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Abstract 

     In this paper, The notions of Q-Smarandache fuzzy implicative ideal                            

and Q- Smarandache fuzzy  sub implicative ideal of a Q-Smarandache                            

BH-Algebra introduced, examples are given, and related properties                            

investigated the relationships among these notions and other types of                            

Q-Smarandache fuzzy ideal of a Q-Smarandache BH-Algebra are                              

Studies.                                   
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1 Introduction 

The concept of fuzzy set was introduced by zadeh [1]in 1966,Y.Imai and K. Iseki  

introduced new notion called BCK-algebra[2]In 1991, applied it to the fundamental 

theory of groups. O.G. Xi [3]In 2005,Y.B.Jun introduced the notion of a Smaran- 

dache BCI-algebra, Smarandache ideal of a Smarandache BCI-algebra [4] in 2009, 

A.B. Saeid and A.Namdar, introduced the notion of a Q-Smarandache BCH-algebra and 

Q-Smarandache ideal of Q-Smarandache BCH-algebra [5] in 2013, H. H. Abbass and 

S. J. Mohammed introduced notions of the Smarandache BH-algebra, Q-Smarandache 

(ideal, closed ideal, fantastic ideal, completely closed ideal) of a Q-Smarandache BH- 

algebra[6] In 2014, H. H. Abbass and S. A. Neamah introduced the notions the (im- 

mailto:hussienh.abbas@uokufa.edu.iq
mailto:hussienh.abbas@uokufa.edu.iq
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plicative, medial) BH-algebra and sub- implicative ideal of a BH-algebra[7]. in 2015, 

H.H.Abbass and H.K.Gatea introduced the notion Q-Smarandache implicative ideal 

of a Q-Smarandache BH-Algebra[8]. in this paper we introduce the notion of Q- 

Smarandache fuzzy implicative ideal and Q-Smarandache fuzzy sub implicative ideal 

of a Q-Smarandache BH-Algebra. Note in this paper, X is Q-Smarandache BH-Algebra. 

 

2. Preliminaries 

In this section, we give some basic concepts about a BCI-algeba, a BCK-algebra,a 

BCH-algebra, a BH-algeba,a Q-Smarandache BH-algebra, and a Q-Smarandach ideal 

of a BH-algebra. 

Definition 2.1. [9]. A BCI-algebra is an algebra (X, ∗, 0) , where X is 

a nonempty set, ∗ is a binary operation and 0 is a constant, satisfying the 

following axioms: for all x, y, z ∈ X: 

i.  ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0, 

ii.  (x ∗ (x ∗ y)) ∗ y = 0, 

iii.  x ∗ x = 0, 

iv.  x ∗ y = 0  and y ∗ x = 0 imply x = y. 

Definition 2.2. [3]. BCK-algebra is a BCI-algebra satisfying the axiom: 

0 ∗ x = 0 for all x ∈ X. 

Definition 2.3. [10]. A BH-algebra is a nonempty set X with a constant 0 

and a binary operation * satisfying the following conditions: 

 i. x ∗ x = 0, ∀ x ∈ X. 

 ii. x ∗ y = 0 and y ∗ x = 0 imply x = y, ∀ x, y ∈ X. 

iii. x ∗ 0 = x,  ∀ x ∈ X. 

Remark 2.4. [10]. 

i. Every BCK-algebra is a BCI-algebra. 

ii. Every BCK-algebra is a BCH/ BH-algebra. 

 Remark 2.5. [11] Let X and Y be BH-algebras. A mapping f : X Y is called 

a homomorphism if f(x * y) = f(x) * f(y) ∀ x, yX. A homomorphism f is called 

a monomorphism (resp., epimorphism) if it is injective (resp., surjective). For any 
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homomorphism f : f : X Y the set  {xX: f(x)=0'} called the kernel of f, denoted 

by Ker(f), and the set {f(x):xX}  is called the image of f, denoted by Im(f) Notice 

that f(0) = 0. 

Definition 2.6. [12]. BCK-algebra (X, *, 0) is said to be Bounded BCK-algebra 

satisfying the identity: x *(y *x) = x  ∀ x, yX. 

Definition 2.7. [13] A BH-algebra X is called BH*-algebra if (x*y)*x = 0,∀ x, yX. 

Definition 2.8. [6]. A Smarandache BH-algebra is defined to be a BH- 

algebra X in which there exists a proper subset Q of X such that 

i. 0 ∈ Q and |Q| ≥ 2. 

ii. Q is a BCK-algebra under the operation of X. 

