## On the Roman Edge Domination Number of a Graph

K. Ebadi<sup>1</sup>, E. Khodadadi<sup>2</sup> and L. Pushpalatha<sup>3</sup>

 $^1\mathrm{Department}$  of Studies in Mathematics, University of Mysore, Mysore-570006, India  $^2\mathrm{Department}$  of Mathematics Islamic Azad University of Malekan, Iran  $^c\mathrm{Department}$  of Mathematics, Yuvaraja's College, Mysore, India

Email: Karam \_Ebadi@yahoo.com

Abstract: For an integer  $n \geq 2$ , let  $I \subset \{0,1,2,\cdots,n\}$ . A Smarandachely Roman s-dominating function for an integer  $s,\ 2 \leq s \leq n$  on a graph G = (V,E) is a function  $f:V \to \{0,1,2,\cdots,n\}$  satisfying the condition that  $|f(u)-f(v)| \geq s$  for each edge  $uv \in E$  with f(u) or  $f(v) \in I$ . Similarly, a Smarandachely Roman edge s-dominating function for an integer  $s,\ 2 \leq s \leq n$  on a graph G = (V,E) is a function  $f:E \to \{0,1,2,\cdots,n\}$  satisfying the condition that  $|f(e)-f(h)| \geq s$  for adjacent edges  $e,h \in E$  with f(e) or  $f(h) \in I$ . Particularly, if we choose n=s=2 and  $I=\{0\}$ , such a Smarandachely Roman s-dominating function or Smarandachely Roman edge s-dominating function is called Roman dominating function or Roman edge dominating function. The Roman edge domination number  $\gamma_{re}(G)$  of G is the minimum of  $f(E) = \sum_{e \in E} f(e)$  over such functions. In this paper we first show that for any connected graph G of  $g \geq 3$ ,  $\gamma_{re}(G) + \gamma_e(G)/2 \leq q$  and  $\gamma_{re}(G) \leq 4q/5$ , where  $\gamma_e(G)$  is the edge domination number of G. Also we prove that for any  $\gamma_{re}(G)$ -function  $f = \{E_0, E_1, E_2\}$  of a connected graph G of  $g \geq 3$ ,  $g \in G$  and  $g \in G$ . Also we prove that for any  $g \in G$  such a smarandachely Roman shapes  $g \in G$  and  $g \in G$  such a smarandachely Roman shapes  $g \in G$  such a smarandachely Ro

**Key Words**: Smarandachely Roman s-dominating function, Smarandachely Roman edge s-dominating function.

AMS(2010): 05C69

#### §1. Introduction

Let G be a simple graph with vertex set V(G) and edge set E(G). As usual |V| = p and |E| = q denote the number of vertices and edges of the graph G, respectively. The open neighborhood N(e) of the edge e is the set of all edges adjacent to e in G. And its closed neighborhood is  $N[e] = N(e) \cup \{e\}$ . Similarly, the open neighborhood of a set  $S \subseteq E$  is the set  $N(S) = \bigcup_{e \in S} N(e)$ , and its closed neighborhood is  $N[S] = N(S) \cup S$ .

The degree of an edge e = uv of G is defined by  $deg \ e = deg \ u + deg \ v - 2$  and  $\delta'(G)$  ( $\Delta'(G)$ ) is the minimum (maximum) degree among the edges of G (the degree of an edge is the number of edges adjacent to it). A vertex of degree one is called a pendant vertex or a leaf and its neighbor is called a support vertex.

<sup>&</sup>lt;sup>1</sup>Received August 3, 2010. Accepted December 15, 2010.

Let  $e \in S \subseteq E$ . Edge h is called a private neighbor of e with respect to S (denoted by h is an S-pn of e) if  $h \in N[e] - N[S - \{e\}]$ . An S-pn of e is external if it is an edge of E - S. The set  $pn(e, S) = N[e] - N[S - \{e\}]$  of all S-pn's of e is called the private neighborhood set of e with respect to S. The set S is said to be irredundant if for every  $e \in S$ ,  $pn(e, S) \neq \emptyset$ . And a set S of edges is called independent if no two edges in S are adjacent.

A set  $D \subseteq V$  is said to be a dominating set of G, if every vertex in V - D is adjacent to some vertex in D. The minimum cardinality of such a set is called the domination number of G and is denoted by  $\gamma(G)$ . For a complete review on the topic of domination and its related parameters, see [5].

