Q-Smarandache Fuzzy Implicative Ideal of QSmarandache BH-Algebra

239th ECS Meeting

Q-Smarandache Fuzzy Implicative Ideal of QSmarandache BH-Algebra

Husein Hadi Abbass ${ }^{1}$, Qasim Mohsin Luhaib ${ }^{2}$
${ }^{1,}$ Mathematics Department, Faculty of Education for Girls, University of Kufa Najaf, IRAQ,
${ }^{2}$,Thi-Qar General Directorate of Education, Ministry of Education, IRAQ
1 qasimmohsinluhaib@gmail.com,
2 hussienh.abbas@uokufa.edu.iq

Abstract

In this paper, The notions of Q-Smarandache fuzzy implicative ideal and Q- Smarandache fuzzy sub implicative ideal of a Q-Smarandache BH-Algebra introduced, examples are given, and related properties investigated the relationships among these notions and other types of Q-Smarandache fuzzy ideal of a Q-Smarandache BH-Algebra are Studies.

Keywords: BCK-algebra, BH-algebra, BH-algebra,Q- Smarandache a filter of Smarandache BH-algebra.

1 Introduction

The concept of fuzzy set was introduced by zadeh [1]in 1966,Y.Imai and K. Iseki introduced new notion called BCK-algebra[2]In 1991, applied it to the fundamental theory of groups. O.G. Xi [3]In 2005,Y.B.Jun introduced the notion of a Smarandache BCI-algebra, Smarandache ideal of a Smarandache BCI-algebra [4] in 2009, A.B. Saeid and A.Namdar, introduced the notion of a Q-Smarandache BCH-algebra and Q-Smarandache ideal of Q-Smarandache BCH-algebra [5] in 2013, H. H. Abbass and S. J. Mohammed introduced notions of the Smarandache BH-algebra, Q-Smarandache (ideal, closed ideal, fantastic ideal, completely closed ideal) of a Q-Smarandache BHalgebra[6] In 2014, H. H. Abbass and S. A. Neamah introduced the notions the (im-
plicative, medial) BH -algebra and sub- implicative ideal of a BH -algebra[7]. in 2015, H.H.Abbass and H.K.Gatea introduced the notion Q-Smarandache implicative ideal of a Q-Smarandache BH-Algebra[8]. in this paper we introduce the notion of QSmarandache fuzzy implicative ideal and Q-Smarandache fuzzy sub implicative ideal of a Q-Smarandache BH-Algebra. Note in this paper, X is Q -Smarandache BH-Algebra.

2. Preliminaries

In this section, we give some basic concepts about a BCI-algeba, a BCK-algebra, a BCH-algebra, a BH-algeba,a Q-Smarandache BH-algebra, and a Q-Smarandach ideal of a BH -algebra.

Definition 2.1. [9]. A BCI-algebra is an algebra ($\mathrm{X}, *, 0$), where X is a nonempty set, * is a binary operation and 0 is a constant, satisfying the following axioms: for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$:
i. $((\mathrm{x} * \mathrm{y}) *(\mathrm{x} * \mathrm{z})) *(\mathrm{z} * \mathrm{y})=0$,
ii. $(x *(x * y)) * y=0$,
iii. $x * x=0$,
iv. $x * y=0$ and $y * x=0$ imply $x=y$.

Definition 2.2. [3]. BCK-algebra is a BCI-algebra satisfying the axiom:
$0 * \mathrm{x}=0$ for all $\mathrm{x} \in \mathrm{X}$.
Definition 2.3. [10]. A BH-algebra is a nonempty set X with a constant 0 and a binary operation $*$ satisfying the following conditions:
i. $\mathrm{x} * \mathrm{x}=0, \forall \mathrm{x} \in \mathrm{X}$.
ii. $x * y=0$ and $y * x=0$ imply $x=y, \forall x, y \in X$.
iii. $x * 0=x, \forall x \in X$.

Remark 2.4. [10].
i. Every BCK-algebra is a BCI-algebra.
ii. Every BCK -algebra is a $\mathrm{BCH} / \mathrm{BH}$-algebra.

Remark 2.5. [11] Let X and Y be BH-algebras. A mapping $f: X \rightarrow Y$ is called a homomorphism if $f(x * y)=f(x) * f(y) \forall x, y \in X$. A homomorphism f is called a monomorphism (resp., epimorphism) if it is injective (resp., surjective). For any
homomorphism $f: f: X \rightarrow Y$ the set $\{x \in X: f(x)=0 '\}$ called the kernel of f, denoted by $\operatorname{Ker}(\mathrm{f})$, and the set $\{\mathrm{f}(\mathrm{x}): \mathrm{x} \in \mathrm{X}\}$ is called the image of f , denoted by $\operatorname{Im}(\mathrm{f})$ Notice that $\mathrm{f}(0)=0$.
Definition 2.6. [12]. BCK-algebra ($\mathrm{X},{ }^{*}, 0$) is said to be Bounded BCK-algebra satisfying the identity: $\mathrm{x} *(\mathrm{y} * \mathrm{x})=\mathrm{x} \forall \mathrm{x}, \mathrm{y} \in \mathrm{X}$.

Definition 2.7. [13] A BH-algebra X is called $B H^{*}$-algebra if $(x * y) * x=0, \forall x, y \in X$.
Definition 2.8. [6]. A Smarandache BH-algebra is defined to be a BH-
algebra X in which there exists a proper subset Q of X such that
i. $0 \in \mathrm{Q}$ and $|\mathrm{Q}| \geq 2$.
ii. Q is a BCK -algebra under the operation of X .