Definition 2.9. [8] A Q-Smaradache BH-algebra is said to be a Q-Smaradache im- 

plicative BH- algebra if it satisfies the condition, (x * (x * y)) * (y * x)=y * (y * x) 

∀ x, y Q. 

Definition 2.10. [8] A Q-Smarandache BH-algebra X is called a Q-Smarandache me- 

dial BH-algebra if x * (x *y) = y, ∀ x, y Q. 

Definition 2.11. [6]. A nonempty subset I of X is called a Q-Smarandache ideal of 

X, denoted by a Q-S.I of X if it satisfies:  

(J1) 0 ∈ I 

(J2)  y ∈ I and x*y ∈I  x ∈ I,  x ∈ Q. 

Definition 2.12. [8]. A Q-Smarandache ideal I of X is called a Q-Smarandache 

implicative ideal of X, denoted by a Q-S.I.I of X if: 

(x*(y*x))*z  I and z  I imply x I,  x, y  Q. 

Definition 2.13. [8]. A nonempty subset I of X is called a Q-Smarandache P-ideal 

of X if satisfies (J1) and : 

(J3) (x *z) *(y * z)  I  and y  I imply x  I, x, z Q. 

Definition 2.14. [2]. A fuzzy set A in a BH-algebra X is said to be a fuzzy subalgebra 

of X if it satisfies: A(x*y)  min {A(x) , A(y) }, x ,y X. 

Definition 2.15. [14] A fuzzy subset A of a BH-algebra X is said to be a fuzzy ideal 

if and only if: 

(I1)   A(0) ≥ A(x), ∀ xX. 

(I2)  A(x) ≥ min{A(x*y), A(y)}, ∀ x, yX. 

Definition 2.16. [15]. A fuzzy subset A of a BH-algebra X is called a fuzzy implicative 

ideal of X, denoted by a F.I.I if it satisfies(I1)and 
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(I3)  A(x)   min{A((x *(y*x))*z), A(z)},  x, y, z  X. 

Definition 2.17. [16]. A fuzzy subset A of a BH-algebra X is called a fuzzy sub 

implicative ideal of X, denoted by a F.S.I.I if it satisfies(I1)and 

(I4) A(y * (y * x))   min {A(((x * (x * y)) * (y * x) *z), A(z)},  x, y, z  X. 

Definition 2.18. [17]. Let A be a fuzzy set in, ∀ α  [0, 1], the set Aα { x  X, A(x)  

α } is called a level subset of A.   

Note that, Aα is a subset of X in the ordinary sense. 

Definition 2.19. [17]. 

  Let X and Y be any two sets, A be any fuzzy set in X and f: X → Y be any function. 

The set  f −1(y) = {x ∈ X | f(x) = y}, ∀ y ∈ Y. The fuzzy set B in Y defined by B(y) 

= {0                                            ;        otherwise
sup{A(x)| x ∈ f−1(y)} ; if         f−1 (y)≠∅   

, ∀ y ∈Y, is called the image of A under f and is 

denoted by f(A). 

Definition 2.18. [12]. 

Let X and Y be any two sets f : X → Y be any function and B be any fuzzy set in 

f(A). The fuzzy set A in X defined by: A(x) = B(f(x))  ∀ x  X is called the primage 

of B under f and is denoted by f
-1

(B) 

Definition 2.21. [6]. A fuzzy subset A of X is said to be a Q-Smarandache fuzzy 

ideal of X, denoted by a Q-S.F.I of X: 

(F1)   A(0)  A(x) , x X  

(F2)  A(x)  min {A (x*y)) A (y) } , x Q , y  X 

3. Main results 

In this section, we introduce the concepts of a Q-Smarandache fuzzy implicative ideal 

and Q-Smarandache fuzzy sub implicative ideal of a Q-Smarandache BH-algebra, also 

we study some properties of it with examples. 

Definition 3.1. A fuzzy subset A of X is called a Q-Smarandache fuzzy implicative 

ideal of X, denoted by a Q-S.F.I.I of X if it satisfies (F1) and, 

(F3) A(x) ≥ min{A(((x ∗ (y ∗ x)) ∗ z) ), A(z)}, for all x, y ∈ Q, z ∈ X. 

Example 3.2. . 

