Smarandache Curves and Applications

 According to Type-2 Bishop Frame in Euclidean 3-SpaceSüha Yılmaz
(Dokuz Eylül University, Buca Educational Faculty, 35150, Buca-Izmir, Turkey)
Ümit Ziya Savcı
(Celal Bayar University, Department of Mathematics Education, 45900, Manisa-Turkey)
E-mail: suha.yilmaz@deu.edu.tr, ziyasavci@hotmail.com

Abstract

In this paper, we investigate Smarandache curves according to type-2 Bishop frame in Euclidean 3- space and we give some differential geometric properties of Smarandache curves. Also, some characterizations of Smarandache breadth curves in Euclidean 3space are presented. Besides, we illustrate examples of our results.

Key Words: Smarandache curves, Bishop frame, curves of constant breadth.
AMS(2010): 53A05, 53B25, 53B30.

§1. Introduction

A regular curve in Euclidean 3-space, whose position vector is composed by Frenet frame vectors on another regular curve, is called a Smarandache curve. M. Turgut and S. Yılmaz have defined a special case of such curves and call it Smarandache TB_{2} curves in the space E_{1}^{4} [10]. Moreover, special Smarandache curves have been investigated by some differential geometric [6]. A.T.Ali has introduced some special Smarandache curves in the Euclidean space [2]. Special Smarandache curves according to Sabban frame have been studied by [5]. Besides, It has been determined some special Smarandache curves E_{1}^{3} by [12]. Curves of constant breadth were introduced by L.Euler [3].

We investigate position vector of curves and some characterizations case of constant breadth according to type-2 Bishop frame in E^{3}.

§2. Preliminaries

The Euclidean 3 -space E^{3} proved with the standard flat metric given by

$$
<,>=d x_{1}^{2}+d x_{2}^{2}+d x_{3}^{2}
$$

[^0]where $\left(x_{1}, x_{2}, x_{3}\right)$ is rectangular coordinate system of E^{3}. Recall that, the norm of an arbitrary vector $a \in E^{3}$ given by $\|a\|=\sqrt{<a, a\rangle} . \varphi$ is called a unit speed curve if velocity vector v of φ satisfied $\|v\|=1$

The Bishop frame or parallel transport frame is alternative approach to defining a moving frame that is well defined even when the curve has vanishing second derivative. One can express parallel transport of orthonormal frame along a curve simply by parallel transporting each component of the frame [8]. The type-2 Bishop frame is expressed as

$$
\left[\begin{array}{c}
\xi_{1}^{\prime} \tag{2.1}\\
\xi_{2}^{\prime} \\
B^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
0 & 0 & -\varepsilon_{1} \\
0 & 0 & -\varepsilon_{2} \\
\varepsilon_{1} & \varepsilon_{2} & 0
\end{array}\right] \cdot\left[\begin{array}{l}
\xi_{1} \\
\xi_{2} \\
B
\end{array}\right]
$$

In order to investigate type-2 Bishop frame relation with Serret-Frenet frame, first we

$$
\begin{equation*}
B^{\prime}=-\tau N=\varepsilon_{1} \xi_{1}+\varepsilon_{2} \xi_{2} \tag{2.2}
\end{equation*}
$$

Taking the norm of both sides, we have

$$
\begin{equation*}
\kappa(s)=\frac{d \theta(s)}{d s}, \quad \tau(s)=\sqrt{\varepsilon_{1}^{2}+\varepsilon_{2}^{2}} \tag{2.3}
\end{equation*}
$$

Moreover, we may express

$$
\begin{equation*}
\varepsilon_{1}(s)=-\tau \cos \theta(s), \quad \varepsilon_{2}(s)=-\tau \sin \theta(s) \tag{2.4}
\end{equation*}
$$

By this way, we conclude $\theta(s)=\operatorname{Arctan} \frac{\varepsilon_{2}}{\varepsilon_{1}}$. The frame $\left\{\xi_{1}, \xi_{2}, B\right\}$ is properly oriented, and τ and $\theta(s)=\int_{0}^{s} \kappa(s) d s$ are polar coordinates for the curve $\alpha(s)$.

We write the tangent vector according to frame $\left\{\xi_{1}, \xi_{2}, B\right\}$ as

$$
T=\sin \theta(s) \xi_{1}-\cos \theta(s) \xi_{2}
$$

and differentiate with respect to s

$$
\begin{align*}
T^{\prime}=\kappa N=\theta^{\prime}(s) & \left(\cos \theta(s) \xi_{1}+\sin \theta(s) \xi_{2}\right) \tag{2.5}\\
& +\sin \theta(s) \xi_{1}^{\prime}-\cos \theta(s) \xi_{2}^{\prime}
\end{align*}
$$

Substituting $\xi_{1}^{\prime}=-\varepsilon_{1} B$ and $\xi_{2}^{\prime}=-\varepsilon_{2} B$ in equation (2.5) we have

$$
\kappa N=\theta^{\prime}(s)\left(\cos \theta(s) \xi_{1}+\sin \theta(s) \xi_{2}\right)
$$

In the above equation let us take $\theta^{\prime}(s)=\kappa(s)$. So we immediately arrive at

$$
N=\cos \theta(s) \xi_{1}+\sin \theta(s) \xi_{2}
$$

Considering the obtained equations, the relation matrix between Serret-Frenet and the type- 2 Bishop frame can be expressed

$$
\left[\begin{array}{l}
T \tag{2.6}\\
N \\
B
\end{array}\right]=\left[\begin{array}{ccc}
\sin \theta(s) & -\cos \theta(s) & 0 \\
\cos \theta(s) & \sin \theta(s) & 0 \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
\xi_{1} \\
\xi_{2} \\
B
\end{array}\right]
$$

§3. Smarandache Curves According to Type-2 Bishop Frame in \mathbf{E}^{3}

Let $\alpha=\alpha(s)$ be a unit speed regular curve in E^{3} and denote by $\left\{\xi_{1}^{\alpha}, \xi_{2}^{\alpha}, B^{\alpha}\right\}$ the moving Bishop frame along the curve α. The following Bishop formulae is given by

$$
\dot{\xi_{1}^{\alpha}}=-\varepsilon_{1}^{\alpha} B^{\alpha}, \quad \dot{\xi_{2}^{\alpha}}=-\varepsilon_{2}^{\alpha} B^{\alpha}, \quad \dot{B^{\alpha}}=\varepsilon_{1}^{\alpha} \xi_{1}^{\alpha}+\varepsilon_{2}^{\alpha} \xi_{2}^{\alpha}
$$

$3.1 \xi_{1} \xi_{2}$-Smarandache Curves

Definition 3.1 Let $\alpha=\alpha(s)$ be a unit speed regular curve in E^{3} and $\left\{\xi_{1}^{\alpha}, \xi_{2}^{\alpha}, B^{\alpha}\right\}$ be its moving Bishop frame. $\xi_{1} \xi_{2}$-Smarandache curves can be defined by

$$
\begin{equation*}
\beta\left(s^{*}\right)=\frac{1}{\sqrt{2}}\left(\xi_{1}^{\alpha}+\xi_{2}^{\alpha}\right) \tag{3.1}
\end{equation*}
$$

Now, we can investigate Bishop invariants of $\xi_{1} \xi_{2}$-Smarandache curves according to $\alpha=$ $\alpha(s)$. Differentiating (3.1.1) with respect to s, we get

$$
\begin{align*}
& \dot{\beta}=\frac{d \beta}{d s^{*}} \cdot \frac{d s^{*}}{d s}=\frac{-1}{\sqrt{2}}\left(\varepsilon_{1}^{\alpha}+\varepsilon_{2}^{\alpha}\right) B^{\alpha} \tag{3.2}\\
& T_{\beta} \cdot \frac{d s^{*}}{d s}=\frac{-1}{\sqrt{2}}\left(\varepsilon_{1}^{\alpha}+\varepsilon_{2}^{\alpha}\right) B^{\alpha}
\end{align*}
$$

where

$$
\begin{equation*}
\frac{d s^{*}}{d s}=\frac{1}{\sqrt{2}}\left(\varepsilon_{1}^{\alpha}+\varepsilon_{2}^{\alpha}\right) \tag{3.3}
\end{equation*}
$$