Definition 2.9. [8] A Q-Smaradache BH-algebra is said to be a Q-Smaradache implicative BH- algebra if it satisfies the condition, $(x *(x * y)) *(y * x)=y *(y * x)$ $\forall \mathrm{x}, \mathrm{y} \in \mathrm{Q}$.
Definition 2.10. [8] A Q-Smarandache BH-algebra X is called a Q-Smarandache medial BH-algebra if $x *(x * y)=y, \forall x, y \in Q$.
Definition 2.11. [6]. A nonempty subset I of X is called a Q-Smarandache ideal of X, denoted by a Q-S.I of X if it satisfies:
(J_{1}) $0 \in \mathrm{I}$
(J_{2}) $\forall \mathrm{y} \in \mathrm{I}$ and $\mathrm{x} * \mathrm{y} \in \mathrm{I} \Rightarrow \mathrm{x} \in \mathrm{I}, \forall \mathrm{x} \in \mathrm{Q}$.
Definition 2.12. [8]. A Q-Smarandache ideal I of X is called a Q-Smarandache implicative ideal of X, denoted by a Q-S.I.I of X if:
$(\mathrm{x} *(\mathrm{y} * \mathrm{x}))^{*} \mathrm{z} \in \mathrm{I}$ and $\mathrm{z} \in \mathrm{I}$ imply $\mathrm{x} \in \mathrm{I}, \forall \mathrm{x}, \mathrm{y} \in \mathrm{Q}$.
Definition 2.13. [8]. A nonempty subset I of X is called a Q-Smarandache P-ideal of X if satisfies $\left(\mathrm{J}_{1}\right)$ and :
$\left(\mathrm{J}_{3}\right)(\mathrm{x} * \mathrm{z}) *(\mathrm{y} * \mathrm{z}) \in \mathrm{I}$ and $\mathrm{y} \in \mathrm{I}$ imply $\mathrm{x} \in \mathrm{I}, \forall \mathrm{x}, \mathrm{z} \in \mathrm{Q}$.
Definition 2.14. [2]. A fuzzy set A in a $B H$-algebra X is said to be a fuzzy subalgebra of X if it satisfies: $\mathrm{A}(\mathrm{x} * \mathrm{y}) \geq \min \{\mathrm{A}(\mathrm{x}), \mathrm{A}(\mathrm{y})\}, \forall \mathrm{x}, \mathrm{y} \in \mathrm{X}$.
Definition 2.15. [14] A fuzzy subset A of a BH-algebra X is said to be a fuzzy ideal if and only if:
($\left.\mathrm{I}_{1}\right) \quad \mathrm{A}(0) \geq \mathrm{A}(\mathrm{x}), \forall \mathrm{x} \in \mathrm{X}$.
$\left(\mathrm{I}_{2}\right) \mathrm{A}(\mathrm{x}) \geq \min \left\{\mathrm{A}\left(\mathrm{x}^{*} \mathrm{y}\right), \mathrm{A}(\mathrm{y})\right\}, \forall \mathrm{x}, \mathrm{y} \in \mathrm{X}$.
Definition 2.16. [15]. A fuzzy subset A of a BH-algebra X is called a fuzzy implicative ideal of X, denoted by a F.I.I if it satisfies $\left(\mathrm{I}_{1}\right)$ and
($\left.\mathrm{I}_{3}\right) \mathrm{A}(\mathrm{x}) \geq \min \left\{\mathrm{A}\left((\mathrm{x} *(\mathrm{y} * \mathrm{x}))^{*} \mathrm{z}\right), \mathrm{A}(\mathrm{z})\right\}, \forall \mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$.
Definition 2.17. [16]. A fuzzy subset A of a BH-algebra X is called a fuzzy sub implicative ideal of X, denoted by a F.S.I.I if it satisfies $\left(\mathrm{I}_{1}\right)$ and
($\left.\mathrm{I}_{4}\right) \mathrm{A}(\mathrm{y} *(\mathrm{y} * \mathrm{x})) \geq \min \{\mathrm{A}(((\mathrm{x} *(\mathrm{x} * \mathrm{y})) *(\mathrm{y} * \mathrm{x}) * \mathrm{z}), \mathrm{A}(\mathrm{z})\}, \forall \mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$.
Definition 2.18. [17]. Let A be a fuzzy set in, $\forall \alpha \in[0,1]$, the set $A_{\alpha}=\{x \in X, A(x) \geq$ $\alpha\}$ is called a level subset of A.
Note that, A_{α} is a subset of X in the ordinary sense.

Definition 2.19. [17].

Let X and Y be any two sets, A be any fuzzy set in X and $f: X \rightarrow Y$ be any function. The set $f^{-1}(y)=\{x \in X \mid f(x)=y\}, \forall y \in Y$. The fuzzy set B in Y defined by $B(y)$
 denoted by f(A).
Definition 2.18. [12].
Let X and Y be any two sets $f: X \rightarrow Y$ be any function and B be any fuzzy set in $\mathrm{f}(\mathrm{A})$. The fuzzy set A in X defined by: $\mathrm{A}(\mathrm{x})=\mathrm{B}(\mathrm{f}(\mathrm{x})) \forall \mathrm{x} \in \mathrm{X}$ is called the primage of B under f and is denoted by $f^{-1}(B)$
Definition 2.21. [6]. A fuzzy subset A of X is said to be a Q-Smarandache fuzzy ideal of X , denoted by a Q-S.F.I of X:
($\left.\mathrm{F}_{1}\right) \mathrm{A}(0) \geq \mathrm{A}(\mathrm{x}), \forall \mathrm{x} \in \mathrm{X}$
$\left.\left(\mathrm{F}_{2}\right) \mathrm{A}(\mathrm{x}) \geq \min \{\mathrm{A}(\mathrm{x} * \mathrm{y})) \mathrm{A}(\mathrm{y})\right\}, \forall \mathrm{x} \in \mathrm{Q}, \mathrm{y} \in \mathrm{X}$

3. Main results

In this section, we introduce the concepts of a Q-Smarandache fuzzy implicative ideal and Q-Smarandache fuzzy sub implicative ideal of a Q-Smarandache BH-algebra, also we study some properties of it with examples.

Definition 3.1. A fuzzy subset A of X is called a Q-Smarandache fuzzy implicative ideal of X , denoted by a Q-S.F.I.I of X if it satisfies $\left(\mathrm{F}_{1}\right)$ and,
$\left(\mathrm{F}_{3}\right) \mathrm{A}(\mathrm{x}) \geq \min \{\mathrm{A}(((\mathrm{x} *(\mathrm{y} * \mathrm{x})) * \mathrm{z})), \mathrm{A}(\mathrm{z})\}$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{Q}, \mathrm{z} \in \mathrm{X}$.
Example 3.2. .
Consider $\mathrm{X}=\{0,1,2\}$ with binary operation defined by the following table:

$*$	0	1	2
0	0	0	0
1	1	0	1
2	2	2	0

where $\mathrm{Q}=\{0,2\}$ is a BCK -algebra. The fuzzy subset A defined by $\mathrm{A}(0)=0.7$, $\mathrm{A}(1)=0.5$ and $\mathrm{A}(2)=0.2$ by calculation we knew that A is Q-S.F.I.I.
Proposition 3.3. Every Q-S.F.I.I is Q-S.F.I. of X.
Proof. Let A be a Q-S.F.I.I, To prove that A is Q-S.F.I. by Definition (3.1) the condition $\left(F_{1}\right)$ is satisfied .Now let $x, \in Q$ and $y \in X$. we have $A(x) \geq \min \left\{A\left(\left(x{ }_{-}\right.\right.\right.$ $(\mathrm{x} * \mathrm{x})) * \mathrm{y}), \mathrm{A}(\mathrm{y})\},($ since A is a Q-S.F.I.I) it follows that $\mathrm{A}(\mathrm{x}) \geq \min \{\mathrm{A}((\mathrm{x} *(0)) *$ $y), A(y)\},($ since $x * x=0, \forall x, \in Q)$ implies that $A(x) \geq \min \{A((x * y), A(y)\}($ since $x * 0=x, \forall x \in Q)$. Hence A is Q-S.F.I of X.

Remark 3.4. A Q-S.F.I of X may not be a Q-S.F.I.I of X as in the following example.
Example 3.5. Consider $X=\{0,1,2,3\}$ with binary operation "*"defined by the
following table:

$*$	0	1	2	3
0	0	0	2	3
1	1	0	2	2
2	2	1	0	1
3	3	2	3	0

where $\mathrm{Q}=\{0,1\}$ is a BCK -algebra. The fuzzy subset A defined by $\mathrm{A}(0)=\mathrm{A}(2)=0.5$ and $\mathrm{A}(1)=\mathrm{A}(3)=0.2$ is Q-S.F.I of X but it is not a Q-S.F.I.I of
X. Since if $x=1, y=0, z=2$, then

$$
\mathrm{A}(1)<\min \{\mathrm{A}((1 *(0 * 1)) * 2), \mathrm{A}(2)\} .
$$

Theorem 3.6. Let A be a Q-S.F.I of X. Then A is a Q-S.F.I.I of X if and only if the level subset A_{α} is a Q-S.I.I of $\mathrm{X}, \forall \alpha \in[0, \mathrm{~A}(0)]$, such that $\mathrm{A}(0)=\operatorname{Sup}_{x \in X} A(x)$.

