

Analele Universității de Vest, Timișoara Seria Matematică – Informatică LII, 2, (2014), 171– 182

Smarandache N-subalgebras(resp. filters) of CI-algebras

Akbar Rezaei and Arsham Borumand Saeid

Abstract. In this paper, we introduce the notions of N-subalgebras and N-filters based on Smarandache CI-algebra and give a number of their properties. The relationship between $\mathcal{N}(Q, f)$ -subalgebras(filters) and N-subalgebras(filters) are also investigated.

AMS Subject Classification (2000). 06F35; 03G25; 03E72. Keywords. CI/BE-algebra, Smarandache, N-subalgebra(filter), $\mathcal{N}(Q, \varrho)$ -subalgebra(filter), anti fuzzy subalgebra(filter).

1 Introduction

Some recent researchers led to generalizations of the notion of fuzzy set that introduced by Zadeh in 1965 [15]. The generalization of the crisp set to fuzzy sets relied on spreading positive information that fit the point {1} into the interval [0,1]. In order to provide a mathematical tool to deal with negative information, Jun et. al. introduced \mathcal{N} -structures, based on negative-valued functions [6]. In 1966, Y. Imai and K. Iseki [3] introduced two classes of abstract algebras: BCK-algebras and BCI-algebras. It is known that the class of BCK-algebras is a proper subclass of the class of BCI-algebras. H. S. Kim and Y. H. Kim defined a BE-algebra [5]. Biao Long Meng, defined notion of CI-algebra is a CI-algebra. Hence, every BE-algebra is a weaker structure than CI-algebra, thus we can consider in any CI-algebra a weaker structure as BE-algebra. Jun et. al. discussed the notion of \mathbb{N} -structures in BCH/BCK/BCI-algebras and investigated their properties in [6, 7]. They introduced the notions of \mathbb{N} -ideals of subtraction algebras and \mathbb{N} -closed ideals in BCK/BCI-algebras. We introduce the notions of \mathbb{N} subalgebras and \mathbb{N} -filters in CI-algebras and give a number of their properties and The relationship between \mathbb{N} -subalgebras and \mathbb{N} -filters was discussed in [14]. Also, we discuss on Smarandache CI-algebra and investigated some of their useful properties in [2]. Beside, we introduced the notion of anti fuzzy set and stated the relationship with the \mathbb{N} -function of CI-algebra X. We showed that every anti fuzzy filter is an anti fuzzy subalgebra in [1]. K. J. Lee and Y. B. Jun introduced the notion of \mathbb{N} -subalgebras and \mathbb{N} -ideals based on a sub-BCK-algebra of a BCI-algebras and their relations/properties are investigated in [8].

In the present paper, we continue study of CI-algebras and apply the \mathbb{N} structures to the filter theory in CI-algebras and Smarandache CI-algebras, also investigate the relationship between \mathbb{N} -subalgebra and \mathbb{N} -filters based on Smarandache CI-algebras. We show that any $\mathbb{N}(Q, f)$ -closed filter is an $\mathbb{N}(Q, f)$ -subalgebra. We give some conditions for \mathbb{N} -subalgebras(filters) to be $\mathbb{N}(Q, \varrho)$ -subalgebras(resp. filters).

2 Preliminaries

In this section we review the basic definitions and some elementary aspects that are necessary for this paper.

Definition 2.1. [9] An algebra (X; *, 1) of type (2, 0) is called a CI-algebra if it satisfying the following axioms:

- $(CI1) \quad x * x = 1,$
- $(CI2) \quad 1 * x = x,$
- (CI3) x * (y * z) = y * (x * z), for all $x, y, z \in X$.

A CI-algebra X satisfying the condition x * 1 = 1 is called a BE-algebra. In any CI-algebra X one can define a binary relation " \leq " by $x \leq y$ if and only if x * y = 1.

A CI-algebra X has the following properties:

(i)
$$y * ((y * x) * x) = 1$$
,

- (*ii*) (x * 1) * (y * 1) = (x * y) * 1,
- (*iii*) if $1 \le x$, then x = 1, for all $x, y \in X$.