The tangent vector of curve β can be written as follow;

$$
\begin{equation*}
T_{\beta}=-B^{\alpha}=-\left(\varepsilon_{1}^{\alpha} \xi_{1}^{\alpha}+\varepsilon_{2}^{\alpha} \xi_{2}^{\alpha}\right) \tag{3.4}
\end{equation*}
$$

Differentiating (3.4) with respect to s, we obtain

$$
\begin{equation*}
\frac{d T_{\beta}}{d s^{*}} \cdot \frac{d s^{*}}{d s}=\varepsilon_{1}^{\alpha} \xi_{1}^{\alpha}+\varepsilon_{2}^{\alpha} \xi_{2}^{\alpha} \tag{3.5}
\end{equation*}
$$

Substituting (3.3) in (3.5), we get

$$
T_{\beta}^{\prime}=\frac{\sqrt{2}}{\varepsilon_{1}^{\alpha}+\varepsilon_{2}^{\alpha}}\left(\varepsilon_{1}^{\alpha} \xi_{1}^{\alpha}+\varepsilon_{2}^{\alpha} \xi_{2}^{\alpha}\right)
$$

Then, the curvature and principal normal vector field of curve β are respectively,

$$
\begin{aligned}
& \left\|T_{\beta}^{\prime}\right\|=\kappa_{\beta}=\frac{\sqrt{2}}{\varepsilon_{1}^{\alpha}+\varepsilon_{2}^{\alpha}} \sqrt{\left(\varepsilon_{1}^{\alpha}\right)^{2}+\left(\varepsilon_{2}^{\alpha}\right)^{2}} \\
& N_{\beta}=\frac{1}{\sqrt{\left(\varepsilon_{1}^{\alpha}\right)^{2}+\left(\varepsilon_{2}^{\alpha}\right)^{2}}}\left(\varepsilon_{1}^{\alpha} \xi_{1}^{\alpha}+\varepsilon_{2}^{\alpha} \xi_{2}^{\alpha}\right)
\end{aligned}
$$

On the other hand, we express

$$
B_{\beta}=\frac{1}{\sqrt{\left(\varepsilon_{1}^{\alpha}\right)^{2}+\left(\varepsilon_{2}^{\alpha}\right)^{2}}} \operatorname{det}\left[\begin{array}{ccc}
\xi_{1}^{\alpha} & \xi_{2}^{\alpha} & B^{\alpha} \\
0 & 0 & -1 \\
\varepsilon_{1}^{\alpha} & \varepsilon_{2}^{\alpha} & 0
\end{array}\right]
$$

So, the binormal vector of curve β is

$$
B_{\beta}=\frac{1}{\sqrt{\left(\varepsilon_{1}^{\alpha}\right)^{2}+\left(\varepsilon_{2}^{\alpha}\right)^{2}}}\left(\varepsilon_{2}^{\alpha} \xi_{1}^{\alpha}-\varepsilon_{1}^{\alpha} \xi_{2}^{\alpha}\right)
$$

We differentiate $(3.2)_{1}$ with respect to s in order to calculate the torsion of curve β

$$
\begin{aligned}
\ddot{\beta}=\frac{-1}{\sqrt{2}}\{ & {\left[\left(\varepsilon_{1}^{\alpha}\right)^{2}+\varepsilon_{1}^{\alpha} \varepsilon_{2}^{\alpha}\right] \xi_{1}^{\alpha} } \\
& \left.\left.+\left[\varepsilon_{1}^{\alpha} \varepsilon_{2}^{\alpha}+\left(\varepsilon_{2}^{\alpha}\right)^{2}\right] \xi_{2}^{\alpha}+\left[\varepsilon_{1}^{\alpha}+\varepsilon_{2}^{\alpha}\right]\right\} B^{\alpha}\right]
\end{aligned}
$$

and similarly

$$
\dddot{\beta}=\frac{-1}{\sqrt{2}}\left(\delta_{1} \xi_{1}^{\alpha}+\delta_{2} \xi_{2}^{\alpha}+\delta_{3} B^{\alpha}\right)
$$

where

$$
\begin{aligned}
& \delta_{1}=3 \varepsilon_{1}^{\alpha} \varepsilon_{1}^{\alpha}+\varepsilon_{1}^{\alpha} \varepsilon_{2}^{\alpha}+2 \varepsilon_{1}^{\alpha} \varepsilon_{2}^{\alpha}-\left(\varepsilon_{1}^{\alpha}\right)^{3}-\left(\varepsilon_{1}^{\alpha}\right)^{2} \varepsilon_{2}^{\alpha} \\
& \delta_{2}=2 \varepsilon_{1}^{\alpha} \varepsilon_{2}^{\alpha}+\varepsilon_{1}^{\alpha} \varepsilon_{2}^{\alpha}+3 \varepsilon_{2}^{\alpha} \varepsilon_{2}^{\alpha}-\varepsilon_{1}^{\alpha}\left(\varepsilon_{2}^{\alpha}\right)^{2}-\left(\varepsilon_{2}^{\alpha}\right)^{3} \\
& \delta_{3}=\ddot{\varepsilon_{1}^{\alpha}}+\ddot{\varepsilon_{2}^{\alpha}}
\end{aligned}
$$

The torsion of curve β is

$$
\tau_{\beta}=\frac{\varepsilon_{1}^{\alpha}+\varepsilon_{2}^{\alpha}}{4 \sqrt{2}\left[\left(\varepsilon_{1}^{\alpha}\right)^{2}+\left(\varepsilon_{2}^{\alpha}\right)^{2}\right]}\left\{\left[\left(\varepsilon_{1}^{\alpha}+\varepsilon_{2}^{\alpha}\right)\left(\varepsilon_{1}^{\alpha} \varepsilon_{2}^{\alpha}+\left(\varepsilon_{2}^{\alpha}\right)^{2}\right] \delta_{1}-\left[\left(\varepsilon_{1}^{\alpha}+\varepsilon_{2}^{\alpha}\right)\left(\left(\varepsilon_{1}^{\alpha}\right)^{2}+\varepsilon_{1}^{\alpha} \varepsilon_{2}^{\alpha}\right)\right] \delta_{2}\right\}\right.
$$

$3.2 \xi_{1} B$-Smarandache Curves

Definition 3.2 Let $\alpha=\alpha(s)$ be a unit speed regular curve in E^{3} and $\left\{\xi_{1}^{\alpha}, \xi_{2}^{\alpha}, B^{\alpha}\right\}$ be its moving

Bishop frame. $\xi_{1} B$-Smarandache curves can be defined by

$$
\begin{equation*}
\beta\left(s^{*}\right)=\frac{1}{\sqrt{2}}\left(\xi_{1}^{\alpha}+B^{\alpha}\right) \tag{3.6}
\end{equation*}
$$

Now, we can investigate Bishop invariants of $\xi_{1} B$-Smarandache curves according to $\alpha=$ $\alpha(s)$. Differentiating (3.6) with respect to s, we get

$$
\begin{align*}
& \dot{\beta}=\frac{d \beta}{d s^{*}} \cdot \frac{d s^{*}}{d s}=\frac{-1}{\sqrt{2}}\left(\varepsilon_{1}^{\alpha} B^{\alpha}+\varepsilon_{1}^{\alpha} \xi_{1}^{\alpha}+\varepsilon_{2}^{\alpha} \xi_{2}^{\alpha}\right) \\
& T_{\beta} \cdot \frac{d s^{*}}{d s}=\frac{-1}{\sqrt{2}}\left(-\varepsilon_{1}^{\alpha} B^{\alpha}+\varepsilon_{1}^{\alpha} \xi_{1}^{\alpha}+\varepsilon_{2}^{\alpha} \xi_{2}^{\alpha}\right) \tag{3.7}
\end{align*}
$$

where

$$
\begin{equation*}
\frac{d s^{*}}{d s}=\sqrt{\frac{2\left(\varepsilon_{1}^{\alpha}\right)^{2}+\left(\varepsilon_{2}^{\alpha}\right)^{2}}{2}} \tag{3.8}
\end{equation*}
$$