Mitchell and Hedetniemi in [6] introduced the notion of edge domination as follows. A set F of edges in a graph G is an edge dominating set if every edge in E - F is adjacent to at least one edge in F. The minimum number of edges in such a set is called the edge domination number of G and is denoted by  $\gamma_e(G)$ . This concept is also studied in [1].

The concept of Roman dominating function (RDF) was introduced by E. J. Cockayne, P. A. Dreyer, S. M. Hedetniemi and S. T. Hedetniemi in [3]. (See also [2,4,8]). A Roman dominating function on a graph G = (V, E) is a function  $f : V \to \{0, 1, 2\}$  satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weight of a Roman dominating function is the value  $f(V) = \sum_{u \in V} f(u)$ . The Roman domination number of a graph G, denoted by  $\gamma_R(G)$ , equals the minimum weight of a Roman dominating function on G.

A Roman edge dominating function (REDF) on a graph G = (V, E) is a function  $f : E \to \{0,1,2\}$  satisfying the condition that every edge e for which f(e) = 0 is adjacent to at least one edge h for which f(h) = 2. The weight of a Roman edge dominating function is the value  $f(E) = \sum_{e \in E} f(e)$ . The Roman edge domination number of a graph G, denoted by  $\gamma_{re}(G)$ , equals the minimum weight of a Roman edge dominating function on G. A Roman edge dominating function  $f : E \to \{0,1,2\}$  can be represented by the ordered partition  $(E_0, E_1, E_2)$  of E, where  $E_i = \{e \in E \mid f(e) = i\}$  and  $|E_i| = q_i$  for i = 0,1,2. This concept is studied in Soner et al. in [9] (see also [7]). A  $\gamma - set$ ,  $\gamma_r - set$  and  $\gamma_{re}$ -set, can be defined as a minimum dominating set (MDS), a minimum Roman dominating set (MRDS) and a minimum Roman edge dominating set (MREDS), respectively.

**Theorem A.** For a graph G of order p,

$$\gamma_e(G) \le \gamma_{re}(G) \le 2\gamma_e(G).$$

It is clear that if G has at least one edge then  $1 \leq \gamma_{re}(G) \leq q$ , where q is the number of edges in G. However if a graph is totally disconnected or trivial, we define  $\gamma_{re}(G) = 0$ . We note that E(G) is the unique maximum REDS of G. Since every edge dominating set in G is a dominating set in the line graph of G and an independent set of edges of G is an independent set of vertices in the line graph of G, the following results can easily be proved from the well-known analogous results for dominating sets of vertices and independent sets.

**Proposition** 1. A Roman edge dominating set S is minimal if and only if for each  $e \in S$ , one of the following two conditions holds.

- (i)  $N(e) \cap S = \emptyset$ .
- (ii) There exists an edge  $h \in E S$ , such that  $N(h) \cap S = \{e\}$ .

**Proposition** 2. Let  $S = E_1 \cup E_2$  be a REDS such that  $|E_1| + 2|E_2| = \gamma_{re}(G)$ . Then

$$|E(G) - S| \le \sum_{e \in S} deg(e),$$

and the equality holds if and only if S is independent and for every  $e \in E - S$  there exists only one edge  $h \in S$  such that  $N(e) \cap S = \{h\}$ .

*Proof* Since every edge in E(G) - S is adjacent to at least one edge of S, each edge in E(G) - S contributes at least one to the sum of the degrees of the edges of S, hence

$$|E(G) - S| \le \sum_{e \in S} deg(e)$$

Let  $|E(G) - S| = \sum_{e \in S} deg(e)$ . Suppose S is not independent. Since S is a REDS, every edge in E - S is counted in the sum  $\sum_{e \in S} deg(e)$ . Hence if  $e_1$  and  $e_2$  have a common point in S, then  $e_1$  is counted in  $deg(e_2)$  and vice versa. Then the sum exceeds |E - S| by at least two, contrary to the hypothesis. Hence S must be independent.