A non-empty subset S of a CI-algebra X is called a subalgebra of X if $x * y \in S$ whenever $x, y \in S$. A mapping $f : X \to Y$ of CI-algebra is called a homomorphism if f(x * y) = f(x) * f(y), for all $x, y \in X$. A non-empty subset F of CI-algebra X is called a filter of X if (1) $1 \in F$, (2) $x \in F$ and $x * y \in F$ implies $y \in F$. A filter F of CI-algebra X is said to closed if $x \in F$ implies $x * 1 \in F$. A nonempty subset S of a CI-algebra X is called a subalgebra of X if $x * y \in S$, for all $x, y \in S$. For our convenience, the empty set \emptyset is regarded as a subalgebra of X. Denote by Q(X, [-1, 0]) the collection of functions from a set X to [-1, 0]. We say that an element of Q(X, [-1, 0]) is a negative-valued function from X to [-1, 0] (briefly, N-function on X). By an N-structure we mean an ordered pair (X, f) of X and an N-function f on X.

In what follows, let X denote a CI-algebra and f an N-function on X unless otherwise specified.

Definition 2.2. [14] By a subalgebra of X based on N-function f (briefly, N-subalgebra of X), we mean an N-structure (X, f) in which f satisfies the following assertion:

$$f(x * y) \le \max\{f(x), f(y)\}, \text{ for all } x, y \in X.$$

Definition 2.3. [14] By a filter of X based on N-function f (briefly, N-filter of X), we mean an N-structure (X, f) in which f satisfies the following conditions:

- $(i) \quad f(1) \le f(y),$
- (ii) $f(y) \le \max\{f(x * y), f(x)\}, \text{ for all } x, y \in X.$

Definition 2.4. [2] A Smarandache CI-algebra X is defined to be a CI-algebra X in which there exists a proper subset Q of X such that satisfies the following conditions:

- $(S1) \quad 1 \in Q \text{ and } |Q| \ge 2,$
- (S2) Q is a BE-algebra under the operation of X.

Example 2.1. [2] Let $X := \{1, a, b, c, d\}$ be a set with the following table.

*	1	a	b	c	d
1	1	a	b	С	d
a	1	1	a	a	d
b	1	1	1	a	d
c	1	1	1	1	d
d	d	d	d	d	1

Then X is a CI-algebra and $Q = \{1, a, b, c\}$ is a BE-algebra.

Definition 2.5. [2] A nonempty subset F of CI-algebra X is called a Smarandache filter of X related to Q (or briefly, Q-Smarandache filter of X) if it satisfies:

- (SF1) $1 \in F$,
- (SF2) $(\forall y \in Q)(\forall x \in F)(x * y \in F \Rightarrow y \in F).$

Definition 2.6. [11] A fuzzy set $\mu : X \rightarrow [0,1]$ is called an anti fuzzy subalgebra of X if it satisfy:

 $\mu(x * y) \le \max\{\mu(x), \mu(y)\}, \text{ for all } x, y \in X.$

Definition 2.7. [1] A fuzzy set $\mu : X \to [0, 1]$ is called an anti fuzzy filter of X if it satisfies:

- (AFF1) $\mu(1) \le \mu(x),$
- (AFF2) $\mu(y) \le \max\{\mu(x * y), \mu(x)\}, \text{ for all } x, y \in X.$

3 Smarandache N-subalgebras

Definition 3.1. Let X be a Q-Smarandache CI-algebra and $\varrho \in [-1, 0]$. An \mathbb{N} -structure (X, f) is called an \mathbb{N} -subalgebra of X based on Q and ϱ (briefly, $\mathbb{N}(Q, \varrho)$ -subalgebra of X) if it is an \mathbb{N} -subalgebra of X such that satisfies the following condition:

- (type 1) $(\forall x \in Q)$ $(\forall y \in X \setminus Q)$ $(f(x) \le \varrho \le f(y)),$
- (type 2) $(\forall x \in Q)$ $(\exists y \in X \setminus Q)$ $(f(x) \le \varrho \le f(y)),$
- (type 3) $(\exists x \in Q)$ $(\forall y \in X \setminus Q)$ $(f(x) \le \varrho \le f(y)),$

• (type 4) $(\exists x \in Q)$ $(\exists y \in X \setminus Q)$ $(f(x) \le \varrho \le f(y))$.