Proof. Let A be a Q-S.F.I.I of X. To prove A_{α} is a Q-S.I.I of X.[it is clear that $A(0) \geq \alpha]$. So $0 \in A_{\alpha}$. Hence A_{α} satisfies I1.Now let $x, y \in Q, z \in X$ such that $((\mathrm{x} *(\mathrm{y} * \mathrm{x})) * \mathrm{z}) \in \mathrm{A}_{\alpha}$ and $\mathrm{z} \in \mathrm{A}_{\alpha}$ it follows that $\mathrm{A}((\mathrm{x} *(\mathrm{y} * \mathrm{x})) * \mathrm{z}) \geq \alpha$ and $\mathrm{A}(\mathrm{z}) \geq$ α thus $\min \{\mathrm{A}((\mathrm{x} *(\mathrm{y} * \mathrm{x})) * \mathrm{z}), \mathrm{A}(\mathrm{z})\} \geq \alpha$. But $\mathrm{A}(\mathrm{x}) \geq \min \{\mathrm{A}((\mathrm{x} *(\mathrm{y} * \mathrm{x})) * \mathrm{z}), \mathrm{A}(\mathrm{z})\}$ [Since A is a Q-S.F.I.I of X . By definition 3.1(F3)] So $\mathrm{A}(\mathrm{x}) \geq \alpha \Rightarrow \mathrm{x} \in \mathrm{A}_{\alpha}$ Therefore, A_{α} is a Q-S.I.I of X.

Conversely,
Let A_{α} be a Q-S.I.I. of $\mathrm{X}, \forall \alpha \in[0, \mathrm{~A}(0)]$ and $\alpha=\operatorname{Sup}_{x \in X} A(x)$. To prove that A is a Q-
S.F.I.I of X. $0 \in \mathrm{~A}_{\alpha} .\left[\right.$ Since A_{α} is a Q-S.I.I. of X].
imply $\mathrm{A}(0 \geq \alpha$ we get $\mathrm{A}(0) \geq \mathrm{A}(\mathrm{x})$. Let $\mathrm{x}, \mathrm{y} \in \mathrm{Q}, \mathrm{z} \in \mathrm{X}$ such that $\min \{\mathrm{A}((\mathrm{x} *(\mathrm{y} * \mathrm{x}))$

* z$), \mathrm{A}(\mathrm{z})\}=\alpha$ then $\mathrm{A}((\mathrm{x} *(\mathrm{y} * \mathrm{x})) * \mathrm{z}) \geq \alpha$ and $\mathrm{A}(\mathrm{z}) \geq \alpha$
it follows that $((\mathrm{x} *(\mathrm{y} * \mathrm{x})) * \mathrm{z}) \in \mathrm{A}_{\alpha}$ and $\mathrm{z} \in \mathrm{A}_{\alpha}$ thus $\mathrm{x} \in \mathrm{A}_{\alpha}\left[\right.$ Since A_{α} be an Q-S.I.I
of $X]$ imply $\mathrm{A}(\mathrm{x}) \geq \alpha$ we get $\mathrm{A}(\mathrm{x}) \geq \min \{\mathrm{A}(((\mathrm{x} *(\mathrm{y} * \mathrm{x})) * \mathrm{z})), \mathrm{A}(\mathrm{z})\}$.
Therefore, A is a Q-S.F.I.I of X .
Corollary 3.6.1. A fuzzy subset A is a $Q-$ S.F.I.I of X if and only if the set X_{A} is an Q-S.I.I of X, where $X_{A}=\{x \in X \mid A(x)=A(0)\}$

Proof. Let A be a Q-S.F.I.I of X. To prove XA is a Q-S.I.I of X.
i .If $x=0$ then $A(0)=A(0) \Rightarrow 0 \in X_{A}$
ii: Let $\mathrm{x}, \mathrm{y} \in \mathrm{Q}, \mathrm{z} \in \mathrm{X}$ such that $\left(\mathrm{x} *\left(\mathrm{y}^{*} \mathrm{x}\right)\right) * \mathrm{z} \in \mathrm{X}_{\mathrm{A}}$ and $\mathrm{z} \in \mathrm{X}_{\mathrm{A}}$.
follows that $\mathrm{A}\left(\left(\mathrm{x}^{*}\left(\mathrm{y}^{*} \mathrm{x}\right)\right)^{*} \mathrm{z}\right)=\mathrm{A}(0)$ and $\mathrm{A}(\mathrm{z})=\mathrm{A}(0)$. we have $\mathrm{A}(\mathrm{x}) \geq \min \{\mathrm{A}(($ $\left.\left.\left.\mathrm{x}^{*}\left(\mathrm{y}^{*} \mathrm{x}\right)\right){ }^{*} \mathrm{z}\right), \mathrm{A}(\mathrm{z})\right\}=\min \{\mathrm{A}(0), \mathrm{A}(0)\}[$ Since A is a Q-S.F.I.I of X$]$ it follows that
$A(x) \geq A(0)$ Hence $A(x)=A(0)$ [Since A is a Q-S.F.I.I of $X, A(x) \geq A(0)$] we get $x \in X_{A}$. Therefore, X_{A} is a Q-S.I.I of X

Conversely,
Let X_{A} be a Q-S.I.I of X . To prove A is a Q-S.F.I.I of X .
Since $\mathrm{X}_{\mathrm{A}}=\mathrm{A}_{\mathrm{A}(0)}$
Therefore, A is a. Q-S.F.I.I of X [By Theorem 3.6].

Proposition 3.7. Let A be a fuzzy subset of X defined by
$A(x)=\left\{\begin{array}{cc}\alpha_{1} ; & x \in X_{A} \\ \alpha_{2} ; & \text { otherwies },\end{array} \quad\right.$ where $\alpha 1, \alpha_{2} \in[0,1]$ such that $\alpha_{1}>\alpha_{2}$ Then A is a Q-S.F.I.I of X if and only if XA is an Q-S.I.I of X .

Proof. Let A be a Q-S.F.I.I of X . To prove X_{A} is an Q-S.I.I of X .
i. $\mathrm{A}(0)=\alpha_{1} \Rightarrow 0 \in \mathrm{X}_{\mathrm{A}}[$ Since $\mathrm{A}(0) \geq \mathrm{A}(\mathrm{x}) ; \forall \mathrm{x} \in \mathrm{X}$. By definition 3.1(F1)].
ii Let $\mathrm{x}, \mathrm{y} \in \mathrm{Q}, \mathrm{z} \in \mathrm{X}_{\mathrm{A}}$ such that $(\mathrm{x} *(\mathrm{y} * \mathrm{x}))^{*} \mathrm{z} \in \mathrm{X}_{\mathrm{A}}$ and $\mathrm{z} \in \mathrm{X}_{\mathrm{A}}$.
we obtain $\mathrm{A}((\mathrm{x} *(\mathrm{y} * \mathrm{x})) * \mathrm{z})=\mathrm{A}(0)=\alpha_{1}$ and $\mathrm{A}(\mathrm{z})=\mathrm{A}(0)=\alpha_{1}$ it follows
that $\mathrm{A}(\mathrm{x}) \geq \min \{\mathrm{A}((\mathrm{x} *(\mathrm{y} * \mathrm{x})) * \mathrm{z}), \mathrm{A}(\mathrm{z})\}=\alpha_{1}$ [Since A is a Q-S.F.I.I of X ,
by definition3.1 $\left(\mathrm{F}_{1}\right)$], Thus $\mathrm{A}(\mathrm{x})=\alpha_{1}$ we get $\mathrm{x} \in \mathrm{X}_{\mathrm{A}}$. Hence X_{A} is a Q-S.I.I of X.
Conversely, Let XA be an Q-S.I.I of X. To prove A is a Q-S.F.I.I of X.
i. Since $0 \in X_{A}$, then $A(0)=\alpha_{1} \Rightarrow A(0)=\alpha_{1} \geq A(x)$. we get $A(0) \geq A(x), \forall x \in X$.
ii . Let $x, y \in Q, z \in X$. Then we have four cases:
Case 1: If $(\mathrm{x} *(\mathrm{y} * \mathrm{x})) * \mathrm{z} \in \mathrm{X}_{\mathrm{A}}$ and $\mathrm{z} \in \mathrm{X}_{\mathrm{A}}$. it follows that $\mathrm{x} \in \mathrm{X}_{\mathrm{A}}$. [Since
XA is an Q-S.I.I of X$]$. we get $\mathrm{A}((\mathrm{x} *(\mathrm{y} * \mathrm{x})) * \mathrm{z})=\mathrm{A}(\mathrm{z})=\mathrm{A}(\mathrm{x})=\alpha$. Hence
$\mathrm{A}(\mathrm{x}) \geq \min \{\mathrm{A}((\mathrm{x} *(\mathrm{y} * \mathrm{x})) * \mathrm{z}), \mathrm{A}(\mathrm{z})\}$.