Consider X = {0, 1, 2} with binary operation  defined by the following table: 

* 0 1 2 

0 0 0 0 

1 1 0 1 

2 2 2 0 

 



2nd International Scientific Conference of Al-Ayen University (ISCAU-2020)

IOP Conf. Series: Materials Science and Engineering 928 (2020) 042029

IOP Publishing

doi:10.1088/1757-899X/928/4/042029

5

 
 

where Q = {0, 2} is a BCK-algebra. The fuzzy subset A defined by A(0) = 0.7, 

A(1) = 0.5 and A(2) = 0.2 by calculation we knew that A is Q-S.F.I.I. 

Proposition 3.3. Every Q-S.F.I.I is Q-S.F.I. of X. 

Proof. Let A be a Q-S.F.I.I, To prove that A is Q-S.F.I. by Definition (3.1) the                  

condition (F1) is satisfied .Now let x, Q and y  X. we have A(x)  min{A((x _ 

(x * x)) *y),A(y)},(since A is a Q-S.F.I.I) it follows that A(x)   min{A((x * (0)) * 

y), A(y)},(since  x * x = 0, x, Q ) implies that A(x)   min{A((x * y),A(y)}(since 

x * 0 = x, x  Q). Hence A is Q-S.F.I of X. 

Remark 3.4. A Q-S.F.I of X may not be a Q-S.F.I.I of X as in the following example. 

Example 3.5. Consider X = {0, 1, 2, 3} with binary operation ′′*′′ defined by the 

following table: 

* 0 1 2 3 

0 0 0 2 3 

1 1 0 2 2 

2 2 1 0 1 

3 3 2 3 0 

 

where Q = {0, 1} is a BCK-algebra. The fuzzy subset A defined by 

A(0) = A(2) = 0.5 and A(1) = A(3) = 0.2 is Q-S.F.I of X but it is not a Q-S.F.I.I of 

X. Since if x = 1, y = 0, z = 2,then 

A(1) <  min{A((1 * (0 * 1)) * 2), A(2)}. 

Theorem 3.6. Let A be a Q-S.F.I of X. Then A is a Q-S.F.I.I of X if and only if 

the level subset A is a Q-S.I.I of  X, ∀ α ∈ [ 0, A(0)],such that A(0) = )(xASup Xx . 

Proof. Let A be a Q-S.F.I.I of X. To prove Aα  is a Q-S.I.I of X.[it is clear 

that A(0) ≥ α ]. So 0 ∈ Aα. Hence Aα  satisfies I1 .Now let x, y ∈ Q, z ∈ X such 

that ((x ∗ (y ∗ x)) ∗ z) ∈ Aα and  z ∈ Aα it follows that A((x ∗ (y ∗ x)) ∗ z) ≥ α and A(z) ≥ 

α thus min{A((x ∗ (y ∗ x)) ∗ z), A(z)} ≥ α.  But  A(x) ≥ min{A((x ∗ (y ∗ x)) ∗ z), A(z)} 

[Since A is a Q-S.F.I.I of X. By definition 3.1(F3)] So A(x) ≥ α ⇒ x ∈ Aα Therefore, Aα 

is a Q-S.I.I of X. 

Conversely, 

Let Aα be a Q-S.I.I. of X, ∀ α ∈ [ 0,A(0)] and α = )(xASup Xx . To prove that A is a Q-

S.F.I.I of X. 0 ∈ Aα .[ Since Aα  is a Q-S.I.I. of X ]. 



2nd International Scientific Conference of Al-Ayen University (ISCAU-2020)

IOP Conf. Series: Materials Science and Engineering 928 (2020) 042029

IOP Publishing

doi:10.1088/1757-899X/928/4/042029

6

 
 

imply A(0 ≥ α we get A(0) ≥ A(x). Let x, y ∈ Q, z ∈ X such that min{A((x ∗ (y ∗ x)) 

∗ z), A(z)} = α then A((x ∗ (y ∗ x)) ∗ z) ≥ α and A(z) ≥ α 

it follows that ((x ∗ (y ∗ x)) ∗ z)  ∈ Aα and z ∈ Aα thus x ∈ Aα[ Since Aα  be an Q-S.I.I 

of X] imply A(x) ≥ α we get A(x) ≥ min{A(((x ∗ (y ∗ x)) ∗ z) ),A(z)}. 

Therefore, A is a Q-S.F.I.I of X. 