Note. If $\varrho := 0$, then f(y) = 0, for all $y \in X \setminus Q$. So, (Q, f) is an N-subalgebra. If $\varrho := -1$, then f(x) = -1, for all $x \in Q$. And so $(X, f) = \mathcal{N}(Q, \varrho)$.

Example 3.1. a) In Example 2.1, an N-structure (X, f) in which f is defined by f(1) = f(a) = -0.7, f(b) = -0.4, f(c) = -0.6 and f(d) = -0.3 is an $\mathcal{N}(Q, \varrho)$ -subalgebra of all types on X, for $\varrho \in [-0.4, -0.3]$ and $Q = \{1, a, b, c\}$.

b) In Example 2.1, an N-structure (X, g) in which g is defined by g(1) = g(a) = -0.7, g(b) = -0.2, g(c) = -0.6 and g(d) = -0.3 is not an $\mathcal{N}(Q, \varrho)$ -subalgebra of X because $g(d) = -0.3 \neq g(b) = -0.2$.

c) In Example 2.1, an N-structure (X, f) in which f is defined by f(1) = f(a) = -0.7, f(b) = -0.4, f(c) = -0.5 and f(d) = -0.3 is an $\mathcal{N}(Q, \varrho)$ -subalgebra of type 2, type 3 and type 4 on X, for $\varrho \in [-0.4, -0.3]$ and $Q = \{1, a, b\}$, but it is not of type 1, because $f(c) \not\geq \varrho$.

d) In Example 2.1, an N-structure (X, f) in which f is defined by f(1) = f(a) = -0.7, f(b) = -0.2, f(c) = -0.3 and f(d) = -0.1 is an $\mathcal{N}(Q, \varrho)$ -subalgebra of type 3 and type 4 on X, for $\varrho \in [-0.7, -0.3]$ and $Q = \{1, a, b\}$, but it is not of type 1 and type 2 on X, because $f(b) \nleq \varrho$.

e) In Example 2.1, an N-structure (X, f) in which f is defined by f(1) = f(a) = -0.7, f(b) = -0.2, f(c) = -0.5 and f(d) = -0.3 is an $\mathcal{N}(Q, \varrho)$ -subalgebra of type 4 on X, for $\varrho \in [-0.7, -0.3]$ and $Q = \{1, a, b\}$, but it is not of type 1, type 2, type 3 on X.

Now, in the following diagram we summarize the results of this definition. The mark $A \rightarrow B$, means that A implies B.

In this paper, we focus on $\mathcal{N}(Q, \varrho)$ -subalgebra of type 1 and from now on X is a Q-Smarandache CI-algebra.

The following example shows that there exists an \mathcal{N} -structure (X, f) in X such that it satisfies the condition (type 1), but it is not an \mathcal{N} -subalgebra of X.

Example 3.2. In Example 2.1, an N-structure (X, f) in which f is defined by f(1) = -0.7, f(a) = -0.2, f(b) = -0.4, f(c) = -0.6 and f(d) = -0.3.

Then (X, f) satisfies the condition (2.1) for $\rho \in [-0.2, -0.1]$, but it is not an \mathbb{N} -subalgebra. Because

$$f(b * c) = f(a) = -0.2 \not< -0.4 = \max\{f(b), f(c)\}.$$

Proposition 3.1. If an \mathbb{N} -structure (X, f) satisfies the following condition:

$$(\forall x \in Q)(\forall y \in X \setminus Q)(f(x) \le f(y)),$$

 $then \ (X,f) \ is \ an \ (Q,\varrho) - subalgebra \ of \ X, \ for \ every \ \varrho \in [\bigvee_{x \in Q} f(x), \bigwedge_{y \in X \setminus Q} f(y)].$

Theorem 3.2. Let $\varrho \in [-1,0]$. If (X, f) is an $\mathcal{N}(Q, \varrho)$ -subalgebra of X, then