Case 2: If $(\mathrm{x} *(\mathrm{y} * \mathrm{x})) * \mathrm{z} \in \mathrm{X}_{\mathrm{A}}$ and $\mathrm{z} \notin \mathrm{X}_{\mathrm{A}}$ it follows that $\mathrm{A}((\mathrm{x} *(\mathrm{y} * \mathrm{x})) * \mathrm{z})=$ α_{1} and $\mathrm{A}(\mathrm{z})=\alpha_{2}$. we get $\min \{\mathrm{A}((\mathrm{x} *(\mathrm{y} * \mathrm{x})) * \mathrm{z}), \mathrm{A}(\mathrm{z})\}=\alpha_{2}$. Hence $\mathrm{A}(\mathrm{x}) \geq$ $\min \{\mathrm{A}((\mathrm{x} *(\mathrm{y} * \mathrm{x})) * \mathrm{z}), \mathrm{A}(\mathrm{z})\}$.

Case 3: If $(x *(y * x)) * \mathrm{z} \notin \mathrm{X}_{\mathrm{A}}$ and $\mathrm{z} \in \mathrm{X}_{\mathrm{A}}$ it follows that $\{\mathrm{A}((\mathrm{x} *(\mathrm{y} * \mathrm{x})) * \mathrm{z})=$ $\alpha 2$ and $\mathrm{A}(\mathrm{z})=\alpha 1$. we get $\min \{\mathrm{A}((\mathrm{x} *(\mathrm{y} * \mathrm{x})) * \mathrm{z}), \mathrm{A}(\mathrm{z})\}=\alpha_{2}$. Hence $\mathrm{A}(\mathrm{x}) \geq$ $\min \{\mathrm{A}((\mathrm{x} *(\mathrm{y} * \mathrm{x})) * \mathrm{z}), \mathrm{A}(\mathrm{z})\}$.

Case 4:If $(\mathrm{x} *(\mathrm{y} * \mathrm{x})) * \mathrm{z} \notin \mathrm{X}_{\mathrm{A}}$ and $\mathrm{z} \notin \mathrm{X}_{\mathrm{A}}$ it follows that $\left.\mathrm{A}(\mathrm{x} *(\mathrm{y} * \mathrm{x})) * \mathrm{z}\right)=\mathrm{A}(\mathrm{z})=\alpha_{2}$. we get $\min \{A((x *(y * x)) * z), A(z)\}=\alpha_{2}$. Hence $A(x) \geq \min \{A((x *(y * x)) * z)$, $\mathrm{A}(\mathrm{z})\}$. Therefore, A is a Q-S.F.I.I of X.

Remark 3.8. Let A be a fuzzy subset of X and $w \in X$. The set $\{x \in X \mid A(w) \leq A(x)\}$ is denoted by $\uparrow \mathrm{A}(\mathrm{w})$.

Proposition 3.9.Let A be a Q-S.F.I of X and $w \in X$. If A satisfies the condition $\forall x, y \in Q A(x) \geq A\left(x *(y * x)\left(b_{2}\right)\right.$. Then $\uparrow A(w)$ is a Q-S.I.I of X.

Proof. Let A be a Q-S.F.I of X. Then $\mathrm{A}(0) \geq \mathrm{A}(\mathrm{x}), \forall \mathrm{x} \in \mathrm{X} \quad$ [By Definition 2.21($\left.\mathrm{F}_{1}\right)$].
it follows that $A(0) \geq A(w)$ [Since $w \in X$] we get $0 \in \uparrow A(w)$

Now, Let $x, y \in Q, \quad z \in X$ such that $\left(\left(\left(x^{*}\left(y^{*} x\right)\right) * z\right)\right) \in \uparrow A(w)$ and $z \in \uparrow A(w)$
thus $\mathrm{A}(\mathrm{w}) \leq \mathrm{A}\left(\left(\mathrm{x}^{*}\left(\mathrm{y}^{*} \mathrm{x}\right)\right) * \mathrm{z}\right) \quad$ and $\mathrm{A}(\mathrm{w}) \leq \mathrm{A}(\mathrm{z})$ implies that
$\mathrm{A}(\mathrm{w}) \leq \min \{\mathrm{A}(((\mathrm{x} *(\mathrm{y} * \mathrm{x})) * \mathrm{z})), \mathrm{A}(\mathrm{z})\} \leq \mathrm{A}(\mathrm{x} *(\mathrm{y} * \mathrm{x}))$ [Since A is a Q-S.F.I
of X] But $A\left(x^{*}\left(y^{*} x\right)\right) \leq A(x)$. [By $\left.\left(b_{2}\right)\right]$. we get $A(w) \leq A(x)$. Hence $x \in \uparrow A(w)$ Therefore, $\mathrm{A}(\mathrm{w})$ is a Q-S.I.I of X .

Proposition 3.10. Let $w \in X$. If A is a Q-S.F.I.I of X, then $\uparrow A(w)$ is a Q-S.I.I of X.

Proof. Let A be a Q-S.F.I of X . Then $\mathrm{A}(0) \geq \mathrm{A}(\mathrm{x}), \forall \mathrm{x} \in \mathrm{X}$ it follows that $\mathrm{A}(0) \geq$ $\mathrm{A}(\mathrm{w})[$ Since $\mathrm{w} \in \mathrm{X}]$. Hence $0 \in \uparrow \mathrm{~A}(\mathrm{w})$. Let $\mathrm{x}, \mathrm{y} \in \mathrm{Q}, \mathrm{z} \in \mathrm{X}$ such that $\left(\mathrm{x}^{*}\left(\mathrm{x}^{*} \mathrm{y}\right)\right)^{*}$ $\mathrm{z} \in \uparrow \mathrm{A}(\mathrm{w})$ and $\mathrm{z} \in \uparrow \mathrm{A}(\mathrm{w})$ Then $\mathrm{A}(\mathrm{w}) \leq \mathrm{A}\left(\left(\mathrm{x}^{*}\left(\mathrm{y}^{*} \mathrm{x}\right)\right)^{*} \mathrm{z}\right)$ and $\mathrm{A}(\mathrm{w}) \leq \mathrm{A}(\mathrm{z})$ it follows $\mathrm{A}(\mathrm{w}) \leq \min \{\mathrm{A}((\mathrm{x} *(\mathrm{y} * \mathrm{x})) * \mathrm{z}), \mathrm{A}(\mathrm{z})\}$ But $\min \mathrm{A}((\mathrm{x} *(\mathrm{y} * \mathrm{x})) * \mathrm{z}), \mathrm{A}(\mathrm{z}) \leq \mathrm{A}(\mathrm{x}) \quad[\mathrm{By}$ Definition 2.21($\left.\left.F_{2}\right)\right]$ we get $A(w) \leq A(x)$. Hence $x \in \uparrow A(w)$. Therefore, $\uparrow A(w)$ is a Q-S.I.I of X.

Proposition 3.11.

