Singed Total Domatic Number of a Graph

H.B. Walikar¹, Shailaja S. Shirkol², Kishori P.Narayankar³

- 1. Department of Computer Science, Karnatak University, Dharwad, Karnataka, INDIA-580003
- 2. Department of Mathematics, Karnatak University, Dharwad, Karnataka, INDIA
- $\begin{tabular}{ll} 3. & Department of Mathematics, Mangalore University, Mangalore, Karnataka, INDIA \\ & Email: walikarhb@yahoo.co.in, shaila_shirkol@rediffmail.com \\ \end{tabular}$

Abstract: Let G be a finite and simple graph with vertex set V(G), $k \ge 1$ an integer and let $f:V(G) \to \{-k,k-1,\cdots,-1,1,\cdots,k-1,k\}$ be 2k valued function. If $\sum_{x \in N(v)} f(x) \ge k$ for each $v \in V(G)$, where N(v) is the open neighborhood of v, then f is a Smarandachely k-Signed total dominating function on G. A set $\{f_1,f_2,\ldots,f_d\}$ of Smarandachely k-Signed total dominating function on G with the property that $\sum_{i=1}^d f_i(x) \le k$ for each $x \in V(G)$ is called a Smarandachely k-Signed total dominating family (function) on G. Particularly, a Smarandachely 1-Signed total dominating function or family is called signed total dominating function or family on G. The maximum number of functions in a signed total dominating family on G is the signed total domatic number of G. In this paper, some properties related signed total domatic number and signed total domination number of a graph are studied and found the sign total domatic number of certain class of graphs such as fans, wheels and generalized Petersen graph.

Key Words: Smarandachely k-signed total dominating function, signed total domination number, signed total domatic number.

AMS(2000): 05C69

§1. Terminology and Introduction

Various numerical invariants of graphs concerning domination were introduced by means of dominating functions and their variants [1] and [4]. We considered finite, undirected, simple graphs G = (V, E) with vertex set V(G) and edge set E(G). The order of G is given by n = |V(G)|. If $v \in V(G)$, then the open neighborhood of v is $N(v) = \{u \in V(G) | uv \in E(G)\}$ and the closed neighborhood of v is $N[v] = \{v\} \cup N(v)$. The number $d_G(v) = d(v) = |N(v)|$ is the degree of the vertex $v \in V(G)$, and $\delta(G)$ is the minimum degree of G. The complete graph and the cycle of order n are denoted by K_n and C_n respectively. A fan and a wheel is a graph obtained from a path and a cycle by adding a new vertex and edges joining it to all the vertices of the path and cycle respectively. The generalized Petersen graph P(n,k) is defined to be a graph on 2n vertices with $V(P(n,k)) = \{v_i u_i : 1 \le i \le n\}$ and $E(P(n,k)) = \{v_i u_i : 1 \le i \le n\}$ and $E(P(n,k)) = \{v_i u_i : 1 \le i \le n\}$ and $E(P(n,k)) = \{v_i u_i : 1 \le i \le n\}$ and $E(P(n,k)) = \{v_i u_i : 1 \le i \le n\}$ and $E(P(n,k)) = \{v_i u_i : 1 \le i \le n\}$

¹Received February 18, 2010. Accepted March 20, 2010.

 $\{v_iv_{i+1}, v_iu_i, u_iu_{i+k}: 1 \leq i \leq n, \text{ subscripts modulo } n\}$. If $A \subseteq V(G)$ and f is a mapping from V(G) in to some set of numbers, then $f(A) = \sum_{x \in A} f(x)$.

Let $k \geq 1$ be an integer and let $f: V(G) \to \{-k, k-1, \cdots, -1, 1, \cdots, k-1, k\}$ be 2k valued function. If $\sum_{x \in N(v)} f(x) \geq k$ for each $v \in V(G)$, where N(v) is the open neighborhood of v, then f is a Smarandachely k-Signed total dominating function on G. A set $\{f_1, f_2, \ldots, f_d\}$ of Smarandachely k-Signed total dominating function on G with the property that $\sum_{i=1}^d f_i(x) \leq k$ for each $x \in V(G)$ is called a Smarandachely k-Signed total dominating family (function) on G. Particularly, a Smarandachely 1-Signed total dominating function or family is called signed total dominating function or family on G. The singed total dominating function is defined in [6] as a two valued function $f: V(G) \to \{-1,1\}$ such that $\sum_{x \in N(v)} f(x) \geq 1$ for each $v \in V(G)$. The minimum of weights w(f), taken over all signed total dominating functions f on G, is called the signed total domination number $\gamma_t^s(G)$. Signed total domination has been studied in [3].