- (i) $Q \subseteq C(f; \varrho),$
- (ii) $(\forall \beta \in [-1,0]) \ (\beta < \varrho \Rightarrow C(f;\beta) \text{ is a subalgebra of } Q).$

Proof. Let (X, f) be a $\mathcal{N}(Q, \varrho)$ -subalgebra of X. Obviously, $Q \subseteq C(f; \varrho)$. If $\beta \in [-1, 0]$ be such that $\beta < \varrho$, then $C(f; \beta) \subseteq Q$. Let $x, y \in C(f; \beta)$. Then $f(x) \leq \beta$ and $f(x) \leq \beta$. Thus $f(x * y) \leq \max\{f(x), f(y)\} \leq \beta$, and so $x * y \in C(f; \beta)$. Thus $C(f; \beta)$ is a subalgebra of Q. \Box

In the following theorem we give some conditions for an \mathcal{N} -subalgebra to be an $\mathcal{N}(Q, \varrho)$ -subalgebra.

Theorem 3.3. Let $\rho \in [-1,0]$. If (X, f) is an \mathbb{N} -subalgebra of X satisfies the conditions (i) and (ii) in Theorem 3.2, then (X, f) is an $\mathbb{N}(Q, \rho)$ -subalgebra of X.

Proof. Let $x \in Q$ and $y \in X \setminus Q$. Then by Theorem 3.2(i), $x \in C(f; \varrho)$, and so $f(x) \leq \varrho$. Let $f(y) = \beta$. If $\beta < \varrho$, then by Theorem 3.2(ii), $y \in C(f; \beta) \subseteq Q$, which is a contradiction. Hence $f(x) \leq \varrho \leq \beta = f(y)$. Thus (X, f) is an $\mathcal{N}(Q, \varrho)$ -subalgebra of X. \Box

4 Smarandache N-filters

Definition 4.1. Let X be a Q-Smarandache CI-algebra and $\rho \in [-1, 0]$. An N-structure (X, f) is called an N-filter of X based on Q and ρ (briefly, $\mathcal{N}(Q, \rho)$ -filter of X) if it satisfies the following conditions:

(i) $(\forall x \in Q) \ (\forall y \in X \setminus Q) \ (f(1) \le f(x) \le \varrho \le f(y)).$

(*ii*) $(\forall x, y \in Q)$ $(f(y) \le \max\{f(x * y), f(x)\}).$

Example 4.1. In Example 2.1, an \mathbb{N} -structure (X, f) in which f is defined by f(1) = -0.6, f(a) = -0.4, f(b) = -0.5, f(c) = -0.4 and f(d) = -0.3 is an $\mathbb{N}(Q, \varrho)$ -filter of X for $\varrho \in [-0.4, -0.3]$.

Theorem 4.1. Let $\{\mathcal{N}(Q_i, \varrho_i) : i \in \Delta\}$ be a family of $\mathcal{N}(Q_i, \varrho_i)$ -subalgebras (filters) of X where $\Delta \neq \emptyset$ and $\varrho_i \in [-1, 0]$, for all $i \in \Delta$. Then $\mathcal{N}(\cap Q_i, \min\{\varrho_i\})_{i \in \Delta}$, is a subalgebra (filter) of X, too.

Theorem 4.2. Let $\varrho \in [-1,0]$. If (X, f) is an $\mathcal{N}(Q, \varrho)$ -filter of X, then

- (i) $Q \subseteq C(f; \varrho),$
- (ii) $(\forall \beta \in [-1, 0]) \ (\beta < \varrho \Rightarrow C(f; \beta) \text{ is a filter of } Q).$

Proof. Let (X, f) be an $\mathcal{N}(Q, \varrho)$ -filter of X. Obviously, $Q \subseteq C(f; \varrho)$. Let $\beta \in [-1, 0]$ be such that $\beta < \varrho$. If $x \in C(f; \beta)$, then $f(x) \leq \beta < \varrho$, and so $x \in Q$. Hence $C(f; \beta) \subseteq Q$. by Definition 4.1(i), $f(1) \leq f(x)$, for all $x \in X$. Hence $f(1) \leq f(x) \leq \beta$ for all $x \in C(f; \beta)$, and so $1 \in C(f; \beta)$. Let $x, y \in Q$ be such that $x * y \in C(f; \beta)$ and $x \in C(f, \beta)$. Then $f(x * y) \leq \beta$ and $f(x) \leq \beta$. If $x, y \in C(f; \beta)$, then $f(x) \leq \beta$. Now by Definition 4.1(i), $f(y) \leq \max\{f(x * y), f(x)\} \leq \beta$. Thus $y \in C(f; \beta)$. Therefore, $C(f; \beta)$ is a filter of Q.

