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Abstract. In this paper, we define the notion of Smarandache pseudo-CI algebras and
we investigate their properties. We also define and study the notions of Smarandache
filters, pseudo-CI Smarandache homomorphisms and modal Smarandache operators on
pseudo-CI algebras. The classes of Smarandache fantastic, implicative and positive im-
plicative filters of Smarandache pseudo-CI algebras are defined and studied by extending
some results regarding Smarandache fantastic, fresh and clean ideals in Smarandache
BCI-algebras and Smarandache BCH-algebras to the case of Smarandache pseudo-CI
algebras. The notion of Smarandache commutative pseudo-CI algebras is defined and
a characterization theorem is given. It is proved that in the case of commutative Q-
Smarandache pseudo-CI algebras the notions of Smarandache filters and fantastic filters
coincide.
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1. Introduction

Developing algebraic models for non-commutative multiple-valued logics is a
central topic in the study of fuzzy systems. Pseudo-BCK algebras were intro-
duced by G. Georgescu and A. Iorgulescu in [13] as algebras with “two dif-
ferences”, a left- and right-difference, and with a constant element 0 as the
least element. Pseudo-BCK algebras were intensively studied in [15] (also see
[14], [22], [21], [8]). Pseudo-BE algebras were introduced by R. A. Borzooei et
al. as a generalization of BE-algebras and properties of these structures have
recently been studied in [28] (also see [6]). L. C. Ciungu defined the notion
of commutative pseudo-BE algebras and proved that the class of commutative
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pseudo-BE algebras is term equivalent to the class of commutative pseudo-BCK
algebras ([9]). Recently, A. Rezaei et al. introduced the notion of pseudo-CI
algebras as generalizations of CI-algebras and they provided some conditions
for a pseudo-CI algebra to be a pseudo-BE algebra ([29]). The class of singular
pseudo-CI algebras was defined and it was proved that any singular pseudo-CI
algebra is a pseudo-BCI algebra (see [12], [29]). A. Rezaei et al. defined the dual
pseudo-Q and dual pseudo-QC algebras, investigated their properties and gave
characterizations of these structures ([30]). It was also proved that the class of
commutative dual pseudo-QC algebras coincides with the class of commutative
pseudo-BCI algebras.
Generally, a Smarandache structure on a set A means a weak structure W on
A such that there exists a proper subset B which is embedded with a stronger
structure S ([16]). Smarandache structures on multiple-valued logic algebras
have been studied in [4] (also see [3], [5], [16], [17], [18], [19], [24], [25]). A.
Borumand Saeid defined the notion of Smarandache (weak) BE-algebras and
proved some of their properties ([2], [3]).

In this paper, we define the notion of Smarandache pseudo-CI algebras and
we investigate their properties. We also define and study the notions of Smaran-
dache filters, pseudo-CI Smarandache homomorphisms and modal Smarandache
operators on pseudo-CI algebras. The classes of Smarandache fantastic, implica-
tive and positive implicative filters of Smarandache pseudo-CI algebras are de-
fined and studied by extending some results regarding Smarandache fantastic,
fresh and clean ideals in Smarandache BCI-algebras and Smarandache BCH-
algebras ([19], [18], [4]) to the case of Smarandache pseudo-CI algebras. We
give a characterization of Smarandache implicative filters and we present con-
ditions for a Smarandache filter to be a Smarandache implicative filter. For a
Q-Smarandache pseudo-CI algebra we prove that any Smarandache implicative
filter is a filter and any Smarandache positive implicative filter contained in Q is
a Smarandache filter. We also give a characterization of Smarandache positive
implicative filters. The notion of Smarandache commutative pseudo-CI algebras
is defined and a characterization theorem is given. It is proved that in the case
of commutative Q-Smarandache pseudo-CI algebras the notions of Smarandache
filters and fantastic filters coincide. Finally, we define and investigate the no-
tion of a Smarandache upper set in a pseudo-CI algebra and we show that every
Q-Smarandache filter is a union of Q-Smarandache upper sets.

2. Preliminaries

In this section, we recall some basic notions and results regarding pseudo-CI
algebras and pseudo-BE algebras. Pseudo-BE algebras were introduced in [5]
as a generalization of BE-algebras (see [20]) and properties of it′s have recently
been studied in [30] and [6].
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A CI-algebra ([23]) is an algebra (X;→, 1) of type (2, 0) satisfying the fol-
lowing axioms, for all x, y, z ∈ X:
(CI1) x→ x = 1;
(CI2) 1→ x = x;
(CI3) x→ (y → z) = y → (x→ z).

We introduce a binary relation ≤ on X by x ≤ y if and only if x→ y = 1.
A CI-algebra (X;→, 1) is said to be a BE-algebra ([20]) if (BE) x→ 1 = 1, for
all x ∈ X.

Definition 2.1. ([29]) An algebra (X;→, , 1) of type (2, 2, 0) is called a
pseudo-CI algebra if, for all x, y, z ∈ X, it satisfies the following axioms:
(psCI1) x→ x = x x = 1;
(psCI2) 1→ x = 1 x = x;
(psCI3) x→ (y  z) = y  (x→ z);
(psCI4) x→ y = 1 if and only if x y = 1.

Remark 2.1. If (X;→, , 1) is a pseudo-CI algebra satisfying x→ y = x y,
for all x, y ∈ X, then (X;→, 1) is a CI-algebra.
Also, if (X;→, , 1) is a pseudo-CI algebra, then (X; ,→, 1) is too.

Remark 2.2. Since every pseudo-BCI algebra satisfies (psCI1)−(psCI4), pseudo-
BCI algebras are contained in the class of pseudo-CI algebras.