Let $\left\{\mathrm{A}_{\mathrm{i}} / \mathrm{I} \in \Gamma\right\}$ be a family of Q-S.F.I.I of X . Then $\bigcap_{\alpha \in \lambda} A_{\mathrm{i}}$ is a Q-S.F.I.I of X.
Let $\{\mathrm{Ai} / \mathrm{i} \in \Gamma\}$ be a family of Q-S.F.I.I of X
i. Let $\mathrm{x} \in \mathrm{X}$. Then

$$
\left.\bigcap_{i \in \Gamma} A_{\mathrm{i}}(0)=\inf \left\{\mathrm{A}_{\mathrm{i}}(0) \mid \mathrm{i} \in \Gamma\right\}\right) \geq \inf \left\{\mathrm{A}_{\mathrm{i}}(\mathrm{x}) \mid \mathrm{i} \in \Gamma\right\}=\bigcap_{i \in \Gamma} A_{\mathrm{i}}(\mathrm{x})
$$

(ii). Let $\mathrm{x}, \mathrm{y} \in \mathrm{Q}, \mathrm{z} \in \mathrm{X}$. Then, we have

$$
\begin{aligned}
& \bigcap_{i \in \Gamma} A_{\mathrm{i}}(\mathrm{x})=\inf \left\{\mathrm{A}_{\mathrm{i}}(\mathrm{x}) \mid \mathrm{i} \in \Gamma\right\} \geq \inf \left\{\min \left\{\mathrm{A}_{\mathrm{i}}((\mathrm{x} *(\mathrm{y} * \mathrm{x})) * \mathrm{z}), \mathrm{A}_{\mathrm{i}}(\mathrm{z}) \mid \mathrm{i} \in \Gamma\right\}\right\} \\
& =\min \left\{\inf \left\{\mathrm{A}_{\mathrm{i}}((\mathrm{x} *(\mathrm{y} * \mathrm{x})) * \mathrm{z}), \mathrm{A}_{\mathrm{i}}(\mathrm{z}) \mid \mathrm{i} \in \Gamma\right\}\right. \\
& \left.=\min \left\{\inf \left\{\mathrm{A}_{\mathrm{i}}\left(\left(\mathrm{x} *\left(\mathrm{y}^{*} \mathrm{x}\right)\right) * \mathrm{z}\right)\right) \mid \mathrm{i} \in \Gamma\right\}, \inf \left\{\mathrm{A}_{\mathrm{i}}(\mathrm{z})\right\}\right\} \\
& \left.\left.=\min \left\{\bigcap_{i \in \Gamma} A_{\mathrm{i}}(\mathrm{x}) \quad \mathrm{i}((\mathrm{x} *(\mathrm{y} * \mathrm{x})) * \mathrm{z}) \mid \mathrm{i} \in \Gamma\right\}, \bigcap_{i \in \Gamma} A_{\mathrm{i}}(\mathrm{z}) \mid \alpha \in \Gamma\right\}\right\} \\
& \left.\quad \Rightarrow \bigcap_{i \in \Gamma} A_{\mathrm{i}}(\mathrm{x}) \geq \min \left\{\left\{\bigcap_{i \in \Gamma} A_{\mathrm{i}}(\mathrm{x} *(\mathrm{y} * \mathrm{x})) * \mathrm{z}\right) \mid\right\},\left\{\bigcap_{\alpha \in \lambda} A_{\mathrm{i}}(\mathrm{z})\right\}\right\}
\end{aligned}
$$

Therefore, $\bigcap_{i \in \Gamma} A_{\mathrm{i}}(\mathrm{x})$ is a Q-S.F.I.I of X.
Remark 3.12. The union of a Q-S.F.I.I of X may not be a Q-S.F.I.I of X as in The following example.
Example 3.13. Consider $\mathrm{X}=\{0,1,2,3,4,5\}$ with binary operation "*" defined by the following table:

$*$	0	1	2	3	4	5
0	0	0	0	0	0	0
1	1	0	0	0	0	1

2	2	2	0	0	1	1
3	3	2	1	0	1	1
4	4	4	4	4	0	1
5	5	5	5	5	5	0

Where $Q=\{0,2\}$ is a BCK-algebra . The fuzzy subset A, B defined by
$\mathrm{A}(0)=\mathrm{A}(1)=0.9, \mathrm{~A}(2)=\mathrm{A}(3)=\mathrm{A}(4)=\mathrm{A}(5)=0.4$ and
$B(0)=B(5)=0.9, B(1)=B(2)=B(3)=B(4)=0.4$ are two Q-S.F.I.I, but
$A \cup B(0)=A \cup B(1)=A \cup B(5)=0.9$ and
$A \cup B(2)=A \cup B(3)=A \cup B(4)=0.4$
is not a Q-S.F.I.I of X, Since

$$
(A \cup B)(2)=0.4<\min \{(A \cup B)((2 *(0 * 2)) * 5),(A \cup B)(5)\}
$$

Proposition 3.14.

Let $\{\mathrm{Ai} / \mathrm{i} \in \Gamma\}$ be a chain of Q-S.F.I.I of X .Then $\bigcup_{i \in \Gamma} A_{\mathrm{i}}(\mathrm{x})$ is a Q-S.F.I.I of X.
Proof .
Let $\left\{\mathrm{A}_{\mathrm{i}} \mid \mathrm{i} \in \Gamma\right\}$ be a chain of Q-S.F.I.I of X
i: Let $\mathrm{x} \in \mathrm{X}$. Then

$$
\left.\bigcup_{i \in \Gamma} A_{\mathrm{i}}(0)=\sup \left\{\mathrm{A}_{\mathrm{i}}(0) \mid \mathrm{i} \in \Gamma\right\}\right) \geq \sup \left\{\mathrm{A}_{\mathrm{i}}(\mathrm{x}) \mid \mathrm{i} \in \Gamma\right\}=\bigcup_{i \in \Gamma} A_{\mathrm{i}}(\mathrm{x})
$$

[Since A_{i} is a Q-S.F.I.I of $\mathrm{X}, \mathrm{i} \in \mathrm{\Gamma}$, by Definition 3.1(i)]

$$
\Rightarrow \bigcup_{i \in \Gamma} A_{\mathrm{i}}(0) \geq \bigcup_{i \in \Gamma} A_{\mathrm{i}}(\mathrm{x})
$$

ii: Let $x, y \in Q, z \in X$. Then, we have

$$
\left.\bigcup_{i \in \Gamma} A_{\mathrm{i}}(\mathrm{x})=\sup \left\{\mathrm{A}_{\mathrm{i}}(\mathrm{x}) \mid \mathrm{i} \in \Gamma\right\}\right) \geq \sup \left\{\min \left\{\mathrm{A}_{\mathrm{i}}\left(\mathrm{x}^{*}(\mathrm{y} * \mathrm{x}) * \mathrm{z}\right), \mathrm{A}_{\mathrm{i}}(\mathrm{z}) \mid \mathrm{i} \in \Gamma\right\}\right\}
$$