The tangent vector of curve β can be written as follow;

$$
\begin{equation*}
T_{\beta}=\frac{1}{\sqrt{2\left(\varepsilon_{1}^{\alpha}\right)^{2}+\left(\varepsilon_{2}^{\alpha}\right)^{2}}}\left(\varepsilon_{1}^{\alpha} \xi_{1}^{\alpha}+\varepsilon_{2}^{\alpha} \xi_{2}^{\alpha}-\varepsilon_{1}^{\alpha} B^{\alpha}\right) \tag{3.9}
\end{equation*}
$$

Differentiating (3.9) with respect to s, we obtain

$$
\begin{equation*}
\frac{d T_{\beta}}{d s^{*}} \frac{d s^{*}}{d s}=\frac{1}{\left[2\left(\varepsilon_{1}^{\alpha}\right)^{2}+\left(\varepsilon_{2}^{\alpha}\right)^{2}\right]^{\frac{3}{2}}}\left(\mu_{1} \xi_{1}^{\alpha}+\mu_{2} \xi_{2}^{\alpha}+\mu_{3} B^{\alpha}\right) \tag{3.10}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mu_{1}=\varepsilon_{1}^{\alpha} \varepsilon_{2}^{\alpha} \varepsilon_{2}^{\alpha}+\varepsilon_{1}^{\alpha}\left(\varepsilon_{2}^{\alpha}\right)^{2} \\
& \mu_{2}=2\left(\varepsilon_{2}^{\alpha}\right)^{2} \varepsilon_{2}^{\alpha}-2 \varepsilon_{1}^{\alpha} \varepsilon_{1}^{\alpha} \varepsilon_{2}^{\alpha}+2\left(\varepsilon_{1}^{\alpha}\right)^{2} \varepsilon_{2}^{\alpha}-2\left(\varepsilon_{1}^{\alpha}\right)^{3} \varepsilon_{2}^{\alpha}-\varepsilon_{1}^{\alpha}\left(\varepsilon_{2}^{\alpha}\right)^{3} \\
& \mu_{3}=\varepsilon_{1}^{\alpha} \varepsilon_{2}^{\alpha} \varepsilon_{2}^{\alpha}-2\left(\varepsilon_{1}^{\alpha}\right)^{4}+\left(\varepsilon_{1}^{\alpha}\right)^{2}\left(\varepsilon_{2}^{\alpha}\right)^{2}-\dot{\varepsilon_{1}^{\alpha}}\left(\varepsilon_{2}^{\alpha}\right)^{2}
\end{aligned}
$$

Substituting (3.8) in (3.10), we have

$$
T_{\beta}^{\prime}=\frac{\sqrt{2}}{\left[2\left(\varepsilon_{1}^{\alpha}\right)^{2}+\left(\varepsilon_{2}^{\alpha}\right)^{2}\right]^{2}}\left(\mu_{1} \xi_{1}^{\alpha}+\mu_{2} \xi_{2}^{\alpha}+\mu_{3} B^{\alpha}\right)
$$

Then, the first curvature and principal normal vector field of curve β are respectively

$$
\begin{aligned}
& \left\|T_{\beta}^{\prime}\right\|=\kappa_{\beta}=\frac{\sqrt{2}}{\left[2\left(\varepsilon_{1}^{\alpha}\right)^{2}+\left(\varepsilon_{2}^{\alpha}\right)^{2}\right]^{2}} \sqrt{\mu_{1}^{2}+\mu_{2}^{2}+\mu_{3}^{2}} \\
& N_{\beta}=\frac{1}{\sqrt{\mu_{1}^{2}+\mu_{2}^{2}+\mu_{3}^{2}}}\left(\mu_{1} \xi_{1}^{\alpha}+\mu_{2} \xi_{2}^{\alpha}+\mu_{3} B^{\alpha}\right)
\end{aligned}
$$

On the other hand, we get

$$
\begin{aligned}
& B_{\beta}=\frac{1}{\sqrt{\mu_{1}^{2}+\mu_{2}^{2}+\mu_{3}^{2}} \sqrt{2\left(\varepsilon_{1}^{\alpha}\right)^{2}+\left(\varepsilon_{2}^{\alpha}\right)^{2}}}\left[\left(\mu_{2} \varepsilon_{1}^{\alpha}+\mu_{3} \varepsilon_{2}^{\alpha}\right) \xi_{1}^{\alpha}\right. \\
&\left.-\left(\mu_{1} \xi_{1}^{\alpha}+\mu_{3} \xi_{1}^{\alpha}\right) \xi_{2}^{\alpha}+\left(\mu_{2} \varepsilon_{1}^{\alpha}-\mu_{1} \varepsilon_{2}^{\alpha}\right) B^{\alpha}\right]
\end{aligned}
$$

We differentiate (3.7) with respect to s in order to calculate the torsion of curve β

$$
\begin{aligned}
\ddot{\beta}=\frac{-1}{\sqrt{2}}\{ & {\left[-2\left(\varepsilon_{1}^{\alpha}\right)^{2}+\varepsilon_{1}^{\alpha}\right] \xi_{1}^{\alpha} } \\
& \left.+\left[-\varepsilon_{1}^{\alpha} \varepsilon_{2}^{\alpha}+\varepsilon_{1}^{\alpha}-\left(\varepsilon_{2}^{\alpha}\right)^{2}\right] \xi_{2}^{\alpha}-\varepsilon_{1}^{\alpha} B^{\alpha}\right\}
\end{aligned}
$$

and similarly

$$
\dddot{\beta}=\frac{-1}{\sqrt{2}}\left(\Gamma_{1} \xi_{1}^{\alpha}+\Gamma_{2} \xi_{2}^{\alpha}+\Gamma_{3} B^{\alpha}\right)
$$

where

$$
\begin{aligned}
& \Gamma_{1}=-6 \varepsilon_{1}^{\alpha} \varepsilon_{1}^{\alpha}+\ddot{\varepsilon_{1}^{\alpha}}+2\left(\varepsilon_{1}^{\alpha}\right)^{3} \\
& \Gamma_{2}=-2 \varepsilon_{1}^{\alpha} \varepsilon_{2}^{\alpha}-\varepsilon_{1}^{\alpha} \varepsilon_{2}^{\alpha}+\ddot{\varepsilon_{2}^{\alpha}}-2 \varepsilon_{2}^{\alpha} \varepsilon_{2}^{\alpha}+\varepsilon_{1}^{\alpha}\left(\varepsilon_{2}^{\alpha}\right)^{2}-\varepsilon_{2}^{\alpha} \varepsilon_{2}^{\alpha}+\left(\varepsilon_{2}^{\alpha}\right)^{3} \\
& \Gamma_{3}=-\varepsilon_{1}^{\alpha}
\end{aligned}
$$

The torsion of curve β is

$$
\begin{gathered}
\tau_{\beta}=-\frac{\left[2\left(\varepsilon_{1}^{\alpha}\right)^{2}+\left(\varepsilon_{2}^{\alpha}\right)^{2}\right]^{4}}{4 \sqrt{2}\left(\mu_{1}^{2}+\mu_{2}^{2}+\mu_{3}^{2}\right)}\left\{\left[\left(-\varepsilon_{1}^{\alpha} \varepsilon_{2}^{\alpha}-\varepsilon_{2}^{\alpha}+\left(\varepsilon_{2}^{\alpha}\right)^{2}\right) \Gamma_{1}\right.\right. \\
\left.-2\left(\left(\varepsilon_{1}^{\alpha}\right)^{2}-\varepsilon_{1}^{\alpha}\right) \Gamma_{2}+\left(-\varepsilon_{1}^{\alpha} \varepsilon_{2}^{\alpha}-\varepsilon_{2}^{\alpha}+\left(\varepsilon_{2}^{\alpha}\right)^{2}\right) \Gamma_{3}\right] \varepsilon_{1}^{\alpha} \\
\left.-\left[\left(\varepsilon_{1}^{\alpha}-2\left(\varepsilon_{1}^{\alpha}\right)^{2}\right) \Gamma_{3}+\varepsilon_{1}^{\alpha} \Gamma_{1}\right] \varepsilon_{2}^{\alpha}\right\}
\end{gathered}
$$