For a Q-Smarandache CI-algebra X and $\rho \in [-1,0]$, the following example shows that an N-filter (X, f) of X may not be an $\mathcal{N}(Q, \rho)$ -filter of X.

Example 4.2. Let $X := \{1, a, b, c\}$ be a set with the following table.

Then X is a CI-algebra and $Q := \{1, a, b\}$ is a BE-algebra [13]. Define an N-structure (X, f) in which f is defined by f(1) = -0.7, f(a) = -0.2, f(b) = -0.4, f(c) = -0.2. Then (X, f) is an N-filter of X. But it is not an $\mathcal{N}(Q, \varrho)$ of X for $\varrho \in [-0.7, -0.3]$. Because $f(a) = -0.2 > \varrho$.

In the following theorem we give conditions for an N-filter to be an $\mathcal{N}(Q, \varrho)$ -filter.

Theorem 4.3. Let $\varrho \in [-1,0]$ and (X, f) be an \mathbb{N} -filter of X satisfies the conditions (i) and (ii) of Theorem 4.2. Then (X, f) is an $\mathbb{N}(Q, \varrho)$ -filter of X.

Proof. Let $x \in Q$ and $y \in X \setminus Q$. Then by Theorem 4.2(i), $x \in C(f; \varrho)$, and so $f(x) \leq \varrho$. Let $f(y) = \beta$. If $\beta < \varrho$, then by Theorem 4.2(ii), $y \in C(f; \beta) \subseteq Q$, which is a contradiction. Hence $\varrho \leq \beta = f(y)$. Since $f(1) \leq f(x)$ for all $x \in X$, it follows that $f(1) \leq f(x) \leq \varrho \leq \beta = f(y)$ so that condition (i) of Definition 4.1 is valid. Since f is an N-filter of X, the condition (ii) of Definition 4.1 is obvious. Therefore, (X, f) is an $N(Q, \varrho)$ -filter of X.

The following example shows that an $\mathcal{N}(Q, \varrho)$ -subalgebra may not be an $\mathcal{N}(Q, \varrho)$ -filter.

Example 4.3. Let $X := \{1, a, b, c, d\}$ be a set with the following table.

*	1	a	b	С	d
1	1	a	b	С	d
a	1	1	a	a	d
b	1	1	1	a	d
c	1	1	1	1	d
d	d	d	d	d	1

Then X is a CI-algebra and $Q = \{1, a, b, c\}$ is a *BE*-algebra. Define an N-structure (X, f) in which f is defined by f(1) = -0.4, f(a) = -0.4, f(b) = -0.3, f(c) = -0.2 and f(d) = -0.1. Then (X, f) is an N-subalgebra, for $\rho \in [-0.2, 0]$, but it is not an N-filter because

 $f(c) = -0.2 \not< -0.3 = \max\{f(b * c), f(b)\}.$

Definition 4.2. An \mathbb{N} -function on X is called closed \mathbb{N} -filter if f satisfies:

 $f(x*1) \le f(x) \le \max\{f(y*x, f(y))\}, \text{ for all } x, y \in X.$

Example 4.4. Let $X := \{1, a, b\}$ be a set with the following table:

Then X is a CI-algebra [10]. Define an N-function $f: X \to [0, 1]$ by f(1) = -0.7, f(a) = -0.3 and f(b) = -0.4. Then (X, f) is an N-filter of X. But it is not an N-closed filter because

$$f(b*1) = f(a) = -0.3 \leq f(b) = -0.4.$$

Example 4.5. In Example 4.4, if define \mathbb{N} -function $f : X \to [0, 1]$ by f(1) = -0.7, f(a) = -0.4 and f(b) = -0.4. Then (X, f) is an \mathbb{N} -closed filter of X.

