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Smarandache Curves In Terms of Sabban Frame of Fixed Pole Curve
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abstract: In this paper, we study the special Smarandache curve in terms of
Sabban frame of Fixed Pole curve and we give some characterization of Smarandache
curves. Besides, we illustrate examples of our results.
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1. Introduction

A regular curve in Minkowski space-time, whose position vector is composed
by Frenet frame vectors on another regular curve, is called a Smarandache curve
[12]. Special Smarandache curves have been studied by some authors . Ahmad
T.Ali studied some special Smarandache curves in the Euclidean space.He stud-
ied Frenet-Serret invariants of a special case [1]. M. Çetin , Y. Tunçer and K.
Karacan investigated special smarandache curves according to Bishop frame in
Euclidean 3-Space and they gave some differential goematric properties of Smaran-
dache curves [5]. Şenyurt and Çalışkan investigated special Smarandache curves
in terms of Sabban frame of spherical indicatrix curves and they gave some char-
acterization of Smarandache curves, [3].Also, in their other work, when the unit
Darboux vector of the partner curve of Mannheim curve were taken as the posi-
tion vectors, the curvature and the torsion of Smarandache curve were calculated.
These values were expressed depending upon the Mannheim curve, [4]. They de-
fined NC-Smarandache curve, then they calculated the curvature and torsion of
NB and TNB- Smarandache curves together with NC-Smarandache curve, [10]. Ö.
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Bektaş and S. Yüce studied some special smarandache curves according to Dar-
boux Frame in E3 [2]. M. Turgut and S. Yılmaz studied a special case of such
curves and called it smarandache TB2 curves in the space E4

1 [12]. K. Tas.köprü
, M. Tosun studied special Smarandache curves according to Sabban frame on S2

[11].

In this paper, the special smarandache curves such asCTC , TC(C∧TC), CTC(C∧
TC) created by Sabban frame , {C, TC , C ∧ TC} , that belongs to fixed pole of a α
curve are defined. Besides, we have found some results.

2. Preliminaries

The Euclidean 3-space E3 be inner product given by

〈, 〉 = x21 + x32 + x23

where (x1, x2, x3) ∈ E3. Let α : I → E3 be a unit speed curve denote by {T,N,B}
the moving Frenet frame . For an arbitrary curve α ∈ E3, with first and second
curvature, κ and τ respectively, the Frenet formulae is given by [6]











T ′ = κN

N ′ = −κT + τB

B′ = −τN.
(2.1)

Accordingly, the spherical indicatrix curves of Frenet vectors are (T ), (N) and (B)
respectively.These equations of curves are given by [7], [9]











αT (s) = T (s)

αN (s) = N(s)

αB(s) = B(s)

(2.2)

Let γ : I → S2 be a unit speed spherical curve. We denote s as the arc-length
parameter of γ. Let us denote by











γ(s) = γ(s)

t(s) = γ′(s)

d(s) = γ(s) ∧ t(s).
(2.3)

We call t(s) a unit tangent vector of γ. {γ, t, d} frame is called the Sabban frame
of γ on S2 . Then we have the following spherical Frenet formulae of γ :











γ′ = t

t′ = −γ + κgd

d′ = −κgt
(2.4)

where is called the geodesic curvature of κg on S2 and

κg = 〈t′, d〉, [8]. (2.5)
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3. Smarandache Curves According to Sabban Frame of Fixed Pole

Curve

In this section, we investigate Smarandache curves according to the Sabban
frame of fixed pole curve (C). Let αC(s) = C(s) be a unit speed regular spherical
curves on S2.We denote sC as the arc-lenght parameter of fixed pole curve (C)

αC(s) = C(s) (3.1)

Differentiating (3.1) , we have

dαC

dsC

dsC

ds
= C′(s)

and

TC
dsC

ds
= ϕ′ cosϕT − ϕ′ sinϕB (3.2)

From the equation (3.2)
TC = cosϕT − sinϕB

and
C ∧ TC = N

From the equation (2.3)











C(s) = C(s)