Corollary 3.6.1. A fuzzy subset A is a Q-S.F.I.I of X if and only if the set XA is an 

Q-S.I.I of X, where  XA = { xX | A(x) = A(0) } 

Proof. Let A be a Q-S.F.I.I of X. To prove XA is a Q-S.I.I of X. 

i .If x = 0 then A(0) = A(0)  0 XA 

ii: Let x, y Q, zX  such that (x*(y*x)) *zXA and zXA .  

follows that A((x*(y*x))*z) = A(0) and A(z) = A(0) .  we have A(x)  min {A(( 

x*(y*x)) *z) , A(z) } = min {A(0) ,A(0)}[Since A is a Q-S.F.I.I of  X] it follows 

that 

A(x) A(0) Hence A(x) = A(0) [ Since A is a Q-S.F.I.I of X, A(x) A(0)] we get         

xXA. Therefore , XA   is a Q-S.I.I of  X 

Conversely, 

 Let XA be a Q-S.I.I of  X . To prove A is a Q-S.F.I.I of  X .  

Since XA  = AA(0)  

Therefore, A is a. Q-S.F.I.I of X [ By Theorem 3.6]. 

Proposition 3.7. Let A be a fuzzy subset of X defined by 

  A (x) = {
α1 ;             x ∈ 𝑋𝐴  
α2 ;     otherwies ,

     where α1, α2 ∈ [ 0, 1] such that α1 > α2  

          Then A is a Q-S.F.I.I of X if and only if XA is an Q-S.I.I of X. 

Proof. Let A be a Q-S.F.I.I of X. To prove XA is an Q-S.I.I of X. 

i. A(0) = α1   0  XA[ Since A(0)  A(x); x  X. By definition 3.1(F1)]. 

ii Let  x, y  Q, z  XA such that (x * (y * x)) * z  XA and z   XA.  

we obtain A((x * (y * x)) * z) = A(0) = α1 and A(z) = A(0) = α1 it follows 

that A(x)   min{A((x * (y * x)) * z),A(z)} = α1 [Since A is a Q-S.F.I.I of X, 
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by definition3.1(F1)], Thus A(x) = α1 we get  x  XA. Hence XA is a Q-S.I.I of X. 

Conversely, Let XA be an Q-S.I.I of X. To prove A is a Q-S.F.I.I of X. 

i . Since 0  XA, then A(0) = α1A(0) = α1  A(x). we get A(0)  A(x), x  X. 

ii . Let x, y  Q, z X. Then we have four cases: 

Case 1: If (x * (y * x)) * z  XA  and z  XA. it follows that x  XA.[ Since 

XA is an Q-S.I.I of X]. we get A((x * (y * x)) * z) = A(z) = A(x) = α1. Hence 

A(x)   min{A ((x * (y * x)) * z), A(z)}. 

Case 2: If (x * (y * x)) * z  XA  and z XA it follows that A((x * (y * x)) * z) = 

α1  and A(z) = α2. we get min {A ((x * (y * x)) * z), A(z)}= α2. Hence A(x)   

min{A ((x * (y * x)) * z), A(z)}.   

Case 3: If (x * (y * x)) * z   XA  and z  XA  it follows that {A ((x * (y * x)) * z)= 

α2 and A(z) = α1. we get min {A ((x * (y * x)) * z), A(z)}= α2. Hence A(x)   

min {A ((x * (y * x)) * z), A(z)}. 

Case 4:If (x * (y * x)) * z   XAand zXA it follows that A(x * (y * x)) * z )= A(z) = α2. 

we get min {A ((x * (y * x)) * z), A(z)}= α2. Hence A(x)  min {A ((x * (y * x)) * z), 

A(z)}. Therefore, A is a Q-S.F.I.I of X. 

Remark 3.8. Let A be a fuzzy subset of X and w X. The set  {x ∈ X|A(w) ≤ A(x) }is 

denoted by ↑A(w). 

Proposition 3.9.Let A be a Q-S.F.I of X and w ∈ X. If A satisfies the condition 

∀ x, y ∈ Q A(x) ≥ A(x ∗ (y ∗ x) (b2). Then ↑A(w) is a Q-S.I.I of X.  