Now suppose  $N(e) \cap S = \emptyset$  or  $|N(e) \cap S| \ge 2$  for  $e \in E - S$ . Since S is a REDS the former case does not occur. Let  $e_1$  and  $e_2$  belong to  $N(e) \cap S$ . In this case  $\sum_{e \in S} deg(e)$  exceeds |E(G) - S| by at least one since  $e_1$  is counted twice: once in  $deg(e_1)$  and once in  $deg(e_2)$ , a contradiction. Hence equality holds if S is independent and for every  $e \in E - S$  there exists only one edge  $h \in S$  such that  $N(e) \cap S = \{h\}$ . Conversely, if S is independent and for every  $e \in E - S$  there exists only one edge  $h \in S$  such that  $N(e) \cap S = \{h\}$ , then equality holds.  $\square$ 

**Proposition** 3. Let G be a graph and  $S = E_1 \cup E_2$  be a minimum REDS of G such that |S| = 1, then the following condition hold.

- (i) S is independent.
- (ii)  $|E S| = \sum_{e \in S} deg(e)$ .
- (iii)  $\Delta'(G) = q 1$ .
- (iv)  $q/(\Delta'+1)=1$ .

An immediate consequence of the above result is.

**Corollary** 1 For any (p,q) graph,  $\gamma_{re}(G) = p - q + 1$  if and only if G has  $\gamma_{re}$  components each of which is isomorphic to a star.

**Proposition** 4. Let G be a graph of q edges which contains a edge of degree q-1, then  $\gamma_e(G)=1$  and  $\gamma_{re}(G)=2$ .

**Proposition** 5.([9]) Let  $f = (E_0, E_1, E_2)$  be any REDF. Then

- (i)  $\langle E_1 \rangle$  has maximum degree one.
- (ii) Each edge of  $E_0$  is adjacent to at most two edges of  $E_1$ .
- (iii)  $E_2$  is an  $\gamma_e$ -set of  $H = G[E_0 \cup E_2]$ .

**Proposition** 6. Let  $f = (E_0, E_1, E_2)$  be any  $\gamma_{re}$ -function. Then

- (i) No any edge of  $E_1$  is adjacent to any edge of  $E_2$ .
- (ii) Let  $H = G[E_0 \cup E_2]$ . Then each edge  $e \in E_2$  has at least two H-pn's (i.e private neighbors relative to  $E_2$  in the graph H).
- (iii) If e is isolated in  $G[E_2]$  and has precisely one external H-pn, say  $h \in E_0$ , then  $N(h) \cap E_1 = \emptyset$ .
- *Proof* (i) Let  $e_1, e_2 \in E$ , where  $e_1$  adjacent to  $e_2$ ,  $f(e_1) = 1$  and  $f(e_2) = 2$ . Form f' by changing  $f(e_1)$  to 0. Then f' is a REDF with f'(E) < f(E), a contradiction.
- (ii) By Proposition 5(iii),  $E_2$  is an  $\gamma_e$ -set of H and hence is a maximal irredundant set in H. Therefore, each  $e \in E_2$  has at least one  $E_2$ -pn in H.

Let e be isolated in  $G[E_2]$ . Then e is a  $E_2$ -pn of e. Suppose that e has no external  $E_2$ -pn. Then the function produced by changing f(e) from 2 to 1 is an REDF of smaller weight, a contradiction. Hence, e has at least two  $E_2$ -pns in H.

Suppose that e is not isolated in  $G[E_2]$  and has precisely one  $E_2$ -pn (in H), say w. Consider the function produced by changing f(e) to 0 and f(h) to 1. The edge e is still dominated because it has a neighbor in  $E_2$ . All of e's neighbors in  $E_0$  are also obtained, since every edge in  $E_0$  has another neighbor in  $E_2$  except for h, which is now in  $E_1$ . Therefore, this new function is an REDF of smaller weight, which is a contradiction. Again, we can conclude that e has at least two  $E_2$ -pns in H.

(iii) Suppose the contrary. Define a new function f' with f'(e) = 0, f'(e') = 0 for  $e' \in N(h) \cap E_1$ , f'(h) = 2, and f'(x) = f(x) for all other edges x.  $f'(E) = f(E) - |N(h) \cap E_1| < f(E)$ , contradicting the minimality of f.