A set $\{f_1, f_2, \ldots, f_d\}$ of signed total dominating functions on G with the property that $\sum_{i=1}^d f_i(x) \leq 1$ for each $x \in V(G)$, is called a signed total dominating family on G. The maximum number of functions in a signed total dominating family is the signed total domatic number of G, denoted by $d_t^s(G)$. Signed total domatic number was introduced by Guan Mei and Shan Er-fang [2]. Guan Mei and Shan Er-fang [2] have determined the basic properties of $d_t^s(G)$. Some of them are analogous to those of the signed domatic number in [5] and studied sharp bounds of the signed total domatic number of regular graphs, complete bipartite graphs and complete graphs. Guan Mei and Shan Er-fang [2] presented the following results which are useful in our investigations.

Proposition 1.1([6]) For Circuit C_n of length n we have $\gamma_t^s(C_n) = n$.

Proof Here no other signed total dominating exists than the constants equal to 1. \Box

Theorem 1.2([3]) Let T be a tree of order $n \ge 2$. then, $\gamma_t^s(T) = n$ if and only if every vertex of T is a support vertex or is adjacent to a vertex of degree 2.

Proposition 1.3([2]) The signed total domatic number $d_s^*(G)$ is well defined for each graph G.

Proposition 1.4([2]) For any graph G of order n, $\gamma_t^s(G) \cdot d_t^s(G) \leq n$.

Proposition 1.5([2]) If G is a graph with the minimum degree $\delta(G)$, then $1 \leq d_*^s(G) \leq \delta(G)$.

Proposition 1.6([2]) The signed total domatic number is an odd integer.

Corollary 1.7([2]) If G is a graph with the minimum degree $\delta(G) = 1$ or 2, then $d_t^s(G) = 1$. In particular, $d_t^s(C_n) = d_t^s(P_n) = d_t^s(K_{1,n-1}) = d_t^s(T) = 1$, where T is a tree.

§2. Properties of the Signed Total Domatic Number

Proposition 2.1 If G is a graph of order n and $\gamma_t^*(G) \geq 0$ then, $\gamma_t^*(G) + d_t^*(G) \leq n+1$ equality

holds if and only if G is isomorphic to C_n or tree T of order $n \geq 2$.

Proof Let G be a graph of order n. The inequality follows from the fact that for any two non-negative integers a and b, $a + b \le ab + 1$. By Proposition 1.4 we have,

$$\gamma_t^s(G) + d_t^s(G) \le \gamma_t^s(G) \cdot d_t^s(G) + 1 \le n + 1$$

Suppose that $\gamma_t^s(G) + d_t^s(G) = n+1$ then, $n+1 = \gamma_t^s(G) + d_t^s(G) \leq \gamma_t^s(G) \cdot d_t^s(G) + 1 \leq n+1$. This implies that $\gamma_t^s(G) + d_t^s(G) = \gamma_t^s(G) \cdot d_t^s(G) + 1$. This shows that $\gamma_t^s(G) \cdot d_t^s(G) = n$ Solving equations 1 and 2 simultaneously, we have either $\gamma_t^s(G) = 1$ and $d_t^s(G) = n$ or $\gamma_t^s(G) = n$ and $d_t^s(G) = 1$. If $\gamma_t^s(G) = 1$ and $d_t^s(G) = n$ then $n = d_t^s(G) \leq \delta(G)$ There fore, $\delta(G) \geq n$ a contradiction.

If $\gamma_t^s(G) = n$ and $d_t^s(G) = 1$ then by Proposition 1.1 and Proposition 1.2, we have $\gamma_t^s(C_n) = n$ and $d_t^s(C_n) = 1$ and By Theorem 1.2, If T is a tree of order $n \geq 2$ then, $\gamma_t^s(T) = n$ if and only if every vertex of T is a support vertex or is adjacent to a vertex of degree 2 and $d_t^s(T) = 1$. \square

Theorem 2.2 Let G be a graph of order n then $d_t^s(G) + d_t^s(\bar{G}) \leq n - 1$.

Proof Let G be a regular graph order n, By Proposition 1.5 we have $d_t^s(G) \leq \delta(G)$ and $d_t^s(\bar{G}) \leq \delta(\bar{G})$. Thus we have,

$$d_t^s(G) + d_t^s(\bar{G}) \le \delta(G) + \delta(\bar{G}) = \delta(G) + (n - 1 - \Delta(G)) \le n - 1.$$

Thus the inequality holds.

§3. Signed Total Domatic Number of Fans, Wheels and Generalized Petersen Graph

Proposition 3.1 Let G be a fan of order n then $d_t^s(G) = 1$.

Proof Let $n \geq 2$ and let x_1, x_2, \ldots, x_n be the vertex set of the fan G such that $x_1, x_2, \ldots, x_n, x_1$ is a cycle of length n and x_n is adjacent to x_i for each $i = 2, 3, \ldots, n-2$. By Proposition 1.5 and Proposition 1.6, $1 \leq d_t^s(G) \leq \delta(G) = 2$, which implies $d_t^s(G) = 1$ which proves the result.

Proposition 3.2 If G is a wheel of order n then $d_t^s(G) = 1$.