Proposition 4.4. Let (X, f) be an N-closed filter. Then $f(1) \leq f(x)$, for all $x \in X$.

Proof. Let $x \in X$. Now, by Definition 4.2, we have

$$f(1) \le \max\{f(x*1), f(x)\} \le \max\{f(x), f(x)\} = f(x).$$

Theorem 4.5. Let (X, f) be an closed \mathbb{N} -filter and $\varrho \in [-1, 0]$. Then every $\mathbb{N}(Q, \varrho)$ -filter is $\mathbb{N}(Q, \varrho)$ -subalgebra of X.

Proof. Let (X, f) be $\mathcal{N}(Q, \varrho)$ -filter and $x, y \in X$. Then by (CI3) and Definition 4.2, we have

$$f(x * y) \leq \max\{f(y * (x * y)), f(y)\} \\ = \max\{f(x * (y * y)), f(y)\} \\ = \max\{f(x * 1), f(y)\} \\ \leq \max\{f(x), f(y)\}.$$

Therefore, (X, f) is an \mathcal{N} -subalgebra of X.

Theorem 4.6. Let (X, f) and (X, g) be $\mathcal{N}(Q_1, \varrho_1)$ and $\mathcal{N}(Q_2, \varrho_2)$ -subalgebra (filter) of X respectively. Then $(X \times X, f \times g)$ is an $\mathcal{N}(Q_1 \times Q_2, \max\{\varrho_1, \varrho_2\}$ -subalgebra(filter) of $X \times X$.

Proof. Let $(x, y) \in (Q_1 \times Q_2)$ and $(z, t) \in (X \times X) \setminus (Q_1 \times Q_2)$. Then we have

$$\begin{array}{rll} (f \times g)(1,1) = \max\{f(1),g(1)\} & \leq & \max\{f(x),g(y)\} \\ & \leq & \max\{\varrho_1,\varrho_2\} \\ & \leq & \max\{f(z),f(t)\} = (f \times g)(z,t). \end{array}$$

Now, let $(x_1, x_2), (y_1, y_2) \in (Q_1 \times Q_2)$. Then

$$(f \times g)((x_1, x_2) * (y_1, y_2)) = (f \times g)((x_1 * y_1), (x_2 * y_2))$$

= max{f(x_1 * y_1), g(x_2 * y_2)}
$$\leq \max\{\max\{f(x_1), f(y_1)\}, \max\{g(x_2), g(y_2)\}\}$$

= max{max{f(x_1), g(x_2)}, max{f(y_1), g(y_2)}}
= max{(f \times g)(x_1, x_2), (f \times g)(y_1, y_2)}.

Hence $(X \times X, f \times g)$ is an $\mathcal{N}(Q_1 \times Q_2, \max\{\varrho_1, \varrho_2\})$ -subalgebra(resp. filter) of $X \times X$.

Proposition 4.7. Let Q_1 and Q_2 be two BE-algebras which are properly contained in X, $Q_1 \subseteq Q_2$ and $\varrho \in [-1, 0]$. Then every $\mathcal{N}(Q_2, \varrho)$ -subalgebra(filter) of X is an $\mathcal{N}(Q_1, \varrho)$ -subalgebra(filter) of X.

Note. By the following example we show that the converse of above theorem is not correct in general.

Example 4.6. Let $X := \{1, a, b, c\}$ be a set with the following table.

*	1	a	b	c
1	1	a	b	С
a	1	1	b	c
b	1	a	1	c
c	c	c	c	1

Then $Q_1 = \{1, a\}, Q_2 = \{1, a.b\}$ are *BE*-algebras which are properly contained in X and f(1) = -0.7, f(a) = -0.4, f(b) = -0.2 and f(c) = -0.1. Then (X, f) is an $\mathcal{N}(Q_1, \varrho)$ -subalgebra, for all $\varrho \in [-0.4, 0]$, but it is not an $\mathcal{N}(Q_2, \varrho)$ -subalgebra, because, if $\varrho := -0.3$, then $f(b) = -0.2 \not< -0.3$.