[Since Ai is a Q-S.F.I.I of $\mathrm{X}, \mathrm{i} \in \lambda$ by Definition 3.1(i)]
$\Rightarrow=\min \left\{\sup \left\{\mathrm{A}_{\mathrm{i}}\left(\mathrm{x}^{*}\left(\mathrm{y}^{*} \mathrm{x}\right) * \mathrm{z}\right), \mathrm{A}_{\mathrm{i}}(\mathrm{z}) \mid \mathrm{i} \in \Gamma\right\}\right\}\left[\right.$ since A_{i} is a chain, $\left.\mathrm{i} \in \Gamma\right]$
$\Rightarrow=\min \left\{\sup \left\{\mathrm{A}_{\mathrm{i}}\left(\mathrm{x}^{*}(\mathrm{y} * \mathrm{x})^{*} \mathrm{z}\right) \mid \mathrm{i} \in \Gamma\right\}, \sup \left\{\mathrm{A}_{\mathrm{i}}(\mathrm{z})\right) \mid \mathrm{i} \in \Gamma\right\}$
$\left.\Rightarrow \quad=\min \left\{\bigcup_{i \in \Gamma} A_{\mathrm{i}}\left(\mathrm{x}^{*}(\mathrm{y} * \mathrm{x}) * \mathrm{z}\right) \mid \mathrm{i} \in \Gamma\right\},\left\{\bigcup_{i \in \Gamma} A_{\mathrm{i}}(\mathrm{z}) \mid \mathrm{i} \in \Gamma\right\}\right\}$

$$
\left.\Rightarrow \bigcup_{i \in \Gamma} A_{\mathrm{i}}(\mathrm{x}) \geq \min \left\{\bigcup_{i \in \Gamma} A_{\mathrm{i}}\left(\mathrm{x}^{*}\left(\mathrm{y}^{*} \mathrm{x}\right)^{*} \mathrm{z}\right) \mid \mathrm{i} \in \Gamma\right\},\left\{\bigcup_{i \in \Gamma} A_{\mathrm{i}}(\mathrm{z}) \mid \mathrm{i} \in \Gamma\right\}\right\}
$$

Therefore, $\bigcup_{i \in \Gamma} A_{\mathrm{i}}(\mathrm{x})$ is a Q-S.F.I.I of X.
Theorem 3.15. Let A be a Q-S.F.I of X. Then A is a Q-S.F.I.I of X if and only if A satisfies the following inequality: $\forall x, y \in Q \quad A(x) \geq A(x *(y * x)) \quad\left(b_{2}\right)$.

Proof. Let A be a Q-S.F.I.I of X and $\mathrm{x}, \mathrm{y} \in \mathrm{Q}$ then
$\mathrm{A}(\mathrm{x}) \geq \min \{\mathrm{A}((\mathrm{x} *(\mathrm{y} * \mathrm{x})) * 0), \mathrm{A}(0)\}$ it follows that $\geq \min \{\mathrm{A}(\mathrm{x} *(\mathrm{x} * \mathrm{y})), \mathrm{A}(0)\}[$ since $x *(y * x) * 0=x *(y * x)]$ Therefore the condition (b1) is satisfied.
Conversely,
Let A be a Q-S.F.I of X . Then (F1) satisfied.
Now, let $\mathrm{x}, \mathrm{y} \in \mathrm{Q}$, then $\mathrm{A}(\mathrm{x} *(\mathrm{y} * \mathrm{x})) \geq \min \{\mathrm{A}((\mathrm{x} *(\mathrm{x} * \mathrm{y})) * \mathrm{z}), \mathrm{A}(\mathrm{z})\}[$ Since A is a Q S.F.I of X. By $(2.21)(\mathrm{F} 2)]$ we have $\mathrm{A}(\mathrm{x}) \geq \min \{\mathrm{A}((\mathrm{x} *(\mathrm{y} * \mathrm{x})) * \mathrm{z}), \mathrm{A}(\mathrm{z})\}$. Hence, A is a Q-S.F.I.I of X.
Definition 3.16. A fuzzy subset A of X is called a Q-Smarandache fuzzy P-ideal of X , denoted by a Q-S.F.P.I of X if satisfies (F1) and :
(F_{4}) $\mathrm{A}(\mathrm{x}) \geq \min \left\{\mathrm{A}\left(\left(\mathrm{x}^{*} \mathrm{z}\right)^{*}\left(\mathrm{y}^{*} \mathrm{z}\right)\right), \mathrm{A}(\mathrm{y})\right\}$, for all $\mathrm{x}, \mathrm{z} \in \mathrm{Q}, \mathrm{y} \in \mathrm{X}$.
Example 3.17. Consider $X=\{0,1,2,3\}$ with binary operation "*" defined by the following table:

$*$	0	1	2	3
0	0	0	2	0
1	1	0	1	2
2	2	2	0	1
3	3	2	2	0

where $\mathrm{Q}=\{0,1\}$ is a BCK-algebra. The fuzzy subset A defined by
$\mathrm{A}(0)=\mathrm{A}(1)=\mathrm{A}(2)=0.8$ and $\mathrm{A}(3)=0.2$ is a Q-S.F.P.I of X .
Theorem 3.18. Every Q-S.F.P.I is a Q-S.F.I of X.
Proof. Let A be a Q-S.F.P.I of X. Then(F1) satisfied.
Now, let $x, z \in Q$ and $y \in X, z=0$ in $\left(F_{4}\right)$ we get:
$\mathrm{A}(\mathrm{x}) \geq \min \{\mathrm{A}((\mathrm{x} * 0) *(\mathrm{y} * 0)), \mathrm{A}(\mathrm{y})\}[$ Since X is a Q -Smrandache BH-
$\operatorname{algebrax} * 0=x] . \mathrm{A}(\mathrm{x}) \geq \min \{\mathrm{A}(\mathrm{x} * \mathrm{y}), \mathrm{A}(\mathrm{y})\}$
Therefore, A is Q-S.F.I of X.
Theorem 3.19. Every Q-S.F.P.I is a Q-S.F.I.I of X.
Proof. Let A be a Q-S.F.P.I of X. Then.(F1) satisfied[By definition 3.16(F1)]. And
Let $\mathrm{a}, \mathrm{c}, \mathrm{x}, \mathrm{y} \in \mathrm{Q}$ and $\mathrm{d} \in \mathrm{X}$. Then

$$
\begin{aligned}
& \mathrm{A}(\mathrm{a}) \geq \min \{\mathrm{A}((\mathrm{a} * \mathrm{c}) *(\mathrm{~d} * \mathrm{c})), \mathrm{A}(\mathrm{~d})\}[\mathrm{By}(\mathrm{~F} 4)] \text {. Put } \mathrm{a}=\mathrm{x}, \mathrm{~d}=0, \mathrm{c}=\mathrm{y} * \mathrm{x} \text {, we get } \\
& \mathrm{A}(\mathrm{x}) \geq \min \{\mathrm{A}((\mathrm{x} *(\mathrm{y} * \mathrm{x})) *(0 *(\mathrm{y} * \mathrm{x}))), \mathrm{A}(0)\} \\
& \quad=\min \{\mathrm{A}((\mathrm{x} *(\mathrm{y} * \mathrm{x})) * 0), \mathrm{A}(0)\}[\text { Since } \mathrm{Q} \text { is BCK } 0 * \mathrm{x}=0] \\
& =\min \{\mathrm{A}(\mathrm{x} *(\mathrm{y} * \mathrm{x})), \mathrm{A}(0)\}[\text { Since } \mathrm{Q} \text { is BCK } ; \mathrm{x} * 0=\mathrm{x}] \\
& =\mathrm{A}(\mathrm{x} *(\mathrm{y} * \mathrm{x}))[\text { Since } \mathrm{A}(0) \geq \mathrm{A}(\mathrm{x}), \forall \mathrm{x} \in \mathrm{X}]
\end{aligned}
$$

Therefore, A is a Q-S.F.I.I of X [by Theorem 3.15]
Remark 3.20. In the following example, we see that the converse of Theorem (3.21) may not be true in general.
Example 3.21. Consider $X=\{0,1,2\}$ with binary operation "*" defined by table where $\mathrm{Q}=\{0,2\}$ is a BCK-algebra. The fuzzy subset A defined by $\mathrm{A}(0)=0.7, \mathrm{~A}(1)=0.5$ and $\mathrm{A}(2)=0.2$
Then A is Q-S.F.I.I of X , but A is not a Q-S.F.P.I of X , since if $\mathrm{x}=2, \mathrm{y}=1, \mathrm{z}=2$, then $\quad \mathrm{A}(2)=0.2 \leq \min \{\mathrm{A}((2 * 2) *(1 * 2)), \mathrm{A}(1)\}=0.5$

Theorem 3.22. Let A be a Q-S.F.I, such that Q is a bounded BCK- algebra . Then A is a Q-S.F.I.I of X .