Proof. Let A be a Q-S.F.I of X. Then A(0)  A(x), x X  [ By Definition 2.21(F1)].  

 it follows that  A(0)  A(w) [ Since  wX ] we get 0 ↑A(w)   

Now, Let  x, y Q,   zX  such that (((x*(y*x)) *z))↑A(w) and z ↑A(w) 

   thus A(w)  A(( x*(y*x)) *z)    and    A(w)  A(z) implies that  

A(w) ≤ min {A(((x ∗ (y ∗ x)) ∗ z)), A(z)} ≤ A(x ∗ (y ∗ x))[Since A is a Q-S.F.I 

 of X] But A(x*(y*x))A(x) .  [ By (b2) ].   we get A(w) ≤ A(x).  Hence  x ↑A(w) 

Therefore, A(w) is a Q-S.I.I of  X. 

Proposition 3.10. Let  w X. If A is a Q-S.F.I.I of X, then ↑A(w) is a Q-S.I.I of 

X. 
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Proof. Let A be a Q-S.F.I of X. Then  A(0)A(x), xX it follows that A(0) ≥ 

A(w)[Since w ∈ X].  Hence  0 ∈↑ A(w). Let x, y  Q, z  X such that (x*(x*y))* 

z ↑A(w) and z↑A(w) Then  A(w) A((x*(y*x))*z)  and  A(w)  A(z) it follows 

A(w) min {A((x*(y*x)) *z) , A(z)} But  min A(( x*(y*x))*z) ,A(z)  A(x)    [By 

Definition 2.21(F2)] we get  A(w)  A(x) . Hence  x↑A(w) . Therefore , ↑A(w)   is a 

Q-S.I.I   of X.  

Proposition 3.11. 

Let {Ai / I ᴦ} be a family of Q-S.F.I.I  of X . Then 


A i is a Q-S.F.I.I of X. 

Let {Ai / iᴦ} be a family of Q-S.F.I.I  of X  

i. Let xX. Then 

           
i

A i(0) = inf { Ai (0) |i ᴦ } )    inf { Ai(x) |i ᴦ } =
i

A i(x)   

(ii). Let x, yQ, zX . Then , we have  

   
i

A i(x)   = inf { Ai(x) |i ᴦ } inf{min{Ai((x ∗ (y ∗ x)) ∗ z),Ai(z)|i ∈ Γ}} 

     =min{inf{Ai((x*(y*x)) *z ), Ai(z)|iᴦ} 

     =min{inf{Ai((x*(y*x)) *z ) )|iᴦ }, inf {Ai(z)}} 

     = min {
i

A i(x)    i((x*(y*x))*z) |  i },
i

A  i(z) |  𝛼 }}  

              
i

A i(x)  min {{
i

A i(x*(y*x))*z) |},{ 


A i (z) }} 

          Therefore,  
i

A i(x)   is a Q-S.F.I.I of X. 

Remark 3.12. The union of a Q-S.F.I.I of X may not be a Q-S.F.I.I of X as in The 

following example. 

Example 3.13. Consider X = {0, 1, 2, 3, 4, 5} with binary operation ′′*′′ defined by 

the following table: 

* 0 1 2 3 4 5 

0 0 0 0 0 0 0 

1 1 0 0 0 0 1 
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2 2 2 0 0 1 1 

3 3 2 1 0 1 1 

4 4 4 4 4 0 1 

5 5 5 5 5 5 0 

Where Q={0,2} is a BCK-algebra . The fuzzy subset A,B defined by 

A(0) = A(1) = 0.9, A(2) = A(3) = A(4) = A(5) = 0.4 and 

B(0) = B(5) = 0.9, B(1) = B(2) = B(3) = B(4) = 0.4 are two Q-S.F.I.I, but 

AB(0)= AB(1)= AB(5)= 0.9 and 

AB(2)= AB(3)= AB(4)= 0.4  

 is not a Q-S.F.I.I of X, Since 

    (AB)(2) = 0.4 < min {(AB)((2*(0*2))*5), (AB)(5) }       

Proposition 3.14. 

Let {Ai /iᴦ} be a chain of Q-S.F.I.I of  X .Then
i

A i (x)  is a Q-S.F.I.I   of X. 

Proof .  

