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PREFACE

The various areas where loop theory originated and through which it moved during the

early part of its 70 years of history can be mapped and fitted not only in a geographical and a

chronological sense but also conceptually. Loop theory is of course a relatively young subject

which continues to grow day by day. To give an example, when somebody asks. ‘What is

a loop?’, the simplest way to explain is to say, ‘it is a group without associativity’. This is

true, but it is not the whole truth. It is essential to emphasize that loop theory is not just a

generalization of group theory but a discipline of its own, originating from and still moving

within four basic research areas ; algebra, geometry, topology and combinatorics. Tremen-

dous contributions to the theory of loops can be traced mainly back to Europe at large and

America. Asia and Africa are the only two continents that seem left out of the history of loop

theory. But in 2002, the Asian axis surfaced in the history of loop theory when W. B. Vas-

antha Kandasamy, an Indian female Algebraist initiated the study of Smarandache loops(i.e.

loops with at least a non-trivial subgroup) in her book titled ”Smarandache Loops” and her

paper titled ”Smarandache Loops” published by various publishing houses. She has also

published some books and research articles on related subjects like Smarandache Groupoids,

Smarandache Semigroups, Smarandache Semirings, Smarandache Semifields, Smarandache

Semivector Spaces, Smarandache Linear Algebra, Smarandache Bialgebraic Structures and

Smarandache N-Algebraic Structures as a sole author and co-authored with the prolific and

dynamic scientist, Florentin Smarandache.

In 2004, when I was at the University of Agriculture Abeokuta(UNAAB), in Nigeria for

my Masters Degree in Mathematics(I actually started studying quasigroups and loop theory

then) under the supervision of Dr. J. O. Adeniran, Prof. A. R. T. Solarin informed us that a

student of his in Tanzania was working on a new class of loop called Smarandache loop. We

were able to lay our hands on the book and paper of Vasantha Kandasamy on Smarandache
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loops and at that point caught a vision for this class of loop. I believed it can be turned

into a theory of its own just like quasigroup and loop theory has. The first part of the vision

was to introduce some new Smarandache notions in quasigroups and loops which are entirely

different from the over 75 Smarandache concepts on loops. The second part of the vision later

on came in 2006 when I was at Obafemi Awolowo University(OAU), in Nigeria. Students

were on rampage and the university was closed down. I later on got the information that the

violent acts were actually perpetrated by some set of students including the executives of the

students’ union. The situation can be algebraically modelled as a set(the set of all students

in OAU) with a non-trivial subset(the set of unscrupulous elements that were the master

minders of the violent acts) such that the set with a binary operation is expected to obey

some set of axioms(the regulation of the OAU authority) but which the elements(students)

in the subset do not obey at all or do obey but at the same time perpetrate some other

acts(axioms or laws or equations) that are not in the OAU university regulations. To me,

this exactly fits into the definition of a Smarandache structure on a set according to Raul

Padilla of 1998. This is consider as ”The study of both the good and the bad”. In the past,

a model either studies and investigate a bad situation and circumstance or a good situation.

This book is a compilation of results on some new Smarandache concepts in Smaran-

dache; groupoids, quasigroups and loops which I have so far published in the ”Scientia

Magna Journal” and the ”International Journal of Mathematical Combinatorics” both in

China, and pin points the inter-relationships and connections between and among the vari-

ous Smarandache concepts and notions that have been developed. It is more of a monograph.

A pre-requisite to the readability of this monograph is a basic knowledge of the theory of

quasigroups and loops. Any graduate student or researcher who has a good understanding

of the some popular books in the theory of quasigroups and loops like ”R. H. Bruck, A

Survey of Binary Systems, Springer Verlag, 1958”, ”Orin Chein, H. O. Pflugfelder and J.

D. H. Smith, Quasigroups and Loops: Theory and Applications, Heldermann Verlag, 1990”,
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”H. O. Pflugfelder, Quasigroups and Loops: Introduction, Heldermann Verlag, 1990” will be

able to comprehend the content of this monograph.

This monograph is structured into six chapters. The first chapter is an introduction

to the theory quasigroups and loops with much attention paid to those quasigroup and

loop concepts whose Smarandache versions are to be studied in the other chapters. In

chapter two, the holomorphic structures of Smarandache loops of Bol-Moufang type and

Smarandache loops of non-Bol-Moufang type are studied. The holomorphic structure of

Smarandache cross inverse property quasigroups is found useful and applicable for double

cryptography and this demonstrated with what is called the Smarandache Keedwell cross

inverse property quasigroup. In the third chapter, the notion of parastrophy is introduced

into Smarandache quasigroups and studied. Chapter four studies the universality of some

Smarandache loops of Bol-Moufang type. In chapter five, the notion of Smarandache iso-

topism is introduced and studied in Smarandache quasigroups and loops and the cardinality

of the Smarandache isomorphism classes of some Smarandache loops of small orders are

investigated. By introducing Smarandache special mappings in Smarandache groupoids, the

Smarandache Bryant-Schneider group of a Smaranache loop is developed and studied via the

notion of Smarandache isotopism of chapter five. Some cardinality formulas are also gotten

for the Smarandache Bryant-Schneider group of a Smarandache loop.