$3.3 \xi_{2} B$-Smarandache Curves

Definition 3.3 Let $\alpha=\alpha(s)$ be a unit speed regular curve in E^{3} and $\left\{\xi_{1}^{\alpha}, \xi_{2}^{\alpha}, B^{\alpha}\right\}$ be its moving Bishop frame. $\xi_{2} B$-Smarandache curves can be defined by

$$
\begin{equation*}
\beta\left(s^{*}\right)=\frac{1}{\sqrt{2}}\left(\xi_{2}^{\alpha}+B^{\alpha}\right) \tag{3.11}
\end{equation*}
$$

Now, we can investigate Bishop invariants of $\xi_{2} B$-Smarandache curves according to $\alpha=$ $\alpha(s)$. Differentiating (3.11) with respect to s, we get

$$
\begin{align*}
& \dot{\beta}=\frac{d \beta}{d s^{*}} \cdot \frac{d s^{*}}{d s}=\left(-\varepsilon_{2}^{\alpha} B^{\alpha}+\varepsilon_{1}^{\alpha} \xi_{1}^{\alpha}+\varepsilon_{2}^{\alpha} \xi_{2}^{\alpha}\right) \tag{3.12}\\
& T_{\beta} \cdot \frac{d s^{*}}{d s}=\left(\varepsilon_{1}^{\alpha} \xi_{1}^{\alpha}+\varepsilon_{2}^{\alpha} \xi_{2}^{\alpha}-\varepsilon_{2}^{\alpha} B^{\alpha}\right)
\end{align*}
$$

where

$$
\begin{equation*}
\frac{d s^{*}}{d s}=\sqrt{\frac{\left(\varepsilon_{1}^{\alpha}\right)^{2}+2\left(\varepsilon_{2}^{\alpha}\right)^{2}}{2}} \tag{3.13}
\end{equation*}
$$

The tangent vector of curve β can be written as follow;

$$
\begin{equation*}
T_{\beta}=\frac{\varepsilon_{1}^{\alpha} \xi_{1}^{\alpha}+\varepsilon_{2}^{\alpha} \xi_{2}^{\alpha}-\varepsilon_{2}^{\alpha} B^{\alpha}}{\sqrt{2\left(\varepsilon_{1}^{\alpha}\right)^{2}+\left(\varepsilon_{2}^{\alpha}\right)^{2}}} \tag{3.14}
\end{equation*}
$$

Differentiating (3.14) with respect to s, we obtain

$$
\begin{equation*}
\frac{d T_{\beta}}{d s^{*}} \frac{d s^{*}}{d s}=\frac{1}{\left[\left(\varepsilon_{1}^{\alpha}\right)^{2}+2\left(\varepsilon_{2}^{\alpha}\right)^{2}\right]^{\frac{3}{2}}}\left(\eta_{1} \xi_{1}^{\alpha}+\eta_{2} \xi_{2}^{\alpha}+\eta_{3} B^{\alpha}\right) \tag{3.15}
\end{equation*}
$$

where

$$
\begin{aligned}
& \eta_{1}=2\left(\varepsilon_{1}^{\alpha}\left(\varepsilon_{2}^{\alpha}\right)^{2}-\varepsilon_{1}^{\alpha} \varepsilon_{2}^{\alpha}\right) \\
& \eta_{2}=\left(\varepsilon_{2}^{\alpha}\right)^{2} \varepsilon_{2}^{\alpha}+\left(\varepsilon_{1}^{\alpha}\right)^{2} \varepsilon_{1}^{\alpha}-\varepsilon_{1}^{\alpha} \varepsilon_{1}^{\alpha} \varepsilon_{2}^{\alpha} \\
& \eta_{3}=\left(\varepsilon_{1}^{\alpha}\right)^{2} \varepsilon_{2}^{\alpha}+2\left(\varepsilon_{2}^{\alpha}\right)^{3}-\left(\varepsilon_{1}^{\alpha}\right)^{4}-2\left(\varepsilon_{1}^{\alpha}\right)^{4}-3\left(\varepsilon_{1}^{\alpha}\right)^{2}\left(\varepsilon_{2}^{\alpha}\right)^{2}
\end{aligned}
$$

Substituting (3.13) in (3.15), we have

$$
T_{\beta}^{\prime}=\frac{\sqrt{2}}{\left[2\left(\varepsilon_{1}^{\alpha}\right)^{2}+\left(\varepsilon_{2}^{\alpha}\right)^{2}\right]^{2}}\left(\eta_{1} \xi_{1}^{\alpha}+\eta_{2} \xi_{2}^{\alpha}+\eta_{3} B^{\alpha}\right)
$$

Then, the first curvature and principal normal vector field of curve β are respectively

$$
\begin{aligned}
& \left\|T_{\beta}^{\prime}\right\|=\kappa_{\beta}=\frac{\sqrt{2} \sqrt{\eta_{1}^{2}+\eta_{2}^{2}+\eta_{3}^{2}}}{\left[\left(\varepsilon_{1}^{\alpha}\right)^{2}+2\left(\varepsilon_{2}^{\alpha}\right)^{2}\right]^{2}} \\
& N_{\beta}=\frac{1}{\sqrt{\eta_{1}^{2}+\eta_{2}^{2}+\eta_{3}^{2}}}\left(\eta_{1} \xi_{1}^{\alpha}+\eta_{2} \xi_{2}^{\alpha}+\eta_{3} B^{\alpha}\right)
\end{aligned}
$$

On the other hand, we express

$$
\begin{aligned}
& B_{\beta}=\frac{1}{\sqrt{\eta_{1}^{2}+\eta_{2}^{2}+\eta_{3}^{2}} \sqrt{\left(\varepsilon_{1}^{\alpha}\right)^{2}+2\left(\varepsilon_{2}^{\alpha}\right)^{2}}}\left[\left(\eta_{2} \varepsilon_{2}^{\alpha}+\eta_{3} \varepsilon_{2}^{\alpha}\right) \xi_{1}^{\alpha}\right. \\
&\left.-\left(\eta_{1} \xi_{2}^{\alpha}+\eta_{3} \xi_{1}^{\alpha}\right) \xi_{2}^{\alpha}+\left(\eta_{2} \varepsilon_{1}^{\alpha}-\eta_{1} \varepsilon_{2}^{\alpha}\right) B^{\alpha}\right]
\end{aligned}
$$

We differentiate $(3.12)_{1}$ with respect to s in order to calculate the torsion of curve β

$$
\begin{aligned}
\ddot{\beta}=\frac{1}{\sqrt{2}}\{ & {\left[\varepsilon_{1}^{\alpha} \xi_{1}^{\alpha}+\varepsilon_{1}^{\alpha}-\left(\varepsilon_{1}^{\alpha}\right)^{2}\right] \xi_{1}^{\alpha} } \\
& \left.+\left[\varepsilon_{2}^{\alpha}-2\left(\varepsilon_{2}^{\alpha}\right)^{2}\right] \xi_{2}^{\alpha}-\dot{\varepsilon}_{2}^{\alpha} B^{\alpha}\right\}
\end{aligned}
$$

and similarly

$$
\dddot{\beta}=\frac{1}{\sqrt{2}}\left(\eta_{1} \xi_{1}^{\alpha}+\eta_{2} \xi_{2}^{\alpha}+\eta_{3} B^{\alpha}\right)
$$

where

$$
\begin{aligned}
& \eta_{1}=-\varepsilon_{1}^{\alpha} \varepsilon_{2}^{\alpha}-5 \varepsilon_{1}^{\alpha} \varepsilon_{1}^{\alpha}+\ddot{\varepsilon_{1}^{\alpha}}+\left(\varepsilon_{1}^{\alpha}\right)^{2} \varepsilon_{2}^{\alpha}+\left(\varepsilon_{1}^{\alpha}\right)^{3} \\
& \eta_{2}=-4 \varepsilon_{2}^{\alpha} \varepsilon_{2}^{\alpha}+\ddot{\varepsilon_{2}^{\alpha}}+2 \varepsilon_{2}^{\alpha} \\
& \eta_{3}=-\ddot{\varepsilon_{2}^{\alpha}}
\end{aligned}
$$