Let {Ai |iᴦ} be a chain of Q-S.F.I.I  of  X 

i: Let xX . Then  

 
i

A i (0) = sup { Ai(0) |i  } )    sup { Ai(x) |i  } =
i

A i (x) 

 [Since Ai is a Q-S.F.I.I  of  X , iᴦ , by Definition 3.1(i) ] 

  

  

i

A i (0)    
i

A i (x)  

    ii: Let x, y Q , zX . Then , we have  

       
i

A
i (x) = sup { Ai(x) |i  } )    sup {min{ Ai(x*(y*x)*z), Ai (z)|i }} 

       [Since Ai is a Q-S.F.I.I of  X , i by Definition 3.1(i) ] 

       = min{sup{Ai (x*(y*x)*z),  Ai(z)|i ∈ Γ}}[ since Ai is a chain, i ∈ Γ ] 

       = min{sup{Ai(x*(y*x)*z)|i ∈ Γ}, sup{ Ai(z) )|i ∈ Γ } 

            = min {
i

A i (x*(y*x)*z) | i Γ },{ 
i

A i(z) |  i Γ }} 
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i

A i (x)   min {
i

A i (x*(y*x)*z) | i Γ },{ 
i

A i(z) |  i Γ }} 

       Therefore, 
i

A i (x)   is a Q-S.F.I.I  of X. 

Theorem 3.15. Let A be a Q-S.F.I  of X . Then A is a Q-S.F.I.I  of X if and only if A 

satisfies the following inequality : x , yQ   A(x) A(x*(y*x))   (b2) . 

Proof. Let A be a Q-S.F.I.I of X and x, y  Q then  

A(x)  min{A((x *(y*x)) *0 ), A(0) } it follows that   min {A(x*(x*y)) , A(0) }[since 

x*(y*x)*0 = x*(y*x)]  Therefore the condition (b1) is satisfied. 

Conversely, 

Let A be a Q-S.F.I of X . Then (F1) satisfied. 

Now, let x, yQ , then  A(x*(y*x)) min {A(( x*(x*y)) *z) , A(z) } [Since A is a Q - 

S.F.I of X. By (2.21)(F2)] we have  A(x) min {A((x*(y*x)) *z) , A(z) }.  Hence, A is a 

Q-S.F.I.I of X. 

Definition 3.16. A fuzzy subset A of X is called a Q-Smarandache fuzzy P-ideal of 

X, denoted by a Q-S.F.P.I of X if satisfies (F1) and : 

(F4)  A(x)  min {A((x*z)*(y*z)) , A(y)}, for all x, z Q, yX. 

Example 3.17. Consider X = {0, 1, 2, 3} with binary operation ′′*′′ defined by the 

following table: 

 

* 0 1 2 3 

0 0 0 2 0 

1 1 0 1 2 

2 2 2 0 1 

3 3 2 2 0 

 

where Q = {0, 1} is a BCK-algebra. The fuzzy subset A defined by 

A(0) = A(1) = A(2) = 0.8 and A(3) = 0.2 is a Q-S.F.P.I of X. 

Theorem 3.18. Every Q-S.F.P.I is a Q-S.F.I of X. 

Proof. Let A be a Q-S.F.P.I of X. Then(F1) satisfied. 

Now, let x, z  Q and y  X, z = 0 in (F4) we get: 

A(x) ≥ min{A((x ∗ 0) ∗ (y ∗ 0)),A(y)}[Since X is a Q-Smrandache BH-                                                             

algebra x ∗ 0 = x]. A(x) ≥ min{A(x ∗ y), A(y)} 

Therefore, A is Q-S.F.I of X. 

Theorem 3.19. Every Q-S.F.P.I is a Q-S.F.I.I of X. 

Proof. Let A be a Q-S.F.P.I of X. Then.(F1) satisfied[ By definition 3.16(F1) ]. And 

Let a, c, x, y ∈ Q and d ∈ X .Then  



2nd International Scientific Conference of Al-Ayen University (ISCAU-2020)

IOP Conf. Series: Materials Science and Engineering 928 (2020) 042029

IOP Publishing

doi:10.1088/1757-899X/928/4/042029

11
 

 

A(a) ≥ min{A((a ∗ c) ∗ (d ∗ c)),A(d)} [By (F4)].  Put  a = x, d = 0, c = y ∗ x, we get 

A(x) ≥ min{A((x ∗ (y ∗ x)) ∗ (0 ∗ (y ∗ x))),A(0)} 

       = min{A((x ∗ (y ∗ x)) ∗ 0),A(0)} [Since Q is BCK 0 ∗ x = 0] 

= min{A(x ∗ (y ∗ x)),A(0)} [Since Q is BCK ; x ∗ 0 = x] 

= A(x ∗ (y ∗ x)) [Since A(0) ≥ A(x), ∀x ∈ X] 

Therefore, A is a Q-S.F.I.I of X [by Theorem 3.15] 

Remark 3.20. In the following example, we see that the converse of Theorem (3.21) 

may not be true in general. 