TC(s) = cosϕT − sinϕB

(C ∧ TC)(s) = N(s)

is called the Sabban frame of fixed pole curve (C) .From the equation (2.5)

κg = 〈T ′
C , C ∧ TC〉 =⇒ κg =

‖W‖
ϕ′

Then from the equation (2.4) we have the following spherical Frenet formulae of
(C):











C′ = TC

TC
′ = −C + ‖W‖

ϕ′ (C ∧ TC)
(C ∧ TC)′ = − ‖W‖

ϕ′ TC

(3.3)

3.1. CTC-Smarandache Curves

Definition 3.1. Let S2 be a unit sphere in E3 and suppose that the unit speed

regular curve αC(s) = C(s) lying fully on S2. In this case, CTC - Smarandache

curve can be defined by

ψ(s∗) =
1√
2
(C + TC). (3.4)
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Now we can compute Sabban invariants of CTC - Smarandache curves. Differ-
entiating (3.4) , we have

Tψ
ds∗

ds
=

1√
2

(

(cosϕ− sinϕ)T +
‖W‖
ϕ′

N − (cosϕ+ sinϕ)B
)

,

where

ds∗

ds
=

√

2 +
(‖W‖
ϕ′

)2

2
. (3.5)

Thus, the tangent vector of curve ψ is to be

Tψ =
1

√

2 +
(‖W‖
ϕ′

)2

(

(cosϕ− sinϕ)T +
‖W‖
ϕ′

N − (cosϕ+ sinϕ)B
)

. (3.6)

Differentiating (3.6), we get

T ′
ψ

ds∗

ds
=

1

(2 + (‖W‖
ϕ′ )2)

3

2

(λ1T + λ2N + λ3B) (3.7)

where

λ1 = −2ϕ′(sinϕ+ cosϕ)− κ
(

2 ‖W‖
ϕ′ +

(‖W‖
ϕ′

)3)− ‖W‖
ϕ′

2

(sinϕ+ cosϕ) −

‖W‖
ϕ′

(‖W‖
ϕ′

)′
(cosϕ− sinϕ)

λ2 =
(

2 +
(‖W‖
ϕ′

)2)(

κ(cosϕ− sinϕ) + τ (cosϕ+ sinϕ)
)

+ 2
(‖W‖
ϕ′

)′

λ3 = τ
‖W‖
ϕ′

(

2 +
(‖W‖
ϕ′

)2)− 2ϕ′(cosϕ− sinϕ)− ‖W‖
ϕ′

2

(cosϕ− sinϕ) +

‖W‖
ϕ′

(‖W‖
ϕ′

)′
(cosϕ+ sinϕ).

Substituting the equation (3.5) into equation (3.7) , we reach

T ′
ψ =

√
2

(

2 +
(‖W‖
ϕ′

)2)2
(λ1T + λ2N + λ3B). (3.8)

Considering the equations (3.4) and (3.6) , it easily seen that

(C ∧ TC)ψ =
1

√

4 + 2
(‖W‖
ϕ′

)2

(

− ‖W‖
ϕ′

(cosϕ− sinϕ)T + (3.9)

+2N + (
‖W‖
ϕ′

(cosϕ+ sinϕ))B
)
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From the equation (3.8) and (3.9) , the geodesic curvature of ψ(s∗) is

κg
ψ = 〈T ′

ψ, (C ∧ TC)ψ〉

= 1
(

2+

(

‖W‖

ϕ′

)

2
) 3

2

(

− ‖W‖
ϕ′ (cosϕ− sinϕ)λ1 + 2λ2 +

‖W‖
ϕ′ (cosϕ+ sinϕ)λ3

)

.