Proof. It's clear that $\mathrm{A}(0) \geq \mathrm{A}(\mathrm{X}) . \forall \mathrm{x} \in \mathrm{X}$
Now, let $\mathrm{x}, \mathrm{y} \in \mathrm{Q}$ and $\mathrm{z} \in \mathrm{X}$, Then
$\mathrm{A}(\mathrm{x} *(\mathrm{y} * \mathrm{x})) \geq \min \{\mathrm{A}((\mathrm{x} *(\mathrm{y} * \mathrm{x})) * \mathrm{z}), \mathrm{A}(\mathrm{z})\}$, [Since A is a Q-S.F.I of X , by $\left.2.21\left(\mathrm{~F}_{2}\right)\right]$ implies that $\mathrm{A}(\mathrm{x}) \geq \min \left\{\mathrm{A}\left(\left(\mathrm{x}^{*}(\mathrm{y} * \mathrm{x})\right)^{*} \mathrm{z}, \mathrm{A}(\mathrm{z})\right\}[\right.$ Since Q is bounded BCK- algebra, by 2.6] Therefore, A is a Q-S.F.I.I of X

Definition 3.23. A fuzzy subset A of X is called a Q-Smarandache fuzzy subimplicative ideal of X , denoted by (a Q-S.F.S.I.I) of X if it satisfies: (F1) and
(F_{5}) $\left.\mathrm{A}(\mathrm{y} *(\mathrm{y} * \mathrm{x})) \geq \min \{\mathrm{A}(((\mathrm{x} *(\mathrm{x} * \mathrm{y})) *(\mathrm{y} * \mathrm{x}))) * \mathrm{z}), \mathrm{A}(\mathrm{z})\right\}$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{Q}, \mathrm{z} \in \mathrm{X}$

Example 3.24.

Consider $\mathrm{X}=\{0,1,2,3\}$ with binary operation " $*$ " defined by the following table:

$*$	0	1	2	3
0	0	0	0	3
1	1	0	1	3
2	2	2	0	3
3	3	3	3	0

Where $\mathrm{Q}=\{0,2\}$ is a BCK-algebra. The fuzzy subset A is defined by
$\mathrm{A}(0)=\mathrm{A}(1)=0.9$ and $\mathrm{A}(2)=\mathrm{A}(3)=0.3$ it easy to check that A is Q-S.F.S .I.I of X

Proposition 3.25. Every Q-S.F.S.I.I is Q-S.F.I. of X.
Proof. Let A be a Q-S.F.S.I.I. Then (F1) it is satisfied. Now let $\mathrm{x} \in \mathrm{Q}$ and $\mathrm{y} \in \mathrm{X}$.

$$
\mathrm{A}(\mathrm{x})=\mathrm{A}(\mathrm{x} * 0)=\mathrm{A}(\mathrm{x} *(\mathrm{x} * \mathrm{x})) \geq \min \{\mathrm{A}(((\mathrm{x} *(\mathrm{x} * \mathrm{x})) *(\mathrm{x} * \mathrm{x})) * \mathrm{y}), \mathrm{A}(\mathrm{y})\}
$$

[Since A is a Q-S.F.S.I.I of X, by Definition $3.23\left(\mathrm{~F}_{5}\right)$]

$$
=\min \{\mathrm{A}(((\mathrm{x} * 0) * 0) * \mathrm{y}), \mathrm{A}(\mathrm{y})\}[\text { Since }, \mathrm{x} * \mathrm{x}=0]
$$

$$
=\min \{\mathrm{A}((\mathrm{x} * 0) * \mathrm{y}), \mathrm{A}(\mathrm{y})\}[\text { Since }, \mathrm{x} * 0=\mathrm{x}]
$$

$$
=\min \{\mathrm{A}(\mathrm{x} * \mathrm{y}), \mathrm{A}(\mathrm{y})\}[\text { Since }, \mathrm{x} * 0=\mathrm{x}] \text { Thus } \mathrm{A}(\mathrm{x}) \geq \min \{\mathrm{A}(\mathrm{x} * \mathrm{y}), \mathrm{A}(\mathrm{y})\}
$$

Therefore, A is a Q-S.F.I of X.
Proposition 3.26. Let A be a Q-S.F.I of X. Then A is a Q-S.F.S.I.I of X if and only if
A satisfies the following inequality: $\forall x, y \in Q A(y *(y * x)) \geq A((x *(x * y)) *(y * x))$ (b3).

Proof. Let A be a Q-S.F.S.I.I. and $x, y \in Q$, Then
$\mathrm{A}(\mathrm{y} *(\mathrm{y} * \mathrm{x})) \geq \min \{\mathrm{A}(((\mathrm{x} *(\mathrm{x} * \mathrm{y})) *(\mathrm{y} * \mathrm{x})) * 0), \mathrm{A}(0)\}=\min \{\mathrm{A}((\mathrm{x} *(\mathrm{x} * \mathrm{y})) *(\mathrm{y} *$ $\mathrm{x})$), $\mathrm{A}(0)\}[$ Since Q is BCK; $\mathrm{x} * 0=\mathrm{x}]$ it follows that $=\mathrm{A}((\mathrm{x} *(\mathrm{x} * \mathrm{y})) *(\mathrm{y} * \mathrm{x}))[$ Since
A is a Q-S.F.I of $\mathrm{X}, \mathrm{A}(0) \geq \mathrm{A}(\mathrm{x})]$.Then the condition (b4) is satisfied.
Conversely,
Let A be a Q-S.F.I. Then $\left(\mathrm{F}_{1}\right)$ satisfied, Let $\mathrm{x}, \mathrm{y} \in \mathrm{Q}$. Then
$\mathrm{A}((\mathrm{x} *(\mathrm{x} * \mathrm{y})) *(\mathrm{y} * \mathrm{x})) \geq \min \{\mathrm{A}(((\mathrm{x} *(\mathrm{x} * \mathrm{y})) *(\mathrm{y} * \mathrm{x})) * \mathrm{z}), \mathrm{A}(\mathrm{z})\}[$ Since A is a $\mathrm{Q}-$
S.F.I of X by Definition 2.21] By (b3) we have $A(y *(y * x)) \geq A((x *(x * y)) *(y * x))$
implies that $\mathrm{A}(\mathrm{y} *(\mathrm{y} * \mathrm{x})) \geq \min \{\mathrm{A}(((\mathrm{x} *(\mathrm{x} * \mathrm{y})) *(\mathrm{y} * \mathrm{x})) * \mathrm{z}), \mathrm{A}(\mathrm{z})\}$
Therefore, A is Q-S.F.S.I.I of X.
Theorem 3.27. Let X be a Q -Smarandache implicative BH-algebra. Then every $\mathrm{Q}-$ S.F.I of X is a Q-S.F.S.I.I of X .