**Proposition** 7. Let  $f = (E_0, E_1, E_2)$  be a  $\gamma_{re}$ -function of an isolate-free graph G, such that  $|E_2| = q_2$  is a maximum. Then

- (i)  $E_1$  is independent.
- (ii) The set  $E_0$  dominates the set  $E_1$ .
- (iii) Each edge of  $E_0$  is adjacent to at most one edge of  $E_1$ .
- (iv) Let  $e \in G[E_2]$  have exactly two external H-pn's  $e_1$  and  $e_2$  in  $E_0$ . Then there do not exist edges  $h_1, h_2 \in E_1$  such that  $(h_1, e_1, e, e_2, h_2)$  is the edge sequence of a path  $P_6$ .
- Proof (i) By Proposition 5(i),  $G[E_1]$  consists of disjoint  $K_2$ 's and  $P_3$ 's. If there exists a  $P_3$ , then we can change the function values of its edges to 0 and 2. The resulting function  $g = (W_0, W_1, W_2)$  is a  $\gamma_{re}$ -function with  $|W_2| > |E_2|$ , which is a contradiction. Therefore,  $E_1$  is an independent set.
- (ii) By (i) and Proposition 6(i), no edge  $e \in E_1$  is adjacent to an edge in  $E_1 \cup E_2$ . Since G is isolate-free, e is adjacent to some edge in  $E_0$ . Hence the set  $E_0$  dominates the set  $E_1$ .
- (iii) Let  $e \in E_0$  and  $B = N(e) \cap E_1$ , where |B| = 2. Note that  $|B| \le 2$ , by Proposition 5(ii). Let

$$W_0 = (E_0 \cup B) - \{e\},\$$
  
$$W_1 = E_1 - B,$$

$$W_2 = E_2 \cup \{e\}.$$

We know that  $E_2$  dominates  $E_0$ , so that  $g = (W_0, W_1, W_2)$  is an REDF.

 $g(E) = |W_1| + 2|W_2| = |E_1| - B + 2|E_2| - 2 = f(E)$ . Hence, g is a  $\gamma_{re}$ -function with  $|W_2| > |E_2|$ , which is a contradiction.

iv) Suppose the contrary. Form a new function by changing the function values of  $(h_1, e_1, e, e_2, h_2)$  from (1,0,2,0,1) to (0,2,0,0,2). Then the new function is a  $\gamma_{re}$ -function with bigger value of  $q_2$ , which is a contradiction.

# §2. Graph for Which $\gamma_{re}(G) = 2\gamma_e(G)$

From Theorem A we know that for any graph G,  $\gamma_{re}(G) \leq 2\gamma_e(G)$ . We will say that a graph G is a Roman edge graph if  $\gamma_{re}(G) = 2\gamma_e(G)$ .

**Proposition** 8. A graph G is Roman edge graph if and only if it has a  $\gamma_{re}$ -function  $f = (E_0, E_1, E_2)$  with  $q_1 = |E_1| = 0$ .

*Proof* Let G be a Roman edge graph and let  $f = (E_0, E_1, E_2)$  be a  $\gamma_{re}$ -function of G. Proposition 5(iii) we know that  $E_2$  dominates  $E_0$ , and  $E_1 \cup E_2$  dominates E, and hence

$$\gamma_e(G) \le |E_1 \cup E_2| = |E_1| + |E_2| \le |E_1| + 2|E_2| = \gamma_{re}(G).$$

But since G is Roman edge, we know that

$$2\gamma_e(G) = 2|E_1| + 2|E_2| = \gamma_{re}(G) = |E_1| + 2|E_2|.$$

Hence,  $q_1 = |E_1| = 0$ .

Conversely, let  $f=(E_0,E_1,E_2)$  be a  $\gamma_{re}$ -function of G with  $q_1=|E_1|=0$ . Then,  $\gamma_{re}(G)=2|E_2|$ , and since by definition  $E_1\cup E_2$  dominates E, it follows that  $E_2$  is a dominating set of G. But by Proposition 5(iii), we know that  $E_2$  is a  $\gamma_e$ -set of  $G[E_0\cup E_2]$ , i.e.  $\gamma_e(G)=|E_2|$  and  $\gamma_{re}(G)=2\gamma_e(G)$ , i.e. G is a Roman edge graph.  $\square$ 

### §3. Bound on the Sum $\gamma_{re}(G) + \gamma_e(G)/2$

For q-edge graphs, always  $\gamma_{re}(G) \leq q$ , with equality when G is isomorphic with  $mK_2$  or  $mP_3$ . In this section we prove that  $\gamma_{re}(G) + \gamma_e(G)/2 \leq q$  and  $\gamma_{re}(G) \leq 4q/5$  when G is a connected q-edge graph.