In the sequel, we will also refer to the pseudo-CI algebra (X;→, , 1) by X.
Any pseudo-CI algebra X verifying condition (psBE) x → 1 = x  1 = 1,

for all x, y ∈ X, is said to be a pseudo-BE algebra ([6]). A pseudo-CI algebra
which is not a pseudo-BE algebra, pseudo-BCI algebra and pseudo-BCH algebra
will be called proper. A pseudo-CI algebra with condition (A) or a pseudo-CI(A)
algebra for short, is a pseudo-CI algebra X satisfying the condition (A):

(A) for all x, y, z ∈ X, if x � y, then y → z � x→ z and y  z � x z.
In a pseudo-CI algebra X we can introduce a binary relation � by:

x � y if and only if x→ y = 1 if and only if x y = 1, for all x, y ∈ X.
Note that � is reflexive by (psCI1).

Example 2.1. ([29]) (1) Let X = {1, a, b, c, d, e}. Define the binary operations
→ and  on X as follows:

→ 1 a b c d e

1 1 a b c d e
a a 1 c b e d
b b d 1 e a c
c d b e 1 c a
d c e a d 1 b
e e c d a b 1

 1 a b c d e

1 1 a b c d e
a a 1 d e b c
b b c 1 a e d
c d e a 1 c b
d c b e d 1 a
e e d c b a 1

Then (X;→, , 1) is a pseudo-CI algebra, but not a pseudo-BE algebra, since
a→ 1 = a 6= 1 and a 1 = a 6= 1.
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(2) Let X = {1, a, b, c, d, e, f, g, h}. Define the binary operations → and  
on X as follows:

→ 1 a b c d e f g h

1 1 a b c d e f g h
a 1 1 1 1 d e f g h
b 1 c 1 1 d e f g h
c 1 c b 1 d e f g h
d d d d d 1 g h e f
e e e e e h 1 g f d
f f f f f g h 1 d e
g h h h h e f d 1 g
h g g g g f d e h 1

 1 a b c d e f g h

1 1 a b c d e f g h
a 1 1 1 1 d e f g h
b 1 c 1 1 d e f g h
c 1 c b 1 d e f g h
d d d d d 1 h g f e
e e e e e g 1 h d f
f f f f f h g 1 e d
g h h h h f d e 1 g
h g g g g e f d h 1

Then (X;→, , 1) is a proper pseudo-CI algebra.

Definition 2.2. ([6]) Let X be a pseudo-BE algebra. A subset F of X is called
a filter of X if for all x, y ∈ X:
(F1) 1 ∈ F ;
(F2) x→ y ∈ F and x ∈ F imply y ∈ F .

Denote by F(X) set of all filters of X. Obviously, {1}, X ∈ F(X).

Definition 2.3. ([11]) Let X be a pseudo-BE algebra. A mapping f : X −→ X
is called a modal operator on X if it satisfies the following conditions for all
x, y ∈ X:
(M1) x ≤ f(x);
(M2) f(f(x)) = f(x);
(M3) f(x→ y) ≤ f(x)→ f(y) and f(x y) ≤ f(x) f(y).
The pair (X, f) is called a modal pseudo-BE algebra.

Denote by MOD(X) set of all modal operators on X.

3. Smarandache pseudo-CI algebras

In this section, we define the notion of a Smarandache pseudo-CI algebra and
investigate these properties. We also define and study the notions of Smaran-
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dache filters, pseudo-CI Smarandache homomorphisms and modal Smarandache
operators on pseudo-CI algebras.

Definition 3.1. A pseudo-CI algebra X is said to be a Q-Smarandache pseudo-
CI algebra if there is a proper subset Q of X such that:
(S1) 1 ∈ Q and |Q| ≥ 2;
(S2) Q = (Q;→, , 1) is a pseudo-BE algebra under the operations of X.

Q is called the heart of X, if it satisfies (S1), (S2) and axiom:
(S3) If there is ∅ 6= S ⊆ X satisfies (S1) and (S2), then S ⊆ Q

(i.e. Q = {x ∈ X : x→ 1 = 1}).

Remark 3.1. Using (S3), the heart of X is unique and Q = X if and only if X
is a pseudo-BE algebra.

Example 3.1. (1) Every pseudo-BE algebra is a Smarandache pseudo-CI alge-
bra.

(2) Consider the pseudo-CI algebra given in Example 2.1 (2), let
Q1 = {1, a, b, c}, Q2 = {1, a}, Q3 = {1, b}, Q4 = {1, a, c}, and let Q5 = {1, b, c}.
Then X is a Q1, Q2, Q3, Q4 and Q5 Smarandache pseudo-CI algebra. Moreover,
Q1 satisfies (S3), hence it is the heart of X.

Proposition 3.1. In any Q-Smarandache pseudo-CI algebra X the following
hold, for all x, y ∈ X:
(1) if x 6∈ Q, then x→ 1 6∈ Q and x 1 6∈ Q;
(2) x→ 1 = 1 or x→ 1 6∈ Q;
(3) if x→ 1 6∈ Q, then x 6∈ Q;
(4) if x→ 1 = y → 1, then x→ y ∈ Q and y → x ∈ Q;
(5) if x 1 = y  1, then x y ∈ Q and y  x ∈ Q;
(6) if x ∈ Q and y 6∈ Q, then x→ y 6∈ Q, x y 6∈ Q and y → x 6∈ Q,

y  x 6∈ Q.

Theorem 3.1. Let X be a proper pseudo-CI algebra. Then X is a Q-Smarandache
pseudo-CI algebra if and only if there exists Q ⊆ X such that |Q| ≥ 2 and
x→ 1 = 1, for all x ∈ Q.

Proof. Let X be a Q-Smarandache pseudo-CI algebra. Then by definition we
get there exists Q ⊆ X such that x→ 1 = 1, for all x ∈ Q.
Conversely, consider Q = {x ∈ X | x → 1 = 1}. It is suffice to prove that Q is
a subalgebra of X. If x, y ∈ Q, then x→ 1 = y → 1 = 1. By (a4), we get

(x→ y)→ 1 = (x→ 1) (y → 1) = 1 1 = 1.
Thus x→ y ∈ Q. Similarly, x y ∈ Q. Hence Q is a subalgebra of X.