5 Conclusion

A Smarandache structure on a set A means a week structure W on A such that there exist a proper subset B of A which is embedded with a strong structure S. It is that any BE-algebra is a CI-algebra. Hence, every BE-algebra is a weaker structure than CI-algebra, thus we can consider in any CI-algebra a weaker structure as BE-algebra.

In this paper, we have introduced the concept of \mathbb{N} -subalgebra (filter) based on Smarandache CI-algebras and some related properties are investigated. We show that any $\mathbb{N}(Q, f)$ -closed filter is an $\mathbb{N}(Q, f)$ -subalgebra. We give some conditions for an \mathbb{N} -subalgebras (filters) to be $\mathbb{N}(Q, \varrho)$ -subalgebras (filters).

Acknowledgement

We thank the anonymous referees for the careful reading of the paper and the suggestions on improving its presentation.

References

- R. A. Borzooei A. Borumand Saeid A. Rezaei and R. Ameri, Anti fuzzy filter on CI-algebras, Afr. Math., 25 (4), (2014), 1197-1210
- [2] A. Borumand Saeid and A. Rezaei, Smarandache n-Structure on CI-algebras, Results. Math., 63, (2012), 209-219
- [3] Y. Imai and K. Iseki, On axiom systems of propositional Calculi, XIV proc. Jpn. Academy, 42, (1966), 19-22
- [4] K. H. Kim, A Note On CI-Algebras, Int. Math. Forum, 6 (1), (2011), 1-5
- [5] H. S. Kim and Y. H. Kim, On BE-algebras, Sci. Math. Jap., 66 (1), (2007), 113-117
- [6] K. J. Lee and S. Z. Song Y. B. Jun, N-ideals of BCK/BCI-algebras, J. Chungcheong Math. Soc., 22, (2009), 417-437
- [7] K. J. Lee and S. Z. Song Y. B. Jun, N-ideals of subtraction algebras, Common. Korean Math. Soc., 25 (2), (2010), 173-184
- [8] K. J. Lee and Y. B. Jun, N-subalgebras and N-ideals based on a sub BCK-algebra of a BCI-algebras, Commun. Korean Math. Soc., 27 (2), (2012), 645-651
- [9] B. L. Meng, CI-algebra, Sci. Math. Jpn., 71 (1), (2010), 695-701
- [10] B. Piekart and A. Walendziak, On filters and upper sets in CI-algebras, Algebra and Discrete Math., 11 (1), (2011), 109-115
- [11] T. Priya and T. Ramachandran, Anti fuzzy ideals of CI-algebras and its lower level cuts, Int. j. of Math. Arc., 3 (7), (2012), 2524-2529
- [12] A. Rezaei and A. Borumand Saeid, On fuzzy subalgebras of *BE*-algebras, *Afr. Math.*, 22, (2011), 115-127
- [13] A. Rezaei and A. Borumand Saeid, Fuzzy congruence relation in CI-algebras, Neural Computing and Application, 21 (1), (2012), 115-127
- [14] A. Rezaei and A. Borumand Saeid, N-subalgebras and N-Filters in CI-algebra, "Vasile Alecsandri" University of Bacău, Faculty of Sciences, Scientific Studies and Research, Series Mathematics and Informatics, 22 (1), (2012), 103-116
- [15] L. A. Zadeh, Fuzzy sets, Inform. and Control, 8, (1965), 338-353

Akbar Rezaei

Department of Mathematics Payame Noor University p. o. box. 19395-3697 Tehran Iran Institue of higher education Mehr Kerman Kerman Iran E-mail: Rezaei@pnu.ac.ir

182

Arsham Borumand Saeid Department of Pure Mathematics, Faculty of Mathematics and Computer Shahid Bahonar University of Kerman Kerman Iran

E-mail: arsham@uk.ac.ir

Received: 3.10.2014 Accepted: 29.12.2014

> Unauthenticated Download Date | 6/2/15 3:26 PM