**Theorem** 9. For any connected graph G of  $q \geq 3$ ,

- (i)  $\gamma_{re}(G) + \gamma_e(G)/2 \leq q$ .
- (ii)  $\gamma_{re}(G) < 4q/5$ .

Proof Let  $f = (E_0, E_1, E_2)$  be a  $\gamma_{re}(G)$ -function such that  $|E_2|$  is maximum. It is proved in Proposition 6(i) that for such a function no edge of  $E_1$  is adjacent to any edge of  $E_2$  and every edge e of  $E_2$  has at least two  $E_2$ -private neighbors, one of them can be e itself if it is isolated in

 $E_2$  (true for every  $\gamma_{re}(G)$ -function). The set  $E_1$  is independent and every edge of  $E_0$  has at most one neighbor in  $E_1$ . Moreover we add the condition the number  $\mu(f)$  of edges of  $E_2$  with only one neighbor in  $E_0$  is minimum. Suppose that  $N_{E_0}(e) = \{h\}$  for some  $e \in E_2$ . Then partition  $E'_0 = (E_0 \setminus \{h\}) \cup \{e\} \cup N_{E_1}(h)$ ,  $E'_1 = E_1 \setminus N_{E_1}(h)$  and  $E'_2 = (E_2 \setminus \{e\}) \cup \{h\}$  is a Roman edge dominating function f' such that w(f') = w(f) - 1 if  $N_{E_1}(h) \neq \emptyset$ , or w(f') = w(f),  $|E'_2| = |E_2|$  but  $\mu(f') < \mu(f)$  if  $N_{E_1}(h) = \emptyset$  since then, G being connected  $q \geq 3$ , h is not isolated in  $E_0$ . Therefore every edge of  $E_2$  has at least two neighbors in  $E_0$ . Let A be a largest subset of  $E_2$  such that for each  $e \in A$  there exists a subset  $A_e$  of  $N_{E_0}(e)$  such that the set  $A_e$  is disjoint,  $|A_e| \geq 2$  and sets  $\cup_{e \in A} A_e = \cup_{e \in A} N_{E_0}(e)$ . Note that  $A_e$  contains all the external  $E_2$ -private neighbors of e.  $A' = E_2 \setminus A$ .

#### Case 1 $A' = \emptyset$ .

In this case  $|E_0| \ge 2|E_2|$  and  $|E_1| \le |E_0|$  since every edge of  $E_0$  has at most one neighbor in  $E_1$ . Since  $E_0$  is an edge dominating set of G and  $|E_0|/2 \ge |E_2|$  we have

(i) 
$$\gamma_{re}(G) + \gamma_{e}(G)/2 \le |E_1| + 2|E_2| + |E_0|/2 \le |E_0| + |E_1| + |E_2| = q$$
.

(ii)  $5\gamma_{re}(G) = 5|E_1| + 10|E_2| = 4q - 4|E_0| + |E_1| + 6|E_2| = 4q - 3(|E_0| - 2|E_2|) - (|E_0| - |E_1|) \le 4q$ . Hence  $\gamma_{re}(G) \le 4q/5$ .

### Case 2 $A' \neq \emptyset$ .

Let  $B = \bigcup_{e \in A} A_e$  and  $B' = E_0 \setminus B$ . Every edge  $\varepsilon$  in A' has exactly one  $E_2$ -private neighbor  $\varepsilon'$  in  $E_0$  and  $N_{B'}(\varepsilon) = \{\varepsilon'\}$  for otherwise  $\varepsilon$  could be added to A. This shows that |A'| = |B'|. Moreover since  $|N_{E_0}(\varepsilon)| \geq 2$ , each edge  $\varepsilon \in A'$  has at least one neighbor in B. Let  $\varepsilon_B \in B \cap N_{E_0}(\varepsilon)$  and let  $\varepsilon_A$  be the edge of A such that  $\varepsilon_B \in A_{\varepsilon_A}$ . The edge  $\varepsilon_A$  is well defined since the sets  $A_e$  with  $e \in A$  form a partition of B.

Claim 1  $|A_{\varepsilon_A}| = 2$  for each  $\varepsilon \in A'$  and each  $\varepsilon_B \in B \cap N_{E_0}(\varepsilon)$ .