Definition 3.2. A subset F of a pseudo-CI algebra X is called a Smarandache
filter of X related to Q (or briefly, Q-Smarandache filter of X) if it satisfies, for
all y ∈ Q and x ∈ F :
(SF1) 1 ∈ F ;
(SF2) x→ y ∈ F implies y ∈ F ;
(SF3) x y ∈ F implies y ∈ F .
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Denote by FQ(X) set of all Q-Smarandache filters of X.

Example 3.2. Consider the pseudo-CI algebra given in Example 2.1 (2). We
can see that X is a Q-Smarandache pseudo-CI algebra where Q = {1, a, b, c}.
Note that F1 = {1, a, b, c, d}, F2 = {1, h} and F3 = {1, g, h} are Q-Smarandache
filters of X.

The following we provide some conditions for a subalgebra to be a Q-
Smarandache filter.

Theorem 3.2. Let F be a subalgebra of X. Then F is a Q-Smarandache filter
of X if and only if for all x, y ∈ X,

x ∈ F, y ∈ Qr F imply x→ y ∈ Qr F and x y ∈ Qr F.

Proof. Assume that F ∈ FQ(X) and x, y ∈ X, such that x ∈ F and y ∈ Qr F.
If x→ y /∈ QrF , then x→ y ∈ F (i.e. y ∈ F ), which is a contradiction. Hence
x→ y ∈ Qr F. Now, if x y /∈ Qr F , then x y ∈ F (i.e. y ∈ F ), which is
a contradiction. Hence x y ∈ Qr F.

Conversely, assume that the hypothesis is valid. Since F is a subalgebra, we
have 1 ∈ F. For every x ∈ F , let x → y ∈ F. If y /∈ F , then x → y ∈ Qr F by
assumption, which is a contradiction. Hence y ∈ F. Now, let x  y ∈ F. Then
by hypothesis we have y ∈ F. Therefore, F is a Q-Smarandache filter of X.

Theorem 3.3. Let X be a Q-Smarandache pseudo-CI algebra, and let F be a
subset of X such that Q ⊆ F . Then F is a Smarandache filter of X.

The next example shows that the converse of Theorem 3.3 is not valid in
general.

Example 3.3. Let X be the pseudo-CI algebra from Example 2.1 (2).
(1) If Q = {1, a, b, c} and F = {1, b, c, g}, then F is a Q-Smarandache filter.
(2) If Q = {1, a, b, c} we can easily see that, every filter F of X containing
Q is a Q-Smarandache filter of X. For example F1 = {1, a, b, c, d, e, } is a Q-
Smarandache filter of X.

Proposition 3.2. Any filter of a pseudo-CI algebra X is a Q-Smarandache
filter.

The following example shows that the converse of above proposition is not
valid in general.

Example 3.4. Consider the pseudo-CI algebra from Example 2.1 (2) and let
Q := {1, a, b, c}. Then X is a Q-Smarandache pseudo-CI. Also, F = {1, h} is a Q-
Smarandache filter of X, but it is not a filter of X, since h→ g = h g = h ∈ F
and h ∈ F , but g 6∈ F .

In [7], R. A. Borzooei et al. introduced the notion of distributive pseudo-BE
algebras and got some useful results. The following we define the notion of weak
distributive Q-Smarandach pseudo-CI algebras.
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Definition 3.3. A Q-Smarandache pseudo-CI algebra X, where Q is the heart
of X, is said to be weak distributive if it satisfies only one of the following
conditions, for all x, y, z ∈ Q:
(WD1) x→ (y  z) = (x→ y) (x→ z);
(WD2) x (y → z) = (x y)→ (x z).

Remark 3.2. Take x = y in (WD1) and (WD2) and applying (psCI2), we get:
x→ (x z) = (x→ x) (x→ z) = 1 (x→ z) = x→ z and
x (x→ z) = (x x)→ (x z) = 1→ (x z) = x z.
Now, using (psCI4), we have x → z = x → (x  z) = x  (x → z) = x  z,
for all x, z ∈ Q. Consequently, →= , and so Q is a BE-algebra.

In this paper, weak distributive pseudo-CI algebra satisfies (WD1).

Example 3.5. (1) Let X = {1, a, b, c, d}. Define the binary operations → and
 on X by the following tables:

→ 1 a b c d

1 1 a b c d
a 1 1 1 1 d
b 1 1 1 1 d
c 1 a a 1 d
d d d d d 1

 1 a b c d

1 1 a b c d
a 1 1 1 1 d
b 1 1 1 1 d
c 1 a b 1 d
d d d d d 1

Then (X;→, , 1) is a weak distributive pseudo-CI algebra, where Q = {1, a, b, c}.
(2) Consider the Q-Smarandache pseudo-CI algebra given in Example 2.1

(2), where Q := {1, a, b, c}. Then X is not a weak distributive, since
b→ (b a) = b→ c = 1 6= c = 1 c = (b→ b) (b→ a).

Remark 3.3. Singular pseudo-CI algebras were introduced and studied by
Rezaei et al. in [29]. Now, if X is a singular pseudo-CI algebra, then Q = {1},
and so X is a weak distributive pseudo-CI algebra.

Proposition 3.3. If F is a Q-Smarandache filter of weak distributive pseudo-
CI algebra X, then for all x, y, z ∈ Q:
(1) z  (y → x) ∈ F and z  y ∈ F imply z  x ∈ F ;
(2) z → (y  x) ∈ F and z → y ∈ F imply z → x ∈ F .