The torsion of curve β is

$$
\begin{gathered}
\tau_{\beta}=-\frac{\left[\left(\varepsilon_{1}^{\alpha}\right)^{2}+2\left(\varepsilon_{2}^{\alpha}\right)^{2}\right]^{4}}{4 \sqrt{2}\left(\eta_{1}^{2}+\eta_{2}^{2}+\eta_{3}^{2}\right)}\left\{\left[\varepsilon_{2}^{\alpha} \eta_{2}+\left(\varepsilon_{2}^{\alpha}-2\left(\varepsilon_{2}^{\alpha}\right)^{2}\right) \eta_{3}\right] \varepsilon_{1}^{\alpha}\right. \\
+\left[2\left(\varepsilon_{2}^{\alpha}\right)^{2} \eta_{1}+\left(\varepsilon_{1}^{\alpha} \varepsilon_{2}^{\alpha}-\varepsilon_{1}^{\alpha}+\left(\varepsilon_{1}^{\alpha}\right)^{2}\right) \eta_{2}\right. \\
\left.\left.+\left(-\varepsilon_{1}^{\alpha} \varepsilon_{2}^{\alpha}+\varepsilon_{1}^{\alpha}\right) \eta_{3}\right] \varepsilon_{2}^{\alpha}\right\}
\end{gathered}
$$

$3.4 \xi_{1} \xi_{2} B$-Smarandache Curves

Definition 3.4 Let $\alpha=\alpha(s)$ be a unit speed regular curve in E^{3} and $\left\{\xi_{1}^{\alpha}, \xi_{2}^{\alpha}, B^{\alpha}\right\}$ be its moving Bishop frame. $\xi_{1}^{\alpha} \xi_{2} B$-Smarandache curves can be defined by

$$
\begin{equation*}
\beta\left(s^{*}\right)=\frac{1}{\sqrt{3}}\left(\xi_{1}^{\alpha}+\xi_{2}^{\alpha}+B^{\alpha}\right) \tag{3.16}
\end{equation*}
$$

Now, we can investigate Bishop invariants of $\xi_{1}^{\alpha} \xi_{2} B$-Smarandache curves according to $\alpha=\alpha(s)$. Differentiating (3.16) with respect to s, we get

$$
\begin{align*}
& \dot{\beta}=\frac{d \beta}{d s^{*}} \cdot \frac{d s^{*}}{d s}=\frac{1}{\sqrt{3}}\left[\left(\varepsilon_{1}^{\alpha}+\varepsilon_{2}^{\alpha}\right) B^{\alpha}-\varepsilon_{1}^{\alpha} \xi_{1}^{\alpha}-\varepsilon_{2}^{\alpha} \xi_{2}^{\alpha}\right] \tag{3.17}\\
& \left.T_{\beta} \cdot \frac{d s^{*}}{d s}=\frac{1}{\sqrt{3}}\left[\left(\varepsilon_{1}^{\alpha}+\varepsilon_{2}^{\alpha}\right) B^{\alpha}-\varepsilon_{1}^{\alpha} \xi_{1}^{\alpha}-\varepsilon_{2}^{\alpha} \xi_{2}^{\alpha}\right)\right]
\end{align*}
$$

where

$$
\begin{equation*}
\frac{d s^{*}}{d s}=\sqrt{\frac{2\left[\left(\varepsilon_{1}^{\alpha}\right)^{2}+\varepsilon_{1}^{\alpha} \varepsilon_{2}^{\alpha}+\left(\varepsilon_{2}^{\alpha}\right)^{2}\right]}{3}} \tag{3.18}
\end{equation*}
$$

The tangent vector of curve β can be written as follow;

$$
\begin{equation*}
T_{\beta}=\frac{\varepsilon_{1}^{\alpha} \xi_{1}^{\alpha}+\varepsilon_{2}^{\alpha} \xi_{2}^{\alpha}-\left(\varepsilon_{1}^{\alpha}+\varepsilon_{2}^{\alpha}\right) B^{\alpha}}{\sqrt{2\left[\left(\varepsilon_{1}^{\alpha}\right)^{2}+\varepsilon_{1}^{\alpha} \varepsilon_{2}^{\alpha}+\left(\varepsilon_{2}^{\alpha}\right)^{2}\right]}} \tag{3.19}
\end{equation*}
$$

Differentiating (3.19) with respect to s, we get

$$
\begin{equation*}
\frac{d T_{\beta}}{d s^{*}} \frac{d s^{*}}{d s}=\frac{\left(\lambda_{1} \xi_{1}^{\alpha}+\lambda_{2} \xi_{2}^{\alpha}+\lambda_{3} B^{\alpha}\right)}{2 \sqrt{2}\left[\left(\varepsilon_{1}^{\alpha}\right)^{2}+\varepsilon_{1}^{\alpha} \varepsilon_{2}^{\alpha}+\left(\varepsilon_{2}^{\alpha}\right)^{2}\right]^{\frac{3}{2}}} \tag{3.20}
\end{equation*}
$$

where

$$
\begin{gathered}
\lambda_{1}=\left[\varepsilon_{1}^{\dot{\alpha}}-2\left(\varepsilon_{1}^{\alpha}\right)^{2}-\varepsilon_{1}^{\alpha} \varepsilon_{2}^{\alpha}\right] u(s)-\varepsilon_{1}^{\alpha}\left[2 \varepsilon_{1}^{\alpha} \varepsilon_{1}^{\dot{\alpha}}+\varepsilon_{1}^{\alpha} \varepsilon_{2}^{\alpha}+\varepsilon_{1}^{\alpha} \varepsilon_{2}^{\alpha}+2 \varepsilon_{2}^{\alpha} \varepsilon_{2}^{\alpha}\right] \\
\lambda_{2}=\left[\varepsilon_{2}^{\alpha}-2\left(\varepsilon_{2}^{\alpha}\right)^{2}-\varepsilon_{1}^{\alpha} \varepsilon_{2}^{\alpha}\right] u(s)-\varepsilon_{2}^{\alpha}\left[\varepsilon_{1}^{\alpha}+\varepsilon_{1}^{\alpha} \varepsilon_{2}^{\alpha}+2 \varepsilon_{2}^{\alpha} \varepsilon_{2}^{\alpha}\right] \\
\lambda_{3}=\left[-\dot{\left.\varepsilon_{1}^{\alpha}-\varepsilon_{2}^{\alpha}\right] u(s)+\varepsilon_{1}^{\alpha}\left[2 \varepsilon_{1}^{\alpha} \varepsilon_{1}^{\alpha}+3 \dot{\varepsilon}_{1}^{\alpha} \varepsilon_{2}^{\alpha}+\varepsilon_{1}^{\alpha} \varepsilon_{2}^{\alpha}+2 \varepsilon_{2}^{\alpha} \varepsilon_{2}^{\alpha}\right]} \begin{array}{c}
\dot{\circ} \dot{\varepsilon_{2}^{\alpha}}\left[\varepsilon_{1}^{\alpha}\left(\varepsilon_{2}^{\alpha}\right)^{2}+2\left(\varepsilon_{2}^{\alpha}\right)^{2}\right]
\end{array}\right.
\end{gathered}
$$