Example 3.21. Consider X ={0,1, 2} with binary operation ′′*′′ defined by table  

where Q = {0,2} is a BCK-algebra. The fuzzy subset A defined by 

A(0) = 0.7, A(1) = 0.5 and A(2) = 0.2 

Then A is Q-S.F.I.I of X, but A is not a Q-S.F.P.I of X, since if x = 2,y = 1,z= 2, 

then           A(2)=0.2    min{A((2*2)*(1*2)),A(1)}=0.5 

Theorem 3.22. Let A be a Q-S.F.I , such that Q is a bounded BCK- algebra . Then 

A is a Q-S.F.I.I of X. 

Proof. It's clear that A(0) ≥ A(X).  x  X  

Now, let x, y Q and z  X, Then  

A(x*(y *x)) ≥ min{A((x*(y *x))*z),A(z)}, [ Since A is a Q-S.F.I of X, by 2.21(F2)] 

implies that A(x) ≥ min{A((x*(y *x))*z, A(z)}[ Since Q is bounded BCK- algebra, 

by 2.6] Therefore, A is a Q-S.F.I.I of X 

Definition 3.23. A fuzzy subset A of X is called a Q-Smarandache fuzzy sub- 

implicative ideal of X, denoted by (a Q-S.F.S.I.I ) of X if it satisfies: (F1) and 

(F5) A(y ∗ (y ∗x)) ≥ min{A(((x∗ (x∗ y)) ∗ (y ∗x))) ∗ z), A(z)} for all x, y ∈ Q, z ∈X 

Example 3.24. 

Consider X = {0, 1, 2, 3} with binary operation ′′∗′′ defined by the following table: 

* 0 1 2 3 

0 0 0 0 3 

1 1 0 1 3 

2 2 2 0 3 

3 3 3 3 0 

Where Q={0,2} is a BCK-algebra . The fuzzy subset A is  defined by 

A(0) = A(1) = 0.9 and A(2) = A(3) = 0.3 it easy to check that A is Q-S.F.S .I.I of X 
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Proposition 3.25. Every Q-S.F.S.I.I is Q-S.F.I. of X. 

Proof. Let A be a Q-S.F.S.I.I. Then (F1) it is satisfied. Now let x ∈ Q and y ∈ X. 

A(x) = A(x ∗ 0) = A(x ∗ (x ∗ x)) ≥ min{A(((x ∗ (x ∗ x)) ∗ (x ∗ x)) ∗ y),A(y)} 

             [Since A is a Q-S.F.S.I.I of X, by Definition 3.23(F5)] 

            = min{A(((x ∗ 0) ∗ 0) ∗ y),A(y)} [Since , x ∗ x = 0] 

            = min{A((x ∗ 0) ∗ y),A(y)} [Since , x ∗ 0 = x]  

            = min{A(x ∗ y),A(y)} [Since , x ∗ 0 = x]Thus  A(x) ≥ min{A(x ∗ y),A(y)} 

Therefore, A is a Q-S.F.I of X . 

Proposition 3.26. Let A be a Q-S.F.I of X. Then A is a Q-S.F.S.I.I of X if and only if 

A satisfies the following inequality:x, y∈ Q A(y ∗ (y ∗ x)) ≥ A((x ∗ (x ∗ y))∗(y ∗ x)) 

(b3) .  

Proof. Let A be a Q-S.F.S.I.I. and  x, y∈ Q, Then 

A(y ∗ (y ∗ x)) ≥ min{A(((x ∗ (x ∗ y)) ∗ (y ∗ x)) ∗ 0), A(0)} = min{A((x ∗ (x ∗ y)) ∗ (y ∗ 

x)),A(0)} [Since Q is BCK; x ∗ 0 = x] it follows that  = A((x ∗ (x ∗ y)) ∗ (y ∗ x)) [Since 

A is a Q-S.F.I of X ,A(0) ≥ A(x)].Then the condition (b4) is satisfied. 