Corollary 3.1. If F is a Q-Smarandache filter of weak distributive pseudo-CI
algebra X, then for all x, y ∈ Q:
(1) y  (y → x) ∈ F implies y  x ∈ F ;
(2) y → (y  x) ∈ F implies y → x ∈ F.

Proposition 3.4. Let F be a Q-Smarandache filter of a pseudo-CI algebra X
and x, y ∈ Q. Then
(1) if x ∈ F , y ∈ Q and x � y, then y ∈ F ;
(2) if X is weak distributive pseudo-CI algebra and x, y ∈ F , then x→ y ∈ F ;
(3) if X is weak distributive pseudo-CI algebra and x, y ∈ F , then x y ∈ F .
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Theorem 3.4. Any Q-Smarandache filter is a subalgebra of Q.

The converse of Theorem 3.4 is not valid in general. Indeed, in Example 2.1
(1), S = {1, a} is a subalgebra, but it is not a Q-Smarandache filter.

Theorem 3.5. Let Q1 and Q2 be pseudo-BE algebras which are properly con-
tained in a pseudo-CI algebra X and Q1 ⊆ Q2. Then every Q2-Smarandache
filter is a Q1-Smarandache filter of X.

The following example shows that the converse of Theorem 3.5 is not valid
in general.

Example 3.6. Let X = {1, a, b, c, d, e, f, g, h}, Q1 = {1, a}, Q2 = {1, a, b, c}
and F = {1, a, b}. According to Example 2.1 (2), we can see that X is a Q1-
Smrandache pseudo-CI algebra and Q2-Smrandache pseudo-CI algebra. Also,
F is a Q1-Smarandache filter of X, but F is not Q2-Smrandache filter of X.
Indeed, b→ c = 1 ∈ F , b ∈ F , c ∈ Q2, but c 6∈ F .

Definition 3.4. Let X and Y be QX and QY -Smarandache pseudo-CI algebras,
respectively. A mapping f : X −→ Y is called a Smarandache pseudo-CI
homomorphism if fs = f|Q : QX −→ QY is a pseudo-BE homomorphism.

Theorem 3.6. Let X and Y be QX and QY Smarandache pseudo-CI algebras
and f : X −→ Y be a Smarandache pseudo-CI homomorphism. Then:
(1) if G ∈ FQY

(Y ), then f−1(G) ∈ Ff−1(QY )(X);
(2) if f is injective and F ∈ FQX

(X), then f(F ) ∈ Ff(QX)(Y ).

Proof. (1) Assume that G ∈ FQY
(Y ) and y ∈ f−1(G). Obviously, 1X ∈ f−1(G).

Let x, x → y ∈ f−1(G) and x  y ∈ f−1(G). It follows that f(x) → f(y) =
f(x → y) ∈ G and f(x)  f(y) = f(x  y) ∈ G. Then f(y) ∈ QY , since
f(x) ∈ G and G ∈ FQY

(Y ), we have f(y) ∈ G. Therefore, y ∈ f−1(G), and so
f−1(G) ∈ Ff−1(QY )(X).

(2) Assume that f is injective and F ∈ FQX
(X). Obviously, 1Y ∈ f(F ). Let

a, a → b ∈ f(F ) and b ∈ f(QX). It follows that there exist xa, xa→b ∈ F and
xb ∈ QX such that f(xa) = a, f(xa→b) = a→ b and f(xb) = b. Now, we have

f(xa→b) = a→ b = f(xa)→ f(xb) = f(xa → xb).
Since f is injective, we have xa→b = xa → xb ∈ F , and so xb ∈ F . Hence
b = f(xb) ∈ f(F ). Therefore, f(F ) ∈ Ff(QX)(Y ).

Definition 3.5. Let X be a Q-Smarandache pseudo-CI algebra. A mapping
f : X → X is called a modal Q-Smarandache operator if fs = f|Q : Q→ Q is a
modal pseudo-BE algebra.

Denote by SMODQ(X) set of all modal Q-Smarandache operators on X.

Proposition 3.5. Let Q1 and Q2 be pseudo-BE algebras such that Q1 ⊆ Q2 ⊆
X. Then SMODQ1(X) ⊆ SMODQ2(X).
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4. Commutative Smarandache pseudo-CI algebras

The commutative pseudo-BE algebras were defined and investigated in [10],
while the commutative Smarandache CI-algebras have been defined and studied
in [5]. In this section we introduce the notion of commutative Smarandache
pseudo-CI algebras, we give characterizations of these structures and investigate
some of their properties.

Let X be a pseudo-CI algebra. For all x, y ∈ X, denote:
x ∨1 y = (x→ y) y and x ∨2 y = (x y)→ y.

If →= , then the pseudo-CI algebra X is a CI-algebra and
x ∨ y = (x→ y)→ y.

Definition 4.1. A Q-Smarandache pseudo-CI algebra X is said to be commu-
tative if Q is a commutative pseudo-BE algebra, that is, it satisfies the following
conditions, for all x, y ∈ Q, x ∨1 y = y ∨1 x and x ∨2 y = y ∨2 x.

Example 4.1. Let X = {1, a, b, c, d, e, f, g}. Define the binary operations →
and  on X by the following tables:

→ 1 a b c d e f g

1 1 a b c d e f g
a 1 1 b c d e f g
b 1 a 1 c d e f g
c c c c 1 f g d e
d d d d g 1 f e c
e e e e f g 1 c d
f g g g d e c 1 f
g f f f e c d g 1

 1 a b c d e f g

1 1 a b c d e f g
a 1 1 b c d e f g
b 1 a 1 c d e f g
c c c c 1 g f e d
d d d d f 1 g c e
e e e e g f 1 d c
f g g g e c d 1 f
g f f f d e c g 1

Then (X;→, , 1) is a Q-Smarandache commutative pseudo-CI algebra, where
Q = {1, a, b}.