Substituting (3.18) in (3.20), we have

$$
T_{\beta}^{\prime}=\frac{\sqrt{3}\left(\lambda_{1} \xi_{1}^{\alpha}+\lambda_{2} \xi_{2}^{\alpha}+\lambda_{3} B^{\alpha}\right)}{4\left[\left(\varepsilon_{1}^{\alpha}\right)^{2}+\varepsilon_{1}^{\alpha} \varepsilon_{2}^{\alpha}+\left(\varepsilon_{2}^{\alpha}\right)^{2}\right]^{2}}
$$

Then, the first curvature and principal normal vector field of curve β are respectively

$$
\begin{align*}
& \left\|T_{\beta}^{\prime}\right\|=\kappa_{\beta}=\frac{\sqrt{3} \sqrt{\lambda_{1}^{2}+\lambda_{2}^{2}+\lambda_{3}^{2}}}{4\left[\left(\varepsilon_{1}^{\alpha}\right)^{2}+\varepsilon_{1}^{\alpha} \varepsilon_{2}^{\alpha}+\left(\varepsilon_{2}^{\alpha}\right)^{2}\right]^{2}} \tag{3.21}\\
& N_{\beta}=\frac{1}{\sqrt{\lambda_{1}^{2}+\lambda_{2}^{2}+\lambda_{3}^{2}}}\left(\lambda_{1} \xi_{1}^{\alpha}+\lambda_{2} \xi_{2}^{\alpha}+\lambda_{3} B^{\alpha}\right)
\end{align*}
$$

On the other hand, we express

$$
B_{\beta}=\frac{1}{\sqrt{2\left[\left(\varepsilon_{1}^{\alpha}\right)^{2}+\varepsilon_{1}^{\alpha} \varepsilon_{2}^{\alpha}+\left(\varepsilon_{2}^{\alpha}\right)^{2}\right]} \cdot \sqrt{\lambda_{1}^{2}+\lambda_{2}^{2}+\lambda_{3}^{2}}} \operatorname{det}\left[\begin{array}{ccc}
\xi_{1}^{\alpha} & \xi_{2}^{\alpha} & B^{\alpha} \\
\varepsilon_{1}^{\alpha} & \varepsilon_{2}^{\alpha} & -\left(\varepsilon_{1}^{\alpha}+\varepsilon_{2}^{\alpha}\right) \\
\lambda_{1} & \lambda_{2} & \lambda_{3}
\end{array}\right]
$$

So, the binormal vector field of curve β is

$$
\begin{aligned}
B_{\beta}= & \frac{1}{\sqrt{2\left[\left(\varepsilon_{1}^{\alpha}\right)^{2}+\varepsilon_{1}^{\alpha} \varepsilon_{2}^{\alpha}+\left(\varepsilon_{2}^{\alpha}\right)^{2}\right]} \cdot \sqrt{\lambda_{1}^{2}+\lambda_{2}^{2}+\lambda_{3}^{2}}}\left\{\left[\left(\varepsilon_{1}^{\alpha}+\varepsilon_{2}^{\alpha}\right) \lambda_{1}\right.\right. \\
& \left.\left.\quad-\varepsilon_{2}^{\alpha} \lambda_{3}\right] \xi_{1}^{\alpha}+\left[-\varepsilon_{1}^{\alpha} \lambda_{3}-\left(\varepsilon_{1}^{\alpha}+\varepsilon_{2}^{\alpha}\right)\right] \xi_{2}^{\alpha}+\left[\varepsilon_{1}^{\alpha} \lambda_{2}-\varepsilon_{2}^{\alpha} \lambda_{1}\right] B^{\alpha}\right\}
\end{aligned}
$$

We differentiate (3.20) with respect to s in order to calculate the torsion of curve β

$$
\begin{aligned}
\ddot{\beta}=-\frac{1}{\sqrt{3}} & \left\{\left[2\left(\varepsilon_{1}^{\alpha}\right)^{2}+\varepsilon_{1}^{\alpha} \xi_{1}^{\alpha}-\varepsilon_{1}^{\alpha}\right] \xi_{1}^{\alpha}\right. \\
& \left.+\left[2\left(\varepsilon_{2}^{\alpha}\right)^{2}+\varepsilon_{1}^{\alpha} \varepsilon_{2}^{\alpha}-\varepsilon_{2}^{\alpha}\right] \xi_{2}^{\alpha}+\left[\varepsilon_{1}^{\dot{\alpha}}+\varepsilon_{2}^{\alpha}\right] B^{\alpha}\right\}
\end{aligned}
$$

and similarly

$$
\dddot{\beta}=-\frac{1}{\sqrt{3}}\left(\sigma_{1} \xi_{1}^{\alpha}+\sigma_{2} \xi_{2}^{\alpha}+\sigma_{3} B^{\alpha}\right)
$$

where

$$
\begin{aligned}
& \eta_{1}=4 \varepsilon_{1}^{\alpha} \varepsilon_{1}^{\alpha}+3 \varepsilon_{1}^{\alpha} \varepsilon_{2}^{\alpha}-\ddot{\varepsilon}_{1}^{\alpha}-2\left(\varepsilon_{1}^{\alpha}\right)^{3}-\left(\varepsilon_{1}^{\alpha}\right)^{2} \varepsilon_{2}^{\alpha} \\
& \eta_{2}=5 \varepsilon_{2}^{\alpha} \varepsilon_{2}^{\alpha}+\dot{\varepsilon_{1}^{\alpha}} \varepsilon_{2}^{\alpha}+\varepsilon_{1}^{\alpha} \varepsilon_{2}^{\alpha}-\ddot{\varepsilon}_{2}^{\alpha}-2\left(\varepsilon_{2}^{\alpha}\right)^{3}-\varepsilon_{1}^{\alpha}\left(\varepsilon_{2}^{\alpha}\right)^{2} \\
& \eta_{3}=\ddot{\varepsilon_{2}^{\alpha}+\ddot{\varepsilon_{2}^{\alpha}}}
\end{aligned}
$$

The torsion of curve β is

$$
\begin{gathered}
\tau_{\beta}=-\frac{16\left[\left(\varepsilon_{1}^{\alpha}\right)^{2}+\varepsilon_{1}^{\alpha} \varepsilon_{2}^{\alpha}+\left(\varepsilon_{2}^{\alpha}\right)^{2}\right]^{2}}{9 \sqrt{3} \sqrt{\lambda_{1}^{2}+\lambda_{2}^{2}+\lambda_{3}^{2}}}\left\{\left[\left(2\left(\varepsilon_{2}^{\alpha}\right)^{2}+\varepsilon_{1}^{\alpha} \varepsilon_{2}^{\alpha}-\varepsilon_{2}^{\alpha}\right) \sigma_{1}+\left(-\varepsilon_{2}^{\alpha}-2\left(\varepsilon_{1}^{\alpha}\right)^{2}-\varepsilon_{1}^{\alpha} \varepsilon_{2}^{\alpha}\right) \sigma_{2}\right.\right. \\
\left.+\left(2\left(\varepsilon_{2}^{\alpha}\right)^{2}+\varepsilon_{1}^{\alpha} \varepsilon_{2}^{\alpha}-\varepsilon_{2}^{\alpha}\right) \sigma_{3}\right] \varepsilon_{1}^{\alpha}+\left[-\varepsilon_{1}^{\alpha}-2 \varepsilon_{2}^{\alpha}+2\left(\varepsilon_{2}^{\alpha}\right)^{2}+\varepsilon_{1}^{\alpha} \varepsilon_{2}^{\alpha}\right) \sigma_{1} \\
\left.\left.+\left(-2\left(\varepsilon_{1}^{\alpha}\right)^{2}-\varepsilon_{1}^{\alpha} \varepsilon_{2}^{\alpha}+\varepsilon_{1}^{\alpha}\right) \sigma_{2}+\left(2\left(\varepsilon_{1}^{\alpha}\right)^{2}+\varepsilon_{1}^{\alpha} \varepsilon_{2}^{\alpha}-\varepsilon_{1}^{\alpha}\right) \sigma_{3}\right] \varepsilon_{2}^{\alpha}\right\} .
\end{gathered}
$$

§4. Smarandache Breadth Curves According to Type-2 Bishop Frame in \mathbf{E}^{3}

A regular curve with more than 2 breadths in Euclidean 3-space is called Smarandache breadth curve.