3.2. TC(C ∧ TC)-Smarandache Curves

Definition 3.2. Let S2 be a unit sphere in E3 and suppose that the unit speed reg-

ular curve αC(s) = C(s) lying fully on S2. In this case, TC(C∧TC) - Smarandache

curve can be defined by

ψ(s∗) =
1√
2
(TC + C ∧ TC). (3.10)

Now we can compute Sabban invariants of TC(C ∧ TC) - Smarandache curves.
Differentiating (3.10), we have

Tψ
ds∗

ds
=

1√
2

(

(− sinϕ− ‖W‖
ϕ′

cosϕ)T +
‖W‖
ϕ′

N + (
‖W‖
ϕ′

sinϕ− cosϕ)B
)

where

ds∗

ds
=

√

1 + 2
(‖W‖
ϕ′

)2

2
. (3.11)

In that case, the tangent vector of curve ψ is as follows

Tψ =
1

√

1 + 2
(‖W‖
ϕ′

)2

(

(− sinϕ− ‖W‖
ϕ′

cosϕ)T + (3.12)

+
‖W‖
ϕ′

N + (
‖W‖
ϕ′

sinϕ− cosϕ)B
)

Differentiating (3.12), it is obtained that

T ′
ψ

ds∗

ds
=

1
(

1 + 2
(‖W‖
ϕ′

)2)
3

2

(λ1T + λ2N + λ3B) (3.13)

where
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λ1 = −ϕ′ cosϕ+ ‖W‖(sinϕ+ 2 ‖W‖
ϕ′ cosϕ− κ

ϕ′ + 2
(‖W‖
ϕ′

)2
sinϕ− 2κ‖W‖2

ϕ′3 )−

(‖W‖
ϕ′

)′
(cosϕ− 2 ‖W‖

ϕ′ sinϕ)

λ2 = κ(− sinϕ− ‖W‖
ϕ′ cosϕ+ 2

(‖W‖
ϕ′

)2
(− sinϕ− ‖W‖

ϕ′ cosϕ))−

τ(‖W‖
ϕ′ (sinϕ− cosϕ)− 2

(‖W‖
ϕ′

)3
(sinϕ− cosϕ)) +

(‖W‖
ϕ′

)′

λ3 = ϕ′ sinϕ+ ‖W‖
ϕ′ (τ + ϕ′ cosϕ+ 2τ

(‖W‖
ϕ′

)2
+ 2

(‖W‖
ϕ′

)2
ϕ′ cosϕ+ 2‖W‖ sinϕ)+

(‖W‖
ϕ′

)′
(sinϕ+ 2 ‖W‖

ϕ′ cosϕ).

Substituting the equation (3.11) into equation (3.13) , we get

T ′
ψ =

√
2

(

1 + 2
(‖W‖
ϕ′

)2)2
(λ1T + λ2N + λ3B) (3.14)

Using the equations (3.10) and (3.12) , we easily find

(C ∧ TC)ψ =
1

√

2 + 4
(‖W‖
ϕ′

)2

(

(2
‖W‖
ϕ′

sinϕ− cosϕ)T + (3.15)

+N + (2
‖W‖
ϕ′

cosϕ+ sinϕ)B
)

So, the geodesic curvature of ψ(s∗) is as follows

κg
ψ = 〈T ′

ψ, (C ∧ TC)ψ〉

= 1
(

1+2

(

‖W‖

ϕ′

)

2
)

3

2

((2 ‖W‖
ϕ′ sinϕ− cosϕ)λ1 + λ2 + (2 ‖W‖

ϕ′ cosϕ+ sinϕ)λ3).

3.3. CTC(C ∧ TC)-Smarandache Curves

Definition 3.3. Let S2 be a unit sphere in E3 and suppose that the unit speed regu-

lar curve αC(s) = C(s) lying fully on S2. In this case, CTC(C∧TC) - Smarandache

curve can be defined by

ψ(s∗) =
1√
3
(C + TC + C ∧ TC). (3.16)



Smarandache Curves In Terms of Sabban Frame of Fixed Pole Curve 59

Let us calculate Sabban invariants of CTC(C ∧ TC) - Smarandache curves.
Differentiating (3.16), we have

Tψ
ds∗

ds
=

1√
3

(

(cosϕ− sinϕ− ‖W‖
ϕ′

cosϕ)T +

+
‖W‖
ϕ′

N + (− sinϕ− cosϕ+
‖W‖
ϕ′

sinϕ)B
)

where

ds∗

ds
=

√

2(1− ‖W‖
ϕ′ +

(‖W‖
ϕ′

)2
)