Proposition 4.1. Let X be a Q-Smarandache commutative pseudo-CI algebra,
and let x, y ∈ Q such that x → y = y → x = 1 or x  y = y  x = 1. Then
x = y.
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Proof. Consider x, y ∈ Q such that x→ y = y → x = 1. Since X is commutative
and applying (psCI2), we get:

x = 1 x = (y → x) x = (x→ y) y = 1 y = y.
Similarly, x y = y  x = 1 implies x = y.

Proposition 4.2. In any Q-Smarandache commutative pseudo-CI algebra X
the following hold, for all x, y ∈ Q:
(1) x→ y = y ∨1 x→ y and x y = y ∨2 x y;
(2) x ∨1 y = (x ∨1 y) ∨1 x and x ∨2 y = (x ∨2 y) ∨2 x;
(3) x ≤ y implies y ∨1 x = y ∨2 x = y.

Proof. It follows by [10, Prop. 4.9].

Theorem 4.1. An algebra X of the type (2, 2, 0) is a Q-Smarandache commu-
tative pseudo-CI algebra if and only if the following hold, for all x, y, z ∈ Q:
(P1) 1→ x = 1 x = x;
(P2) x→ 1 = x 1 = 1;
(P3) (x→ z) (y → z) = (z → x) (y → x) and

(x z)→ (y  z) = (z  x)→ (y  x);
(P4) x→ (y  z) = y  (x→ z);
(P5) x→ y = 1 if and only if x y = 1.

Proof. It follows by [10, Th. 4.13].

Theorem 4.2. An algebra X of the type (2, 2, 0) is a Q-Smarandache commu-
tative pseudo-CI algebra if and only if the following hold, for all x, y, z ∈ Q:
(Q1) (x→ 1) y = (x 1)→ y = y;
(Q2) (x→ z) (y → z) = (z → x) (y → x) and

(x z)→ (y  z) = (z  x)→ (y  x);
(Q3) x→ (y  z) = y  (x→ z);
(Q4) x→ y = 1 if and only if x y = 1.

Proof. It follows by [10, Th. 4.14].

Remark 4.1. According to [9] the following hold:
− Any pseudo BCK-algebra is a pseudo-BE algebra;
− The class of commutative pseudo-BE algebras is term equivalent to the

class of commutative pseudo-BCK algebras.
It follows that in the definition of commutative Q-Smarandache pseudo-CI alge-
bras, the pseudo-BE algebra can be replaced with a pseudo-BCK algebra.

5. Classes of Smarandache filters of Smarandache pseudo-CI
algebras

Developing filter theory of multiple-valued logic algebras is a central topic in
the study of fuzzy systems (see, e.g., [1, 26, 27]).
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In this section we define and study the classes of Smarandache fantastic, im-
plicative and positive implicative filters of Smarandache pseudo-CI algebras. We
generalize some results regarding Smarandache fantastic, fresh and clean ideals
proved in [19], [18] and [4] for Smarandache BCI-algebras and Smarandache
BCH-algebras. It is proved that in the case of commutative Q-Smarandache
pseudo-CI algebras the notions of Smarandache filters and fantastic filters co-
incide. We give a characterization of Smarandache implicative filters and we
present conditions for a Smarandache filter to be a Smarandache implicative
filter. For a Q-Smarandache pseudo-CI algebra we prove that any Smaran-
dache implicative filter is a filter and any Smarandache positive implicative
filter contained in Q is a Smarandache filter. Finally, we give a characterization
of Smarandache positive implicative filters.

Definition 5.1. Let X be a Q-Smarandache pseudo-CI algebra. A filter F of
X is said to be Q-Smarandache fantastic filter of X if it satisfies the following
conditions, for all x, y ∈ Q:
(FF1) y → x ∈ F implies x ∨1 y → x ∈ F ;
(FF2) y  x ∈ F implies x ∨2 y  x ∈ F .

Denote by FF
Q (X) set of all Q-Smarandache fantastic filters of X.

Theorem 5.1. Let X be a Q-Smarandache pseudo-CI algebra and let F ⊆ X.
Then F ∈ FF

Q (X) if and only if it satisfies the following conditions, for all
x, y ∈ Q and z ∈ X:
(1) 1 ∈ F ;
(2) z → (y → x) ∈ F and z ∈ F imply x ∨1 y → x ∈ F ;
(3) z → (y  x) ∈ F and z ∈ F imply x ∨2 y  x ∈ F .

Proof. Consider F ∈ FQ(X). Since 1 ∈ F , condition (1) is satisfied. Let
x, y ∈ Q and z ∈ F such that z → (y → x) ∈ F . Obviously, y → x ∈ Q. Since
F ∈ F(X), we have y → x ∈ F , hence x ∨1 y → x ∈ F , that is, condition (2).
Similarly, from z  (y  x) ∈ F and z ∈ F , we get x ∨2 y  x ∈ F , that is,
condition (3).

Conversely, let F ⊆ X satisfying conditions (1), (2) and (3). Obviously,
1 ∈ F . Let x, y ∈ Q such that x→ y, x ∈ F . Since x→ (1→ y) = x→ y ∈ F ,
using (2), we have y = y∨1 1→ y ∈ F . It follows that F ∈ FQ(X). Let x, y ∈ Q
such that y → x ∈ F . Since 1 → (y → x) ∈ F and 1 ∈ F , by (2), we get
x ∨1 y → x ∈ F . Similarly, from y  x ∈ F , we get x ∨2 y  x ∈ F . We
conclude that F ∈ FF

Q (X).

Proposition 5.1. Let X be a pseudo-CI algebra and Q1, Q2 be proper subsets
of X such that Q1 ⊆ Q2. Then FF

Q2
(X) ⊆ FF

Q1
(X).