Conversely, 

Let A be a Q-S.F.I. Then (F1) satisfied , Let x, y∈ Q. Then 

A((x ∗ (x ∗ y)) ∗ (y ∗ x)) ≥ min{A(((x ∗ (x ∗ y)) ∗ (y ∗ x)) ∗ z), A(z)} [Since A is a Q-

S.F.I of X by Definition 2.21] By (b3) we have A(y ∗ (y ∗ x)) ≥ A((x ∗ (x ∗ y)) ∗ (y ∗ x))     

implies that  A(y ∗ (y ∗ x)) ≥ min{A(((x ∗ (x ∗ y)) ∗ (y ∗ x)) ∗ z), A(z)} 

Therefore, A is Q-S.F.S.I.I of X. 

Theorem 3.27. Let X be a Q-Smarandache implicative BH-algebra. Then every Q- 

S.F.I of X is a Q-S.F.S.I.I of X. 

Proof. Let A be a Q-S.F.I of X. Then (F1) satisfied[By (2.21)] and let x, y∈  Q. Then 

A(y ∗ (y ∗ x)) ≥ min{A((y ∗ (y ∗ x)) ∗ z),A(z)} (since A is a Q-S.F.I.I) we get  ≥ 

min{A(((x ∗ (x ∗ y)) ∗ (y ∗ x)) ∗ z)),A(z [since x *x = 0, x∈ Q] namely A(y ∗ (y ∗ x)) 

≥ min{A(((x ∗ (x ∗ y)) ∗ (y ∗ x)) ∗ z),A(z)}. (since x * 0 = x, x∈ Q]) 

Therefore, A is a Q-S.F.S.I.I of X. 

Corollary 3.27.2. Let X be a Q-Smarandache implicative BH-algebra and A be 

Q-S.F.I.I of X . Then A is a Q-S.F.S.I.I of X . 

Proof. Directly from proposition 3.3 and Theorem 3.27 

Proposition 3.28. Let X be a Q-Smarandache medial BH-algebra and A be a Q-S.F.I 
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of X .Then A is a Q-S.F.S.I.I of X . 

Proof. Let A be a Q-S.F.I of X. Then (F1) satisfied [By 2.21] and let x, y∈ Q, and z ∈ X. 

Then A((x ∗ (x ∗ y)) ∗ (y ∗ x)) ≥ min{A(((x ∗ (x ∗ y)) ∗ (y ∗ x)) ∗ z),A(z)}. we get 

A((y ∗ (y ∗ x)) ≥ min{A(((x ∗ (x ∗ y)) ∗ (y ∗ x)) ∗ z),A(z)} [Since X is a Q-Smarandache 

medial BH-algebra]. Hence A is a Q-S.F.S.I.I of X .  

Corollary 3.28.3. Let X be an Q-Smarandache medial BH-algebra and A be a 

Q.S.F.I.I of X .Then A is a Q.S.F.S.I.I of X . 

Proof. Directly from proposition 3.3 and proposition 3.28. 

Theorem 3.29. Let X be an Q-Smarandache medial BH-algebra and A be Q.S.F.S.I.I 

satisfies the condition ∀ x, y ∈ Q, A((x ∗(x ∗ y)) ∗ (y ∗ x)) ≥ A(x ∗ (y ∗ x))  (b4). Then A 

is Q.S.F.I.I. 

Proof. Let A be a Q-S.F.S.I.I of X . Then (F1) is satisfied 

Now let x, y ∈ Q and z∈ X. Then By (b4) we have A((x ∗(x ∗ y))∗(y ∗ x)) ≥ A(x∗(y ∗ 

x)). Thus, A( y*(y*x)) ≥ min{A(((x*(x*y))*(y*x))*z), A(z)} )}[Since A is a Q-

S.F.S.I.I of X] if z= 0, then  A(y ∗ (y ∗ x)) ≥ min{A(((x ∗ (x ∗ y)) ∗ (y ∗ x)) ∗ 0), A(0)} 

we obtain  A(y ∗ (y ∗ x)) ≥ min{A((x ∗ (x ∗ y)) ∗ (y ∗ x)), A(0)} [Since Q is a BCK- 

algebra, x * 0 = x]. It follows that  A(y ∗ (y ∗ x)) ≥ A((x ∗ (x ∗ y)) ∗ (y ∗ x)) By (b4), We 

have A((x *(x * y)) * (y * x)) ≥ A(x * (y *x)).Thus  A(y ∗ (y ∗ x)) ≥ A(x ∗ (y ∗ x)), But 

A(x) = A(x * (y * x))[Since X is a medial, y * (y * x) = x].So, A(x) ≥ A(y * (y * x)) 

Hence, A is a Q-S.F.I.I of X [By 3.15(b2)] 
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