Let $\alpha=\alpha(s)$ be a Smarandache breadth curve. Moreover, let us suppose $\alpha=\alpha(s)$ simple closed space-like curve in the space E^{3}. These curves will be denoted by (C). The normal plane at every point P on the curve meets the curve at a single point Q other than P.

We call the point Q the opposite point P. We consider a curve in the class Γ as in having parallel tangents ξ_{1} and ξ_{1}^{*} opposite directions at opposite points α and α^{*} of the curves.

A simple closed curve having parallel tangents in opposite directions at opposite points can be represented with respect to type- 2 Bishop frame by the equation

$$
\begin{equation*}
\alpha^{*}(s)=\alpha(s)+\lambda \xi_{1}+\varphi \xi_{2}+\eta B \tag{4.1}
\end{equation*}
$$

where $\lambda(s), \varphi(s)$ and $\eta(s)$ are arbitrary functions also α and α^{*} are opposite points.

Differentiating both sides of (4.1) and considering type-2 Bishop equations, we have

$$
\begin{array}{r}
\frac{d \alpha^{*}}{d s}=\xi_{1}^{*} \frac{d s^{*}}{d s}=\left(\frac{d \lambda}{d s}+\eta \varepsilon_{1}+1\right) \xi_{1}+\left(\frac{d \varphi}{d s}+\eta \varepsilon_{2}\right) \xi_{2} \tag{4.2}\\
+\left(-\lambda \varepsilon_{1}-\varphi \varepsilon_{2}+\frac{d \eta}{d s}\right) B
\end{array}
$$

Since $\xi_{1}^{*}=-\xi_{1}$ rewriting (4.2) we have

$$
\begin{align*}
\frac{d \lambda}{d s} & =-\eta \varepsilon_{1}-1-\frac{d s^{*}}{d s} \\
\frac{d \varphi}{d s} & =-\varphi \varepsilon_{2} \tag{4.3}\\
\frac{d \eta}{d s} & =\lambda \varepsilon_{1}+\varphi \varepsilon_{2}
\end{align*}
$$

If we call θ as the angle between the tangent of the curve (C) at point $\alpha(s)$ with a given direction and consider $\frac{d \theta}{d s}=\kappa$, we have (4.3) as follow:

$$
\begin{align*}
& \frac{d \lambda}{d \theta}=-\eta \frac{\varepsilon_{1}}{\kappa}-f(\theta) \\
& \frac{d \varphi}{d \theta}=-\varphi \frac{\varepsilon_{2}}{\kappa} \tag{4.4}\\
& \frac{d \eta}{d \theta}=\lambda \frac{\varepsilon_{1}}{\kappa}+\varphi \frac{\varepsilon_{2}}{\kappa}
\end{align*}
$$

where $f(\theta)=\delta+\delta^{*}, \delta=\frac{1}{\kappa}, \delta^{*}=\frac{1}{\kappa^{*}}$ denote the radius of curvature at α and α^{*} respectively. And using system (4.4), we have the following differential equation with respect to λ as

$$
\begin{align*}
& \frac{d^{3} \lambda}{d \theta^{3}}-\left[\frac{\kappa}{\varepsilon_{1}} \frac{d}{d \theta}\left(\frac{\varepsilon_{1}}{\kappa}\right)\right] \frac{d^{2} \lambda}{d \theta^{2}}+\left[\frac{\varepsilon_{1}^{2}}{\kappa^{2}}-\frac{\varepsilon_{1}}{\kappa}-\frac{d}{d \theta}\left(\frac{\kappa}{\varepsilon_{1}}\right) \frac{d}{d \theta}\left(\frac{\varepsilon_{1}}{\kappa}\right)\right. \\
& \left.-\frac{\kappa}{\varepsilon_{1}} \frac{d^{2}}{d \theta^{2}}\left(\frac{\varepsilon_{1}}{\kappa}\right)\right] \frac{d \lambda}{d \theta}+\left[\frac{\varepsilon_{1}}{\kappa} \frac{d}{d \theta}\left(\frac{\varepsilon_{1}}{\kappa}\right)-\frac{\varepsilon_{1}^{2}}{\varepsilon_{2} \kappa}\right] \lambda+ \tag{4.5}\\
& +\left[-\frac{\kappa}{\varepsilon_{2}}-\frac{\kappa}{\varepsilon_{1}} \frac{d}{d \theta}\left(\frac{\varepsilon_{1}}{\kappa}\right)\right] \frac{d^{2} f}{d \theta^{2}}-\left[\frac{\kappa}{\varepsilon_{2}}+2 \frac{\kappa}{\varepsilon_{1}} \frac{d}{d \theta}\left(\frac{\varepsilon_{1}}{\kappa}\right)\right] \frac{d f}{d \theta} \\
& -\left[\frac{\varepsilon_{2}^{2}}{\varepsilon_{1} \kappa}+\frac{\varepsilon_{1}}{\varepsilon_{2}}+2 \frac{d}{d \theta}\left(\frac{\kappa}{\varepsilon_{1}}\right) \frac{d}{d \theta}\left(\frac{\varepsilon_{1}}{\kappa}\right)+\frac{\kappa}{\varepsilon_{1}} \frac{d^{2}}{d \theta^{2}}\left(\frac{\varepsilon_{1}}{\kappa}\right)\right] f(\theta)=0
\end{align*}
$$

Equation (4.5) is characterization for α^{*}. If the distance between opposite points of (C) and $\left(C^{*}\right)$ is constant, then we can write that

$$
\begin{equation*}
\left\|\alpha^{*}-\alpha\right\|=\lambda^{2}+\varphi^{2}+\eta^{2}=l^{2}=\text { constant } \tag{4.6}
\end{equation*}
$$

Hence, we write

$$
\begin{equation*}
\lambda \frac{d \lambda}{d \theta}+\varphi \frac{d \varphi}{d \theta}+\eta \frac{d \eta}{d \theta}=0 \tag{4.7}
\end{equation*}
$$

Considering system (4.4) we obtain

$$
\begin{equation*}
\lambda \cdot f(\theta)=0 \tag{4.8}
\end{equation*}
$$

We write $\lambda=0$ or $f(\theta)=0$. Thus, we shall study in the following subcases.
Case 1. $\lambda=0$. Then we obtain

$$
\begin{equation*}
\eta=-\int_{0}^{\theta} \frac{\kappa}{\varepsilon_{1}} f(\theta) d \theta, \quad \varphi=\int_{0}^{\theta}\left(\int_{0}^{\theta} \eta \frac{\varepsilon_{2}}{\kappa} d \theta\right) \frac{\varepsilon_{2}}{\kappa} d \theta \tag{4.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d^{2} f}{d \theta^{2}}-\frac{d f}{d \theta}-\left[\left(\frac{\tau}{\kappa}\right)^{2} \frac{\sin ^{3} \theta}{\cos \theta}-\frac{\tau}{\kappa} \cos \theta\right] f=0 \tag{4.10}
\end{equation*}
$$

General solution of (4.10) depends on character of $\frac{\tau}{\kappa}$. Due to this, we distinguish following subcases.