Proposition 5.2. Let X be a Q-Smarandache pseudo-CI(A) algebra and
F1 ∈ FF

Q (X), F2 ∈ FQ(X) such that F1 ⊆ F2. Then F2 ∈ FF
Q (X).
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Proof. Consider x, y ∈ Q such that u = y → x ∈ F2. It follows that
y → (u x) = y → ((y → x) x) = 1 ∈ F1.

Since F1 is fantastic, we have (u x) ∨1 y → (u x) ∈ F1.
From F1 ⊆ F2, we get (u x) ∨1 y → (u x) ∈ F2.
Applying (psCI3), it follows that u ((u x) ∨1 y → x) ∈ F2.
Since u ∈ F2 and (u x) ∨1 y → x ∈ Q, we get (u x) ∨1 y → x ∈ F2.
In the pseudo-BE algebra Q, x � (y → x)  x = u  x, hence by (A), we
have (u  x) → y � x → y, and (x → y)  y � ((u  x) → y)  y, that is,
x ∨1 y � (u x) ∨1 y.
Finally, applying again (A), (u x) ∨1 y → x � x ∨1 y → x.
Hence x ∨1 y → x ∈ F2. Similarly, from y  x ∈ F2, we get x ∨2 y  x ∈ F2.
We conclude that F2 ∈ FF

Q (X).

Corollary 5.1. Let X be a Q-Smarandache pseudo-CI(A) algebra. Then {1} ∈
FF
Q (X) if and only if FQ(X) = FF

Q (X).

Theorem 5.2. If X is a commutative Q-Smarandache pseudo-CI algebra, then
FQ(X) = FF

Q (X).

Proof. Let F ∈ FQ(X), and let x, y ∈ Q such that y → x ∈ F .
Obviously, ((y → x) x)→ x ∈ Q and by (a6), y → x � ((y → x) x)→ x,
hence ((y → x)  x) → x = y ∨1 x → x ∈ F . Since X is commutative, we get
x ∨1 y → x ∈ X.
Similarly, x, y ∈ Q and y  x ∈ F imply x ∨2 y  x ∈ F , hence F ∈ FF

Q (X).

We conclude that FQ(X) ⊆ FF
Q (X), that is, FQ(X) = FF

Q (X).

Definition 5.2. Let X be a Q-Smarandache pseudo-CI algebra. A subset F
of X is said to be a Q-Smarandache implicative filter of X if it satisfies the
following conditions, for all x, y ∈ Q and z ∈ F :
(IF1) 1 ∈ F ;
(IF2) z → ((x→ y) x) ∈ F implies x ∈ F ;
(IF3) z  ((x y)→ x) ∈ F implies x ∈ F .

Denote by F i
Q(X) set of all Q-Smarandache implicative filters of X.

Proposition 5.3. In any Q-Smarandache pseudo-CI algebra X, FI
Q(X) ⊆ FQ(X).

Proof. Let F ∈ FI
Q(X). Obviously, (SF1) is (IF1). Let x ∈ F and y ∈ Q such

that x → y ∈ F . Since y → ((x → x)  x) = y → x ∈ F , by (IF2), we get
x ∈ F , that is, (SF2) is verified. Similarly, (SF3) follows from (IF3), hence
F ∈ FQ(X). We conclude that FI

Q(X) ⊆ FQ(X).

Theorem 5.3. Let X be a Q-Smarandache pseudo-CI algebra, and let F ∈
FQ(X). Then the following are equivalent; for all x, y ∈ Q, (1) F ∈ FI

Q(X);
(2) (x→ y) x ∈ F implies x ∈ F and (x y)→ x ∈ F implies x ∈ F .
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Proof. (1)⇒ (2) Let F ∈ FI
Q(X), and let x, y ∈ Q such that (x→ y) x ∈ F .

Since 1 → ((x → y)  x) = (x → y)  x ∈ F and 1 ∈ F , by (IF2), we get
x ∈ F . Similarly, (x y)→ x ∈ F implies x ∈ F .
(2)⇒ (1) Let x, y ∈ Q such that z → ((x→ y) x) ∈ F , and let z ∈ F .
Since F ∈ FQ(X), we get (x→ y) x ∈ F , and applying (2), we get x ∈ F .
Similarly, z → ((x  y) → x) ∈ F and z ∈ F imply x ∈ F . Therefore,
F ∈ FI

Q(X).

Proposition 5.4. Let X be a Q-Smarandache pseudo-CI algebra, and let F ∈
FQ(X) such that ((x→ y) x) x ∈ F and ((x y)→ x)→ x ∈ F , for all
x, y ∈ Q. Then F ∈ FI

Q(X).

Proof. Let F ∈ FQ(X) and let x, y ∈ Q such that z → ((x→ y) x) ∈ F and
z ∈ F . Since F ∈ FQ(X), by (SF2), we have (x → y)  x ∈ F . Moreover,
from ((x → y)  x)  x ∈ F , applying again (SF2), we get x ∈ F . Similarly,
z  ((x y)→ x) ∈ F and z ∈ F imply x ∈ F . Therefore, F ∈ FI

Q(X).

Definition 5.3. Let X be a Q-Smarandache pseudo-CI algebra. A subset F of
X is said to be a Q-Smarandache positive implicative filter of X if it satisfies
the following conditions, for all x, y, z ∈ Q:
(PIF1) 1 ∈ F ;
(PIF2) z → (x→ y) ∈ F and z  x ∈ F imply z → y ∈ F ;
(PIF3) z  (x y) ∈ F and z → x ∈ F imply z  y ∈ F .

Denote by FPI
Q (X) set of all Q-Smarandache implicative filters of X.

Proposition 5.5. In any Q-Smarandache pseudo-CI algebra X, {F ∈ Fpi
Q (X) |

F ⊆ Q} ⊆ FQ(X).

