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ABSTRACT: The paper makes use of method of Mathematics Analytic to prove Functional
Smarandache Iterations of three kinds.

I.Proving Functional Smarandache Iterations of First Kind.
Kind 1.

Let f:A4— 4 beafunction, such that f(x)<x forallx, and min { f(x),xe 4} >y
different from negative infinity.
Let f have p=>1 fix points: mSx<x < <xp. (The point x is called fix, if
f)y=x.1.
Then:
S71(x) = the smallest number of iterations k such that
J

]:(f(---{”(x)--i): constant.

iterted k times

Proof: I.When A< Q or AcR, conclusion is false.

Counterexample:
Let A=[0,1] with f(x)=x®, then f(x)<x, and x =0, x,=1 are fix points.

Denote: 4, (x)= ﬁf(...f(x)...)) v Aix)=f(x), (n=1,2,-).

n fmes

then 4 (x)=x2 (41,2, ). ,
For any fixed x=0, x=1, assumed that the smallest positive integer k exist, such that
An(x)=a (constant), hence, 4,.,(x)=7(4,(x))= f(a)=a, that is to say a be fix point.

k+1 -
So x2 =0 or 1, = x=0 or 1, this appear contradiction. If AcZ, let A be set of all

rational number on [0,1] with f(x)=x", using the same methods we can also deduce
contradictory result.
This shows the conclusion is false where AcQ or AcR.

I1. when AcZ, the conclusion is true.

(). If x=x, (x, is fix point, 7=1,--p ). Then S =fx)=x=4,(x). So for any

positive integer n, 4,(x)=x ( 7=l,-p), = ST1(x)=1.
| s
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(2). Let x#x, (xisfixed,i=l,« p), if f@)=x, (i=l,p), then STl(x)=1, if
S

SxX)#x but f(f(x))= 4,(x)=x, ( 7=1,*p ), then ST1(x)=2. In general, for fixed
/
positive integer k, if A (X)) # x; A= x; 0 A (%) # x;, but A (x) = x; then

ST1(x)=k
f

(3). Let x#x; (xis fixed ), and for Vne N A0 #x; (i=1,-p), this case is

no exist.

Because x is fix point, my < < Ay(X) << 4,(x) < 4(x) <x. So sequence {4,001 is
descending and exist boundary, this makes know that {4,(x)} is convergent. But, each item
of {x4n(x)} is integer, it is not convergent, this appear contradiction. This shows that
the case is no exist.

(4). Let x#yx, (xisfixed,i=l,+ p), if exist the smallest positive integer k such
that 4,(x)=a ( a=x, ), it is yet unable. Because A =4, x)=a ,
A ()= F(A4,(x) = f(a)=a, this shows that a is fix point , namely, a=yx,, this also
appear contradiction.

Combining (1), (2), (3) and (4) we have

S71(x) = the smallest number of iterations % such that
oy ,

S fx)--)= x; (x; is fix point, 7=1,-p ).
iterted k times
This proves Kind 1.
We easily give a simple deduction.
Let f:4->4 bea function, such that f(x)<x forallx, and min{ f(x),xed} > Mo »

different from negative infinity.
Let f(mg) = myg, namely, my 1s fTix point, and only one.

Then: S/1(x) = the smallest number of iterations k such that
f .
FUC L)) = my-
lterted k times .
2.Proving Functional Smarandache Iterations of Second Kind.

Kind 2.
Let g:4— 4 be a function, such that g(x)>x for all x, and let & > x.
Then:

SI2(x,b) = the smallest number of iterations k such that
g

g(g(--g(x)--))2b.

iterted k times
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Proof: Firstly, denote: B, (x)= g(g(--g(x)--), ( n=1,2, ).

[. Let ACZ, for ¥ x<b, xeZ, assumed that there are not the smallest positive
integer k such that B, (x)=b,then for V neN have B,(x)<b, so
X< Bi(X) <By(x) < < B,(x) < <b.
This makes know that {Bn(x)} is convergent, but it is not convergent. This appear
contradiction, then, there are the smallest k such that B,(x)=b.
[I. Let AcQ or AcR.
(1). For fixed x<A. If g(x)=>g(b)>b, then B.(x)zg(x)>b ( neN ), SI2(x,bh)=1,

g
if g(x)<g(d) but By(x)2g(b)>b,then B (x)2g®B)>b ( n>2 ), S12(x,b) =2. In.
g

general, if PB(x)<g(b), By(x)<g®) ,~ B, (x)<g(®), but By (x)=zg(b)>b, then
SI2(x,b)=k.
g

(2).For fixed x<b, B (x)<g(b), ( neN ) then
X< By(X) <By(x) < - < B (x) <--- < g(b),
so {B,(x)} is convergent. Let l_i)Ian(x) =h" B,(x)<g®y ( nenN ), . b*Sg(b).
D. p=gb). imp,(x)=p" - for e=g(b)~b>0, 3 positive integer k, when n>k such
that |B,(x) gb)<e. So B,(x)>g(b) s=g(b) (g(b) b)=b. That is to say there are the -
smallest & such that B (x)>56. 2). b < g®). v gh)> b*, <o {B,(x)} does not converge
at g(h). So Jgy>0, for VN, 34, when n >N, such that Bnl(x)——g(b*) >gy, then,
B, () 2g()+e, - B,(x)>p+go. On the other hand, B,(x)<p" ( neN ),

B, (x)< b then p'+g, <Bp,(x)< b, but this is unable. This makes know that there is not

the case.

By (1) and (2) we can deduce the conclusion is true in the case of A belong to Q or
. .

Combining I. andII., we have: for any fixed x>b there is
SI2(x,b) = the smallest number of iterations k such that
g .

g(g(--g(x)--))2b.
o ovy Z

iterted k times

This proves Kind 2.

3.Proving Functional Smarandache Iterations of Second Kind.
Kind 3.

Let h: A— 4 be a function, such that &(x) < x for all x, and let b < x.
Then:
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SI3(x,b) = the smallest number of iterations k such that
h
h(h(---h(x)--)) < b.
—_—

iterted k fimes

Using similar methods of proving Kind 2 we also can prove Kind 3, we well not prove
again in the place.

We complete the proofs of Functional Smarandache Iterations of all kinds in the place.
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