**Proof of Claim 1** If  $|A_{\varepsilon_A}| > 2$ , then by putting  $A'_{\varepsilon_A} = A_{\varepsilon_A} \setminus \{\varepsilon_B\}$  and  $A_{\varepsilon} = \{\varepsilon', \varepsilon_B\}$  we can see that  $A_1 = A \cup \{\varepsilon\}$  contradicts the choice of A. Hence  $|A_{\varepsilon_A}| = 2$ ,  $\varepsilon_A$  has a unique external  $E_2$ -private neighbor  $\varepsilon'_A$  and  $A_{\varepsilon_A} = \{\varepsilon_B, \varepsilon'_A\}$ . Note that the edges  $\varepsilon_A$  and  $\varepsilon$  are isolated in  $E_2$  since they must have a second  $E_2$ -private neighbor.

Claim 2 If  $\varepsilon, y \in A'$  then  $\varepsilon_B \neq y_B$  and  $A_{\varepsilon_A} \neq A_{y_A}$ .

**Proof of Claim 2** Let  $\varepsilon'$  and y' be respectively the unique external  $E_2$ -private neighbors of  $\varepsilon$  and y. Suppose that  $\varepsilon_B = y_B$ , and thus  $\varepsilon_A = y_A$ . The function  $g: E(G) \to \{0, 1, 2\}$  defined by  $g(\varepsilon_B) = 2$ ,  $g(\varepsilon) = g(y) = g(\varepsilon_A) = 0$ ,  $g(\varepsilon'_A) = g(y') = g(\varepsilon') = 1$  and g(e) = f(e) otherwise, is a REDF of G of weight less than  $\gamma_{re}(G)$ , a contradiction. Hence  $\varepsilon_B \neq y_B$ . Since  $A_{\varepsilon_A} \supseteq \{\varepsilon_B, \varepsilon'_A\}$  and  $|A_{\varepsilon_A}| = 2$ , the edge  $y_B$  is not in  $A_{\varepsilon_A}$ . Therefore  $A_{\varepsilon_A} \neq A_{y_A}$ .

Let  $A'' = \{ \varepsilon_A \mid \varepsilon \in A' \text{ and } \varepsilon_B \in B \cap N_{E_0}(\varepsilon) \}$  and  $B'' = \bigcup_{e \in A''} A_e$ . By Claims 1 and 2,

$$|B''| + 2|A''|$$
 and  $|A''| \ge |A'|$ .

Let  $A''' = E_2 \setminus (A' \cup A'')$  and  $B''' = \bigcup_{e \in A'''} A_e = E_0 \setminus (B' \cup B'')$ . By the definition of the sets  $A_e$ ,

$$|B'''| \ge |2A'''|$$
.

Claim 3 If  $\varepsilon \in A'$  and  $\varepsilon_B \in B \cap N_{E_0}(\varepsilon)$ , then  $\varepsilon', \varepsilon_B$  and  $\varepsilon'_A$  have no neighbor in  $E_1$ . Hence B''' dominates  $E_1$ .

**Proof of Claim 3** Let h be a edge of  $E_1$ . If h has a neighbor in  $B' \cup B''$ , Let  $g : E(G) \to \{0, 1, 2\}$  be defined by  $g(\varepsilon'_A) = 2$ ,  $g(h) = g(\varepsilon_A) = 0$ , g(e) = f(e) otherwise if h is adjacent to  $\varepsilon'_A$ ,  $g(\varepsilon') = 2$ ,  $g(h) = g(\varepsilon) = 0$ , g(e) = f(e) otherwise if h is adjacent to  $\varepsilon'$ ,

 $g(\varepsilon_B) = 2$ ,  $g(h) = g(\varepsilon_A) = g(\varepsilon) = 0$ ,  $g(\varepsilon_A') = g(\varepsilon') = 1$ , g(e) = f(e) otherwise if h is adjacent to  $\varepsilon_B$ . In each case, g is a REDF of weight less than  $\gamma_{re}(G)$ , a contradiction. Therefore  $N(h) \subseteq B'''$ .

We are now ready to establish the two parts of the Theorem.

(i) By Claim 3,  $B''' \cup A' \cup A''$  is an edge dominating set of G. Therefore, since |A'| = |B'| and  $|B'''| \ge |2A'''|$  we have,

$$\gamma_e(G) \le |B'''| + |A'| + |A''| \le |B'''| + |B''| \le (2|B'''| - 2|A'''|) + (2|B''| - 2|A''|) + (2|B''| - 2|A''|).$$

Hence 
$$\gamma_e(G) \le 2|E_0| - 2|E_2|$$
 and  $\gamma_{re}(G) + \gamma_e(G)/2 \le (|E_1| + 2|E_2|) + (|E_0| - |E_2|) = q$ .