Proof. Let F ∈ FPI
Q (X). Obviously, (SF1) is (PIF1). Let x ∈ F and y ∈ Q

such that x → y ∈ F . Since 1 → (x → y) = x → y ∈ F and 1  x = x ∈
F ⊆ Q, applying (PIF2), we get 1 → y = y ∈ F . Thus (SF2) is verified.
Similarly, applying (PIF3), we get (SF3), hence F ∈ FQ(X). We conclude that
FPI
Q (X) ⊆ FQ(X).

Proposition 5.6. Let X be a Q-Smarandache pseudo-CI algebra, and let F ∈
FQ(X) such that the following conditions are satisfied, for all x, y, z ∈ Q:
(PIF4) z → (x→ y) ∈ F implies (z  x)→ (z → y) ∈ F ;
(PIF5) z  (x y) ∈ F implies (z → x) (z  y) ∈ F .
Then F ∈ FPI

Q (X).

Proof. Let F ∈ FQ(X), and let x, y, z ∈ Q such that z → (x → y) ∈ F and
z  x ∈ F . By (PIF4), we have (z  x)→ (z → y) ∈ F and by (SF2), we get
z → y ∈ F . Similarly, applying (PIF5), from z  (x y) ∈ F and z → x ∈ F ,
we get z  y ∈ F . It follows that F ∈ FPI

Q (X).
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Corollary 5.2. Let X be a Q-Smarandache pseudo-CI algebra, and let F ∈
FQ(X) such that the following conditions are satisfied, for all x, y ∈ Q:
(PIF4)

′ x→ (x→ y) ∈ F implies x→ y ∈ F ;
(PIF5)

′ x (x y) ∈ F implies x y ∈ F .
Then F ∈ FPI

Q (X).

Lemma 5.1. Let X be a Q-Smarandache pseudo-CI algebra, and let F ∈ FPI
Q (X).

Then F satisfies (PIF4)
′ and (PIF5)

′, for all x, y ∈ Q.

Proof. Let F ∈ FQ(X), and let x, y ∈ Q such that x → (x → y) ∈ F . Since
x x = 1 ∈ F , applying (PIF2) we get x→ y ∈ F . Similarly, from x (x 
y) ∈ F , applying (PIF3), we get x y ∈ F .

Theorem 5.4. Let X be a Q-Smarandache pseudo-CI algebra, and let F ∈
FQ(X). Then F ∈ FPI

Q (X) if and only if it satisfies (PIF4)
′ and (PIF5)

′.

Proof. It follows by Lemma 5.1 and Corollary 5.2.

Proposition 5.7. Let X be a Q-Smarandache pseudo-CI algebra, and let F ∈
FPI
Q (X) such that F ⊆ Q. Then the following hold, for all x, y ∈ Q, z ∈ F :

(PIF6) z → (x→ (x→ y)) ∈ F implies x→ y ∈ F ;
(PIF7) z  (x (x y)) ∈ F implies x y ∈ F .

Proof. Let F ∈ FPI
Q (X), F ⊆ Q, and let x, y ∈ Q, z ∈ F such that

z → (x → (x → y)) ∈ F . Since F ⊆ Q we have z ∈ Q. By Proposition 5.5,
F ∈ FQ(X) and applying (SF2), we have x → (x → y) ∈ F . Hence by Lemma
5.1, we get x→ y ∈ F , thus (PIF6) is verified. Similarly, for (PIF7).

Theorem 5.5. Let X and Y be QX and QY -Smarandache pseudo-CI algebras
and f : X −→ Y be a Smarandache pseudo-CI homomorphism. Then:
(1) if G ∈ FF

QY
(Y ) (FI

QY
(Y ), FPI

QY
(Y )), then

f−1(G) ∈ FF
f−1(QY )(X) (FI

f−1(QY )(X), FI
f−1(QY )(X));

(2) if f is injective and F ∈ FF
QX

(X) (FI
QX

(X), FPI
QX

(X)), then

f(F ) ∈ FF
f(QX)(Y ) (FI

f(QX)(Y ), FPI
f(QX)(Y )).

Proof. (1) Let G ∈ FF
QY

(Y ), and let x, y ∈ QX such that y → x ∈ f−1QY
(G),

that is, f(y → x) ∈ G, so f(y) → f(x) ∈ G. Since G ∈ FF
QY

(Y ), we have
f(x)∨1 f(y)→ f(x) ∈ G. It follows that f(x∨1 y → x) ∈ G, hence x∨1 y → x ∈
f−1(G). Similarly, y  x ∈ f−1QY

(G) implies x∨2 y  x ∈ f−1(G). We conclude

that f−1(G) ∈ FF
f−1(QY )(X). Similarly, for G ∈ FI

QY
(Y ) and G ∈ FPI

QY
(Y ).

(2) Let F ∈ FF
QX

(X) and x, y ∈ f(Q) such that y → x ∈ f(F ). There exist
x1, y1, z1 ∈ Q such that x = f(x1), y = f(y1), y → x = f(z1). Therefore,
f(y1) → f(x1) = f(z1), that is, f(y1 → x1) = f(z1). Since f is injective and
F is fantastic, we get y1 → x1 = z1 ∈ F , hence x1 ∨1 y1 → x1 ∈ F . It follows
that f(x1 ∨1 y1 → x1) ∈ f(F ), so f(x1) ∨1 f(y1) → f(x1) ∈ f(F ), that is,
x ∨1 y → x ∈ f(F ). Similarly, y  x ∈ f(F ) implies x ∨2 y  x ∈ f(F ).
Hence f(F ) ∈ FF

f(QX)(Y ). Similarly, for F ∈ FI
QX

(X) and F ∈ FPI
QX

(X).



Smarandache pseudo-CI algebras 15

6. Q-Smarandache upper sets

In this section, we define and investigate the notion of Smarandache upper sets
in a pseudo-CI algebra and we investigate some of their properties. We prove
that every Q-Smarandache filter is a union of Q-Smarandache upper sets.