3
. (3.17)

Thus, the tangent vector of curve ψ is

Tψ =
1

√

2
(

1− ‖W‖
ϕ′ +

(‖W‖
ϕ′

)2
)

(

(cosϕ− sinϕ− ‖W‖
ϕ′

cosϕ)T (3.18)

+
‖W‖
ϕ′

N + (− sinϕ− cosϕ+
‖W‖
ϕ′

sinϕ)B
)

Differentiating (3.18), it is obtained that

T ′
ψ

ds∗

ds
=

1

2
√
2
(

1− ‖W‖
ϕ′ +

(‖W‖
ϕ′

)2)
3

2

(λ1T + λ2N + λ3B) (3.19)

where

λ1 =
(

1− ‖W‖
ϕ′ +

(‖W‖
ϕ′

)2)(− 2ϕ′(sinϕ+ cosϕ) + 2‖W‖ sinϕ− 2κ‖W‖
ϕ′

)

+

‖W‖
ϕ′ (cosϕ− sinϕ) + 2

(‖W‖
ϕ′

)′
(− cosϕ+ ‖W‖

ϕ′ sinϕ)

λ2 =
(

1− ‖W‖
ϕ′ +

(‖W‖
ϕ′

)2)(

2κ
(

cosϕ− sinϕ− ‖W‖
ϕ′ cosϕ

)

+

2τ
(

sinϕ+ cosϕ− ‖W‖
ϕ′ cosϕ

))

+ 2
(‖W‖
ϕ′

)′(
1− ‖W‖

ϕ′

)

+
(‖W‖
ϕ′

)2

λ3 =
(

1− ‖W‖
ϕ′ +

(‖W‖
ϕ′

)2)(

2τ ‖W‖
ϕ′ + 2ϕ′(sinϕ− cosϕ) + 2‖W‖ cosϕ

)

+

(‖W‖
ϕ′

)2
sinϕ+ 2

(‖W‖
ϕ′

)′
(sinϕ+ ‖W‖

ϕ′ cosϕ)− ‖W‖
ϕ′ (sinϕ+ cosϕ).

Substituting the equation (3.17) into equation (3.19) , we reach

T ′
ψ =

√
3

4
(

1− ‖W‖
ϕ′ +

(‖W‖
ϕ′

)2
)2

(λ1T + λ2N + λ3B). (3.20)
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Using the equations (3.16) and (3.18) , we have

(C ∧ TC)ψ =
1

√
6
√

1− ‖W‖
ϕ′ +

(‖W‖
ϕ′

)2

(

(2
‖W‖
ϕ′

sinϕ− ‖W‖
ϕ′

cosϕ (3.21)

− cosϕ)T + (1 − ‖W‖
ϕ′

)N + (sinϕ+ 2
‖W‖
ϕ′

cosϕ

+
‖W‖
ϕ′

sinϕ)B
)

From the equation (3.20) and (3.21), the geodesic curvature of ψ(s∗) is

κψg = 〈T ′
ψ, (C ∧ TC)ψ〉 =

1

4
√
2(1− ‖W‖

ϕ′ + (‖W‖
ϕ′ )2)

3

2

[λ1(2
‖W‖
ϕ′

sinϕ−

‖W‖
ϕ′

cosϕ− cosϕ) + λ2(1−
‖W‖
ϕ′

) +

λ3(sinϕ+ 2
‖W‖
ϕ′

cosϕ+
‖W‖
ϕ′

sinϕ)].

3.4. Example

Let us consider the unit speed spherical curve:

α(s) = { 9

208
sin 16s− 1

117
sin 36s,− 9

208
cos 16s+

1

117
cos 36s,

6

65
sin 10s}.

It is rendered in Figure 1.

Figure 1: Fixed Pole curve (T )

In terms of definitions, we obtain Smarandache curves according to Sabban frame
on S2, see Figures 2 - 4.
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Figure 2: CTC - Smarandache Curve

Figure 3: TC(C ∧ TC) - Smarandache Curve

Figure 4: CTC(C ∧ TC) - Smarandache Curve
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