Subcase $1.1 \quad f(\theta)=0$. then we obtain

$$
\begin{align*}
& \lambda=\int_{0}^{\theta} \eta \frac{\varepsilon_{1}}{\kappa} d \theta \\
& \varphi=-\int_{0}^{\theta} \eta \frac{\varepsilon_{2}}{\kappa} d \theta \tag{4.11}\\
& \eta=\int_{0}^{\theta} \lambda \frac{\varepsilon_{1}}{\kappa} d \theta+\int_{0}^{\theta} \varphi \frac{\varepsilon_{2}}{\kappa} d \theta
\end{align*}
$$

Case 2. Let us suppose that $\lambda \neq 0, \varphi \neq 0, \eta \neq 0$ and λ, φ, η constant. Thus the equation (4.4) we obtain $\frac{\varepsilon_{1}}{\kappa}=0$ and $\frac{\varepsilon_{2}}{\kappa}=0$.

Moreover, the equation (4.5) has the form $\frac{d^{3} \lambda}{d \theta^{3}}=0$ The solution (4.12) is $\lambda=L_{1} \frac{\theta^{2}}{2}+$ $L_{2} \theta+L_{3}$ where L_{1}, L_{2} and L_{3} real numbers. And therefore we write the position vector ant the curvature

$$
\alpha^{*}=\alpha+A_{1} \xi_{1}+A_{2} \xi_{2}+A_{3} B
$$

where $A_{1}=\lambda, A_{2}=\varphi$ and $A_{3}=\eta$ real numbers. And the distance between the opposite points of (C) and $\left(C^{*}\right)$ is

$$
\left\|\alpha^{*}-\alpha\right\|=A_{1}^{2}+A_{2}^{2}+A_{3}^{2}=\mathrm{constant}
$$

§5. Examples

In this section, we show two examples of Smarandache curves according to Bishop frame in E^{3}.
Example 5.1 First, let us consider a unit speed curve of E^{3} by

$$
\begin{aligned}
\beta(s)=\left(\frac{25}{306}\right. & \sin (9 s)-\frac{9}{850} \sin (25 s), \\
& \left.\quad-\frac{25}{306} \cos (9 s)+\frac{9}{850} \cos (25 s), \frac{15}{136} \sin (8 s)\right)
\end{aligned}
$$

Fig. 1 The curve $\beta=\beta(s)$
See the curve $\beta(s)$ in Fig.1. One can calculate its Serret-Frenet apparatus as the following

$$
\begin{aligned}
& T=\left(\frac{25}{34} \cos 9 s+\frac{9}{34} \cos 25 s, \frac{25}{34} \sin 9 s-\frac{9}{34} \sin 25 s, \frac{15}{17} \cos 8 s\right) \\
& N=\left(\frac{15}{34} \csc 8 s(\sin 9 s-\sin 25 s),-\frac{15}{34} \csc 8 s(\cos 9 s-\cos 25 s), \frac{8}{17}\right) \\
& B=\left(\frac{1}{34}(25 \sin 9 s-9 \sin 25 s),-\frac{1}{34}(25 \cos 9 s+9 \cos 25 s),-\frac{15}{17} \sin 8 s\right) \\
& \kappa=-15 \sin 8 s \text { and } \tau=15 \cos 8 s
\end{aligned}
$$

In order to compare our main results with Smarandache curves according to Serret-Frenet frame, we first plot classical Smarandache curve of β Fig.1.

Now we focus on the type-2 Bishop trihedral. In order to form the transformation matrix (2.6), let us express

$$
\theta(s)=-\int_{0}^{s} 15 \sin (8 s) d s=\frac{15}{8} \cos (8 s)
$$

Since, we can write the transformation matrix

$$
\left[\begin{array}{c}
T \\
N \\
B
\end{array}\right]=\left[\begin{array}{ccc}
\sin \left(\frac{15}{8} \cos 8 s\right) & -\cos \left(\frac{15}{8} \cos 8 s\right) & 0 \\
\cos \left(\frac{15}{8} \cos 8 s\right) & \sin \left(\frac{15}{8} \cos 8 s\right) & 0 \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{c}
\xi_{1} \\
\xi_{2} \\
B
\end{array}\right]
$$

Fig. $2 \xi_{1} \xi_{1}$ Smarandache curve
By the method of Cramer, one can obtain type-2 Bishop frame of β as follows

$$
\begin{gathered}
\xi_{1}=\quad\left(\sin \theta\left(\frac{25}{34} \cos 9 s-\frac{9}{34} \cos 25 s\right)+\frac{15}{34} \cos \theta \csc 8 s(\sin 9 s-\sin 25 s),\right. \\
\sin \theta\left(\frac{25}{34} \sin 9 s-\frac{9}{34} \sin 25 s\right)-\frac{15}{34} \cos \theta \csc 8 s(\cos 9 s-\cos 25 s), \\
\left.\frac{15}{17} \sin \theta \cos 8 s+\frac{8}{17} \cos \theta\right) \\
\xi_{2}=\quad\left(-\cos \theta\left(\frac{25}{34} \cos 9 s-\frac{9}{34} \cos 25 s\right)+\frac{15}{34} \sin \theta \csc 8 s(\sin 9 s-\sin 25 s),\right. \\
\quad-\cos \theta\left(\frac{25}{34} \sin 9 s-\frac{9}{34} \sin 25 s\right)-\frac{15}{34} \sin \theta \csc 8 s(\cos 9 s-\cos 25 s), \\
\left.\quad-\frac{15}{17} \cos \theta \cos 8 s+\frac{8}{17} \sin \theta\right) \\
B=\quad\left(\frac{1}{34}(25 \sin 9 s-9 \sin 25 s),-\frac{1}{34}(25 \cos 9 s+9 \cos 25 s),-\frac{15}{17} \sin 8 s\right)
\end{gathered}
$$

where $\theta=\frac{15}{8} \cos (8 s)$. So, we have Smarandache curves according to type-2 Bishop frame of the unit speed curve $\beta=\alpha(s)$, see Fig.2-4 and Fig.5.

Fig. $3 \xi_{1} B$ Smarandache curve

References

[1] A. Mağden and Ö. Köse, On the curves of constant breadth in E4 space, Tr. J. of Mathematics, 21 (1997), 227-284.
[2] A.T. Ali, Special Smarandache curves in The Euclidean space, Math. Cobin. Bookser, 2 (2010), 30-36.
[3] L. Euler, De curvis trangularibus, Acta Acad Petropol, (1778), 3-30.
[4] L.R. Bishop, There is more than one way to frame a curve, Amer. Math. Monthly, 82 (1975), 246-251.
[5] K. Taşköprü, M.Tosun, Smarandache curves on S ${ }^{2}$, Bol. Soc. Paran. Mat., 32(1) (2014), 51-59.
[6] M. Çetin, Y.Tuncer and M. K. Karacan, Smarandache curves according to Bishop frame in Euclidean 3-space, Gen. Math. Notes, 20 (2014), 50-56.
[7] M.K. Karacan, B.Bükcü, An alternative moving frame for tubular surface around the spacelike curve with a spacelike binormal in Minkowski 3-space, Math. Morav., 1 (2007), 73-80.
[8] M. Özdemir, A.A Ergin, Parallel frames of non-lightlike curves, Missouri J. Math. Sci., 20(2) (2008), 1-10.
[9] M.Petroviç-Torgasev and E. Nesoviç, Some characterizations of the space-like, the timelike and the null curves on the pseudohyperbolic space H_{0}^{2} in E_{1}^{3}, Kragujevac J. Math., 22 (2000), 71-82.
[10] M.Turgut, S. Yılmaz, Smarandache curves in Minkowski space-time, International J. Math. Combin., 3 (2008), 51-55.
[11] M.Turgut, Smarandache breadth pseudo null curves in Minkowski space-time, International J. Math. Combin., 1 (2009), 46-49.
[12] N.Bayrak, Ö.Bekta̧s and S. Yüce, Special Smarandache curves in E_{1}^{3}, Mathematical Phy. Sics. and http://arxiv.org/abs/1204.5656.
[13] S. Yılmaz, M. Turgut, A new version of Bishop frame and an application to spherical images, Journal of Mathematical Analysis and Applications, 371(2) (2010), 764-776.

[^0]: ${ }^{1}$ Received November 26, 2015, Accepted May 6, 2016.

