Smarandache's Orthic Theorem

Edited by Prof. Ion Patrascu Fratii Buzesti College Craiova, Romania

Abstract.

We present the Smarandache's Orthic Theorem in the geometry of the triangle.

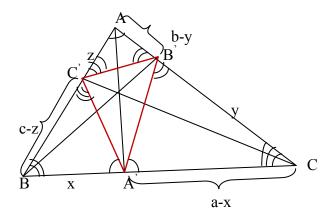
Smarandache's Orthic Theorem.

Given a triangle ABC whose angles are all acute (acute triangle), we consider A'B'C', the triangle formed by the legs of its altitudes.

In which conditions the expression:

$$||A'B'|| \cdot ||B'C'|| + ||B'C'|| \cdot ||C'A'|| + ||C'A'|| \cdot ||A'B'||$$

is maximum?



Proof.

We have

$$\Delta ABC \sim \Delta A'B'C' \sim \Delta AB'C \sim \Delta A'BC' \tag{1}$$

We note

$$||BA'|| = x$$
, $||CB'|| = y$, $||AC'|| = z$.

It results that

$$||A'C|| = a - x, ||B'A|| = b - y, ||C'B|| = c - z$$

$$||A'C|| = a - x, ||B'A|| = b - y, ||C'B|| = c - z$$

$$||A'C|| = a - x, ||B'A|| = b - y, ||C'B|| = c - z$$

$$||A'C|| = a - x, ||B'A|| = b - y, ||C'B|| = c - z$$

$$||A'C|| = a - x, ||B'A|| = b - y, ||C'B|| = c - z$$

$$||A'C|| = a - x, ||B'A|| = b - y, ||C'B|| = c - z$$

$$||A'C|| = a - x, ||B'A|| = b - y, ||C'B|| = c - z$$

$$||A'C|| = a - x, ||B'A|| = b - y, ||C'B|| = c - z$$

$$||A'C|| = a - x, ||B'A|| = b - y, ||C'B|| = c - z$$

$$||A'C|| = a - x, ||B'A|| = b - y, ||C'B|| = c - z$$

$$||A'C|| = a - x, ||A'C|| = a$$

From these equalities it results the relation (1)

$$\Delta A'BC' \sim \Delta A'B'C \Rightarrow \frac{\|A'C'\|}{a-x} = \frac{x}{\|A'B'\|}$$
 (2)

$$\Delta A'B'C \sim \Delta AB'C' \Rightarrow \frac{\|A'C'\|}{z} = \frac{c-z}{\|B'C'\|}$$
(3)

$$\Delta AB'C' \sim \Delta A'B'C \Rightarrow \frac{\|B'C'\|}{y} = \frac{b-y}{\|A'B'\|}$$
(4)

From (2), (3) and (4) we observe that the sum of the products from the problem is equal to:

$$x(a-x)+y(b-y)+z(c-z) = \frac{1}{4}(a^2+b^2+c^2) - \left(x-\frac{a}{2}\right)^2 - \left(y-\frac{b}{2}\right)^2 - \left(z-\frac{c}{2}\right)^2$$

which will reach its maximum as long as $x = \frac{a}{2}$, $y = \frac{b}{2}$, $z = \frac{c}{2}$, that is when the altitudes' legs are in the middle of the sides, therefore when the $\triangle ABC$ is equilateral. The maximum of the expression is $\frac{1}{4}(a^2 + b^2 + c^2)$.

Conclusion (Smarandache's Orthic Theorem):

If we note the lengths of the sides of the triangle \triangle ABC by ||AB|| = c, ||BC|| = a, ||CA|| = b, and the lengths of the sides of its orthic triangle \triangle A'B'C' by ||A'B'|| = c, ||B'C'|| = a, ||C'A'|| = b, then we proved that:

$$4(a'b' + b'c' + c'a') \le a^2 + b^2 + c^2$$
.

Open Problems related to Smarandache's Orthic Theorem:

- 1. Generalize this problem to polygons. Let $A_1A_2...A_m$ be a polygon and P a point inside it. From P we draw perpendiculars on each side A_iA_{i+1} of the polygon and we note by Ai' the intersection between the perpendicular and the side A_iA_{i+1} . A pedal polygon $A_1A_2...A_m$ is formed. What properties does this pedal polygon have?
- 2. Generalize this problem to polyhedrons. Let A₁A₂...A_n be a poliyhedron and P a point inside it. From P we draw perpendiculars on each polyhedron face F_i and we note by Ai' the intersection between the perpendicular and the side F_i. A pedal polyhedron A₁'A₂'...A_p' is formed, where p is the number of polyhedron's faces. What properties does this pedal polyhedron have?

References:

[1] Cătălin Barbu, *Teorema lui Smarandache*, in his book "Teoreme fundamentale din geometria triunghiului", Chapter II (Teoreme fundamentale din geometria triunghiului), Section II.57, p. 337, Editura Unique, Bacău, 2008.

- [2] József Sándor, On Smarandache's Pedal Theorem, in his book Geometric Theorems, Diophantine Equations, and Arithmetic Functions, AR Press, pp. 9-10, Rehoboth, 2002.
- [3] Ion Pătrașcu, *Smarandache's Orthic Theorem*, http://www.scribd.com/doc/28311593/Smarandache-s-Orthic-Theorem
- [4] F. Smarandache, *Eight Solved and Eight Open Problems in Elementary Geometry*, in arXiv.org, Cornell University, NY, USA.
- [5] F. Smarandache, *Problèmes avec et sans... problèmes!*, Problem 5.41, p. 59, Somipress, Fés, Morocco, 1983.