Proof. Let A be a Q-S.F.I of X. Then (F1) satisfied[By (2.21)] and let $\mathrm{x}, \mathrm{y} \in \mathrm{Q}$. Then $\mathrm{A}(\mathrm{y} *(\mathrm{y} * \mathrm{x})) \geq \min \{\mathrm{A}((\mathrm{y} *(\mathrm{y} * \mathrm{x})) * \mathrm{z}), \mathrm{A}(\mathrm{z})\} \quad($ since A is a Q-S.F.II) we get \geq $\min \{\mathrm{A}(((\mathrm{x} *(\mathrm{x} * \mathrm{y})) *(\mathrm{y} * \mathrm{x})) * \mathrm{z})), \mathrm{A}(\mathrm{z}[$ since $\mathrm{x} * \mathrm{x}=0, \forall \mathrm{x} \in \mathrm{Q}]$ namely $\mathrm{A}(\mathrm{y} *(\mathrm{y} * \mathrm{x}))$ $\geq \min \{\mathrm{A}(((\mathrm{x} *(\mathrm{x} * \mathrm{y})) *(\mathrm{y} * \mathrm{x})) * \mathrm{z}), \mathrm{A}(\mathrm{z})\}$. (since $\mathrm{x} * 0=\mathrm{x}, \forall \mathrm{x} \in \mathrm{Q}])$
Therefore, A is a Q-S.F.S.I.I of X.
Corollary 3.27.2. Let X be a Q-Smarandache implicative BH-algebra and A be
Q-S.F.I.I of X . Then A is a Q-S.F.S.I.I of X .
Proof. Directly from proposition 3.3 and Theorem 3.27
Proposition 3.28. Let X be a Q-Smarandache medial BH-algebra and A be a Q-S.F.I
of X .Then A is a Q-S.F.S.I.I of X .
Proof. Let A be a Q-S.F.I of X. Then (F1) satisfied [By 2.21] and let $x, y \in Q$, and $z \in X$.
Then $\mathrm{A}((\mathrm{x} *(\mathrm{x} * \mathrm{y})) *(\mathrm{y} * \mathrm{x})) \geq \min \{\mathrm{A}(((\mathrm{x} *(\mathrm{x} * \mathrm{y})) *(\mathrm{y} * \mathrm{x})) * \mathrm{z}), \mathrm{A}(\mathrm{z})\}$. we get
$\mathrm{A}((\mathrm{y} *(\mathrm{y} * \mathrm{x})) \geq \min \{\mathrm{A}(((\mathrm{x} *(\mathrm{x} * \mathrm{y})) *(\mathrm{y} * \mathrm{x})) * \mathrm{z}), \mathrm{A}(\mathrm{z})\}$ [Since X is a Q-Smarandache medial BH-algebra]. Hence A is a Q-S.F.S.I.I of X .

Corollary 3.28.3. Let X be an Q -Smarandache medial BH -algebra and A be a
Q.S.F.I.I of X .Then A is a Q.S.F.S.I.I of X .

Proof. Directly from proposition 3.3 and proposition 3.28.
Theorem 3.29. Let X be an Q -Smarandache medial BH-algebra and A be Q.S.F.S.I.I satisfies the condition $\forall x, y \in Q, A((x *(x * y)) *(y * x)) \geq A(x *(y * x))\left(b_{4}\right)$. Then A is Q.S.F.I.I.
Proof. Let A be a Q-S.F.S.I.I of X . Then (F1) is satisfied
Now let $x, y \in Q$ and $z \in X$. Then $B y(b 4)$ we have $A((x *(x * y)) *(y * x)) \geq A(x *(y *$ $\mathrm{x}))$. Thus, $\left.\left.\mathrm{A}\left(\mathrm{y}^{*}\left(\mathrm{y}^{*} \mathrm{x}\right)\right) \geq \min \left\{\mathrm{A}\left(\left(\left(\mathrm{x}^{*}(\mathrm{x} * \mathrm{y})\right)^{*}\left(\mathrm{y}^{*} \mathrm{x}\right)\right)^{*} \mathrm{z}\right), \mathrm{A}(\mathrm{z})\right\}\right)\right\}[$ Since A is a Q-
S.F.S.I.I of $X]$ if $\mathrm{z}=0$, then $\mathrm{A}(\mathrm{y} *(\mathrm{y} * \mathrm{x})) \geq \min \{\mathrm{A}(((\mathrm{x} *(\mathrm{x} * \mathrm{y})) *(\mathrm{y} * \mathrm{x})) * 0), \mathrm{A}(0)\}$ we obtain $\mathrm{A}(\mathrm{y} *(\mathrm{y} * \mathrm{x})) \geq \min \{\mathrm{A}((\mathrm{x} *(\mathrm{x} * \mathrm{y})) *(\mathrm{y} * \mathrm{x})), \mathrm{A}(0)\}$ [Since Q is a BCKalgebra, $\mathrm{x} * 0=\mathrm{x}]$. It follows that $\mathrm{A}(\mathrm{y} *(\mathrm{y} * \mathrm{x})) \geq \mathrm{A}((\mathrm{x} *(\mathrm{x} * \mathrm{y})) *(\mathrm{y} * \mathrm{x}))$ By $\left(\mathrm{b}_{4}\right)$, We have $\mathrm{A}((\mathrm{x} *(\mathrm{x} * \mathrm{y})) *(\mathrm{y} * \mathrm{x})) \geq \mathrm{A}(\mathrm{x} *(\mathrm{y} * \mathrm{x}))$.Thus $\mathrm{A}(\mathrm{y} *(\mathrm{y} * \mathrm{x})) \geq \mathrm{A}(\mathrm{x} *(\mathrm{y} * \mathrm{x}))$, But $A(x)=A(x *(y * x))[$ Since X is a medial, $y *(y * x)=x] \cdot \operatorname{So}, A(x) \geq A(y *(y * x))$ Hence, A is a Q-S.F.I.I of X [By 3.15($\left.\mathrm{b}_{2}\right)$]

References

[1] Zadeh LA. Fuzzy sets. Information and control. 1965 Jun 1;8(3):338-353..
[2] Iséki K. On axiom systems of propositional calculi. XV. Proceedings of the Japan Academy. 1966;42(3):217-220.
[3] Xi OG. Fuzzy BCK-algebra. Math. Japon.. 1991;36(5):935-942.
[4] JUN YB. Smarandache BCI-algebras. Infinite Study; 2005.
[5] Saeid AB, Namdar A. Smarandache BCH-algebras. World Applied Sciences Journal. 2009;7(11):1818-4952.
[6] Abbass H H and Mohammed S J On a Q-Samarandach Fuzzy Completely Closed ideal with Respect to an Element of a BH-algebra", Journal of Kerbala university, (2013)"vol. 11 no.3, pp.147-157,
[7] Abbass HH, Neamah SA. "On Implicative ideal with Respect to an Element

BH-algebra " First Edition, Scholar’s Press, Germany, 2016 ISBN:978-3659842474-4,
[8] Abbass H H and Gatea H K "A Q- Smarandache Implicative Ideal of Q-
Smarandache BH-algebra", First Edition, Scholar's Press, Germany, 2016
ISBN:978-3-659-83923-8,
[9] Jun YB. Smarandache BCC-algebras. International Journal of Mathematics and Mathematical Sciences. 2005;2005.
[10] Jun YB. On BH-algebras. Sci. Math.. 1998;1:347-354.
[11] Jun YB, Kim HS, Kondo MI. On BH-relations in BH-algebras. Scientiae Mathematicae Japonicae. 2004;59(1):31-34.
[12] Meng J, Jun YB. BCK-algebras. Kyung Moon Sa Company; 1994.
[13] Kim EM, Ahn SS. ON FUZZY \$ n \$-FOLD STRONG IDEALS OF BH-
ALGEBRAS. Journal of applied mathematics \& informatics. 2012;30(3_4):665-676.
[14] Zhang Q, Roh EH, Jun YB. On fuzzy BH-algebras. J. Huanggang, Normal Univ. 2001;21(3):14-9.
[15] Abbass HH, Saeed HM. The fuzzy closed BH-Algebra with respect to an element. Journal of Education for Pure Science. 2014;4(1):92-100.
[16] Liu YL, Liu SY, Meng J. FSI-ideals and FSC-ideals of BCI-algebras. Bulletin of the Korean Mathematical Society. 2004, NO (1):167-79.
[17] Ganesh M. Introduction to fuzzy sets and fuzzy logic. PHI Learning Pvt. Ltd. 2006.