Proof Let x_1, x_2, \ldots, x_n be the vertex set of the wheel G such that $x_1, x_2, \ldots, x_{n-1}, x_1$ is a cycle of length n-1 and x_n is adjacent to x_i for each $i=1,2,3,\ldots,n-1$. According to the Proposition 1.5 and Proposition 1.6, we observe that either $d_t^s(G)=1$ or $d_t^s(G)=3$. Suppose to the contrary that $d_t^s(G)=3$. Let $\{f_1,f_2,f_3\}$ be a corresponding signed total dominating family. Because of $f_1(x_n)+f_2(x_n)+f_3(x_n)\leq 1$, there exists at least one function say f_1 with $f_1(x_n)=-1$ The condition $\sum_{x\in N(v)}f_1(x)\geq 1$ for each $v\in (V(G)-\{x_n\})$ yields $f_1(x)=1$ for each some $i\in\{1,2,\ldots,n-1\}$ and t=2,3 then it follows that $f_t(x_{i+1})=f_t(x_{i+2})=1$, where the indices are taken taken modulo n-1 and $f_t(x_n)=1$. Consequently, the function f_t has at most $\left\lfloor \frac{n}{2} \right\rfloor -1$ for n is odd and $\frac{n}{2}-1$ for n is even number of vertices $x\in V(G)$ such that

 $f_t(x) = -1$. Thus there exist at most $\lfloor \frac{n}{2} \rfloor - 1$ for n is odd and $\frac{n}{2} - 1$ for n is even number of vertices $x \in V(G)$ such that $f_t(x) = -1$ for at least one i = 1, 2, 3. Since $n \ge 4$, we observe that $2(\lfloor \frac{n}{2} \rfloor + 1) = 2(\frac{n}{2} - 1) + 1 < n$ for n is odd and $2(\frac{n}{2} - 1) + 1 < n$, a contradiction to $f_1(x_n) + f_2(x_n) + f_3(x_n) \le 1$ for each $x \in V(G)$.

Proposition 3.3 Let G = P(n, k) be a generalized Petersen graph then for $k = 1, 2, d_t^*(G) = 1$.

Proof The generalized Petersen graph P(n,1) is a graph on 2n vertices with

$$V(P(n,k)) = \{v_i u_i : 1 \le i \le n\}$$

and $E(P(n,k)) = \{v_i v_{i+1}, v_i u_i, u_i u_{i+1} : 1 \le i \le n, \text{ subscripts modulo } n\}$. According to the Proposition 1.5, Proposition 1.6, we observe that $d_t^s(G) = 1$ or $d_t^s(G) = 3$.

Case 1: k = 1

Let $\{f_1, f_2, f_3\}$ be a corresponding signed total dominating functions. Because of $f_1(v_n) + f_2(v_n) + f_3(v_n) \le 1$ for each $i \in \{1, 2, \dots, 2n\}$, there exist at least one number $j \in \{1, 2, 3\}$ such that $f_j(v_i) = -1$. Let, for example, $f_1(v_k) = -1$ for for any $t \in \{1, 2, \dots, 2n\}$ then $\sum_{x \in N(v_t)} f_1(v) \ge 1$ implies that $f_1(v_k) = f_1(v_{k+1}) = -1$ for $k \cong 0, 1 \mod 4$ and $f_1(v_k) = -1$ for $k \cong 0 \mod 3$. This implies, there exist at most $8r, 8r + 2, 8r + 4, 8r + 6, r \ge 1$ vertices such that $f_t(v) = -1$ for each t = 2, 3 when P(n, 1) is of order 2(6r + l) for $0 \le l \le 2, 2(6r + 3), 2(6r + 4), 2(6r + 5)$ respectively. Thus there exist $3(8r) = 3(8(\frac{n}{12} - \frac{l}{6}) < n$ (similarly < n for all values of vertex set) a contradiction to $f_1(v_n) + f_2(v_n) + f_3(v_n) \le 1$ for each $v \in V(G)$.

Case 2: k = 2

Similar to the proof of Case 1, we can prove the claim in this case. \Box

References

- [1] Cockayne E.J, Hedetniemi S.T. Towords a theory of domination in graphs, J. Networks, 1977, 7: 247-261.
- [2] Guan Mei, Shan Er-fang. Signed total domatic number of a graph, J.Shanghai Univ (Engl Ed) 2008 12 (1): 31-34.
- [3] Henning M.A. Signed total domination in graphs, J. Discrete Mathematics, 2001, 278: 109-125.
- [4] Haynes T.W, Hedetniemi S.T, Slater P.J. Fundamentals of domination in graphs, M. New York: Marcel Dekker, 1998.
- [5] Volkmann L, Zelinka B. Signed domatic number of a graph, J. Discrete Applied Mathematics, 2005, 150: 261-267.
- [6] Zelinka B, Liberec. Signed total domination number of a graph, J. Czechoslovak Mathematical Journal, 2001, 51: 225-229.