Let x, y ∈ Q and Q ⊆ X be a pseudo-BE algebra. Denote:
A(x, y) := {z ∈ Q : x→ (y  z) = 1}.

We call A(x, y) a Q-Smarandache upper set of x and y.

Remark 6.1. It is easy to see that, 1, x, y ∈ A(x, y). The set A(x, y), where
x, y ∈ Q, is not a filter of X, in general. Also, using (psCI3) and (psCI4) we
have

A(x, y) = {z ∈ Q : x→ (y  z) = 1}
= {z ∈ Q : x (y  z) = 1}
= {z ∈ Q : y  (x→ z) = 1}
= {z ∈ Q : y → (x→ z) = 1}.

Example 6.1. (1) Consider the pseudo-CI algebras from Example 2.1 (2) and
let Q := {1, a, c}. Then A(a, c) = {1, a, c}.

(2) Consider the Q-Smarandache pseudo-CI algebras from Example 4.1.
Then A(a, 1) = {1, a, b} 6= A(1, a) = {1, a}, and so A(x, y) 6= A(y, x), for some
x, y ∈ Q.

Proposition 6.1. Let x, y ∈ Q. Then
(1) A(x, 1) ⊆ A(x, y);
(2) if A(x, 1) ∈ FQ(X) and y ∈ A(x, 1), then A(x, y) ⊆ A(x, 1);
(3) if there is y ∈ Q, such that y → z = 1 or y  z = 1, for all z ∈ Q, then

Q = A(x, y);

(4) A(x, 1) =
⋂
y∈Q

A(x, y).

Theorem 6.1. Let ∅ 6= F ⊆ Q. Then F ∈ FQ(X) if and only if A(x, y) ⊆ F ,
for all x, y ∈ F .

Proof. Assume that F ∈ FQ(X) and x, y ∈ F . If z ∈ A(x, y), then x → (y  
z) = 1 ∈ F . Since F ∈ FQ(X) and x, y ∈ F , by (SF2), y  z ∈ F , and so by
(SF3), z ∈ F . Hence A(x, y) ⊆ F .

Conversely, suppose A(x, y) ⊆ F , for all x, y ∈ F .
Since x→ (y  1) = x→ 1 = 1, we get 1 ∈ A(x, y) ⊆ F . Let a, a→ b ∈ F and
a c ∈ F. Since 1 = (a→ b) (a→ b) = a→ ((a→ b) b) and
(a  c) → (a  c) = 1, we have b ∈ A ⊆ F and c ∈ A ⊆ F . Hence b, c ∈ F .
Thus, F ∈ FQ(X).

Theorem 6.2. Let a ∈ Q. Then the set A(a, 1) ∈ FQ(X) if and only if the
following hold, for all x, y, z ∈ Q:
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(1) z � x→ y and z � x imply z � y;
(2) z � x y and z � x imply z � y.

Proof. Assume that for each a ∈ Q, A(a, 1) ∈ FQ(X). Let x, y, z ∈ Q be such
that z � x→ y, z � x y, and z � x. Then x→ y ∈ A(z, 1), x y ∈ A(z, 1),
and x ∈ A(z, 1). Since A(z, 1) ∈ FQ(X), we have y ∈ A(z, 1). Therefore, z � y.

Conversely, consider A(z, 1), for z ∈ Q. Obviously, 1 ∈ A(z, 1).
Let x → y ∈ A(z, 1), and x  b ∈ A(z, 1), for all x ∈ A(z, 1) (i.e. z � x → y,
z � x b and z � x). Then from hypothesis, z � y and z � b (i.e. y ∈ A(z, 1)
and b ∈ A(z, 1)). Hence A(z, 1) ∈ FQ(X), for all z ∈ Q.

Theorem 6.3. Let F ∈ FQ(X) and F ⊆ Q, then F =
⋃
x∈F

A(x, 1).

Proof. Assume that F ∈ FQ(X), F ⊆ Q and z ∈ F . Since z ∈ A(z, 1), we

have F ⊆
⋃
z∈F

A(z, 1). Let z ∈
⋃
x∈F

A(x, 1). Then there exists a ∈ F such that

z ∈ A(a, 1), and so a → z = a → (1  z) = 1 ∈ F . Since F ∈ FQ(X) and

a ∈ F , we have z ∈ F . Thus,
⋃
x∈F

A(x, 1) ⊆ F .

7. Conclusions and future work

In this paper we introduced the notion of Smarandache pseudo-CI algebras
and we defined and studied some classes of Smarandache filters of Smaran-
dache pseudo-CI algebras. This study could potentially lead to more results on
Smarandache pseudo-CI algebras.

A. Borumand Saeid studied in [2] the notion of a Smarandache weak BE-
algebra, as a BE-algebra X in which there exists a proper subset Q of X such
that:

(S1) 1 ∈ Q and | Q |≥ 2;
(S2) Q is a CI-algebra under the operation of X.

Another topic of research could be to define and investigate the notion of a
Smarandache weak pseudo-BE algebra.
A Smarandache strong n-structure on a set S means a structure W0 on a set S
such that there exists a chain of proper subsets Pn−1 < Pn−2 < · · · < P2 < P1 <
S, where < means Pi included Pi−1 in whose corresponding structures verify the
inverse chain Wn−1 > Wn−2 > · · · > W2 > W1 > W0, where > signifies strictly
stronger (i.e. a structure satisfying more axioms) (see [5]).

A. Borumand Saeid and A. Rezaei introduced in [5] the notion of a Smaran-
dache strong 3-structure of a CI-algebra X as a chain X1 > X2 > X3 > X4,
where X1 is a CI-algebra, X2 is a BE-algebra, X3 is a dual BCK-algebra, and
X4 is an implication algebra.
One could define and investigate the notion of a strong n-structure of a pseudo-
CI algebra.
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