(ii) By Claim 3 and since each edge of  $E_1$  has at most one neighbor in  $E_0$  and  $|E_1| \le |B'''|$ . Using this inequality and since |A'| = |B'| and  $|B'''| \ge |2A'''|$  we get

$$5\gamma_{re}(G) = 5|E_1| + 10|E_2| = 4q - 4|E_0| + |E_1| + 6|E_2| \le 4q - 4|B'| - 4|B''| - 4|B'''| + 6|A''| + 6|A''| + 6|A'''| \le 4q + 2(|A'| - |A''|) + 3(2|A'''| - |B'''|) \le 4q.$$

Hence 
$$\gamma_{re}(G) \leq 4q/5$$
.

**Corollary 10** Let  $f = (E_0, E_1, E_2)$  be a  $\gamma_{re}(G)$  – function of a connected graph G. If  $k|E_2| \leq |E_0|$  such that  $k \geq 4$ , then  $\gamma_{re}(G) \leq (k-1)q/k$ .

§4. Bounds on  $|E_0|$ ,  $|E_1|$  and  $|E_2|$  for a  $\gamma_{re}(G)$ -Function  $(E_0, E_1, E_2)$ 

**Theorem** 11. Let  $f = (E_0, E_1, E_2)$  be any  $\gamma_{re}(G)$  – function of a connected graph G of  $q \ge 3$ . Then

- (1)  $1 \le |E_2| \le 2q/5$ ;
- (2)  $0 \le |E_1| \le 4q/5 2$ ;
- (3)  $q/5 + 1 \le |E_0| \le q 1$ .

*Proof* By Theorem 9,  $|E_1| + 2|E_2| \le 4q/5$ .

- (1) If  $E_2 = \emptyset$ , then  $E_1 = q$  and  $E_0 = \emptyset$ . The REDF (0, q, 0) is not minimum since  $|E_1| + 2|E_2| > 4q/5$ . Hence  $|E_2| \ge 1$ . On the other hand,  $|E_2| \le 2q/5 |E_1|/2 \le 2q/5$ .
  - (2) Since  $|E_2| \ge 1$ , then  $|E_1| \le 4q/5 2|E_2| \le 4q/5 2$ .
- (3) The upper bound comes from  $|E_0| \le q |E_2| \le q 1$ . For the lower bound, adding on side by side  $2|E_0| + 2|E_1| + 2|E_2| = 2q, -|E_1| 2|E_2| \ge -4q/5$  and  $-|E_1| \ge -4q/5 + 2$  gives  $2|E_0| \ge 2q/5 + 2$ . Therefor,  $|E_0| \ge q/5 + 1$ .

#### References

- [1] S. Arumugam and S. Velamal, Edge domination in graphs, *Taiwanese Journal of Mathematics*, 2(1998),173-179.
- [2] E. W. Chambers, B. Kinnersley, N. Prince and D. B. West, Extremal problems for Roman domination, *Discrete Math.*, 23(2009),1575-1586.
- [3] E. J. Cockayne, P. A. Dreyer Jr, S. M. Hedetniemi and S. T. Hedetniemi, Roman domination in graphs, *Discrete Math.*, 278(2004),11-22.
- [4] O. Favaron, H. Karami, R. Khoeilar and S. M. Sheikholeslami, On the Roman domination number of a graph, *Discrete Math*, 309(2009),3447-3451.
- [5] T. W. Haynes, S. T Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc, New York, (1998).
- [6] S. Mitchell and S.T. Hedetniemi, Edge domination in tree, Proc 8<sup>th</sup> SE Conference on Combinatorics, Graph Theory and Computing, 19(1977)489-509.
- [7] Karam Ebadi and L. Pushpalatha, Smarandachely Roman edge s-dominating function, International J. Math. Combin., 2(2010)95-101.
- [8] B. P. Mobaraky and S. M. Sheikholeslami, bounds on Roman domination numbers of graphs, *Discrete Math.*, 60(2008), 247-253.
- [9] N. D. Soner, B. Chaluvaraju and J. P. Srivastava, Roman edge domination in graphs, *Proc. Nat. Acad. Sci. India Sect. A*, 79(2009), 45-50.