a vertex b € Y such that ub,bv € E(G). But since b € Y and ub,bv € E(G),
3 ¢ f2;(b), which is a contradiction. Hence the result follows. O

Conjecture 4.5 For a bipartite odpu-graph the odpu-number is always even.
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