I so much appreciate the words of encouragement of Dr. Minh Perez of the American

Research Press, U.S.A. and the Editor in Chief of the Smarandache Notions Journal during

the years of the development of most of the results that are proved in this monograph. He

has been a wonderful friend of mine who took great interest in my academic career and

challenged me to put these results together. I appreciate you for this.
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Chapter 1

THEORY OF QUASIGROUPS AND

LOOPS

1.1 Groupoids, Quasigroups And Loops

Let G be a non-empty set. Define a binary operation (·) on G.

If x · y ∈ G for all x, y ∈ G, then the pair (G, ·) is called a groupoid or Magma.

If the system of equations:

a · x = b and y · a = b

have unique solutions in G for x and y respectively, then (G, ·) is called a quasigroup.

A quasigroup is therefore an algebra having a binary multiplication x · y usually written

xy which satisfies the conditions that for any a, b in the quasigroup the equations

a · x = b and y · a = b

have unique solutions for x and y lying in the quasigroup.
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If there exists a unique element e ∈ G called the identity element such that for all x ∈ G,

x · e = e · x = x, (G, ·) is called a loop.

Let x be a fixed element in a groupoid (G, ·). The so called left and right translation

maps of G, Lx and Rx respectively can be defined by

yLx = x · y and yRx = y · x.

It can now be seen that a groupoid (G, ·) is a quasigroup if its left and right translation

mappings are bijections or permutations.

Definition 1.1.1 A set Π of permutations on a set G is the representation of a loop (G, ·)
if and only if

(i) I ∈ Π (identity mapping),

(ii) Π is transitive on G(i.e for all x, y ∈ G, there exists a unique π ∈ Π such that xπ = y),

(iii) if α, β ∈ Π and αβ−1 fixes one element of G, then α = β.

The left and right representation of a loop G is denoted by

Πλ(G, ·) = Πλ(G) and Πρ(G, ·) = Πρ(G) respectively

Since the left and right translation mappings of a loop are bijective, then the inverse mappings

L−1
x and R−1

x exist. Let

x\y = yL−1
x and x/y = xR−1

y

and note that

x\y = z ⇐⇒ x · z = y and x/y = z ⇐⇒ z · y = x.
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Hence, (G, \) and (G, /) are also quasigroups. Using the operations (\) and (/), the definition

of a loop can be stated as follows.

Definition 1.1.2 A loop (G, ·, /, \, e) is a set G together with three binary operations (·),
(/), (\) and one nullary operation e such that

(i) x · (x\y) = y, (y/x) · x = y for all x, y ∈ G,

(ii) x\(x · y) = y, (y · x)/x = y for all x, y ∈ G and

(iii) x\x = y/y or e · x = x and x · e = x for all x, y ∈ G.

It must be stipulated that (/) and (\) have higher priority than (·) among factors to be

multiplied. For instance, x · y/z and x · y\z stand for x(y/z) and x · (y\z) respectively.

The basic text books on quasigroup, loops are Pflugfelder [72], Bruck [21], Chein,

Pflugfelder and Smith [25], Dene and Keedwell [29], Goodaire, Jespers and Milies [37] and

Vasantha Kandasamy [86].

1.1.1 Some Important Subloops Of Loops

Let (L, ·) be a loop.

The left nucleus of L denoted by

Nλ(L, ·) = {a ∈ L : ax · y = a · xy ∀ x, y ∈ L}.

The right nucleus of L denoted by

Nρ(L, ·) = {a ∈ L : y · xa = yx · a ∀ x, y ∈ L}.
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The middle nucleus of L denoted by

Nµ(L, ·) = {a ∈ L : ya · x = y · ax ∀ x, y ∈ L}.

The nucleus of L denoted by

N(L, ·) = Nλ(L, ·) ∩Nρ(L, ·) ∩Nµ(L, ·).

The centrum of L denoted by

C(L, ·) = {a ∈ L : ax = xa ∀ x ∈ L}.

The center of L denoted by

Z(L, ·) = N(L, ·) ∩ C(L, ·).

Let a, b and c be three elements of a loop L. The loop commutator of a and b is the

unique element (a, b) of L which satisfies

ab = (ba)(a, b)

and the loop associator of a, b and c is the unique element (a, b, c) of L which satisfies

(ab)c = {a(bc)}(a, b, c).

If X, Y, and Z are subsets of a loop L, we denote by (X, Y ) and (X, Y, Z), respectively,

the set of all commutators of the form (x, y) and all the associators of the form (x, y, z),

where x ∈ X, y ∈ Y, z ∈ Z.
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The symmetric group of (L, ·) denoted by

SY M(L, ·) = {U : L → L | U is a permutation or a bijection}.

The set

Multλ(L, ·) =
〈
{Lx, L

−1
x : x ∈ L}

〉

is called the left multiplication group of (L, ·). Multλ(L, ·) ≤ SY M(L, ·). The set

Multρ(L, ·) =
〈
{Rx, R

−1
x : x ∈ L}

〉

is called the right multiplication group of (L, ·). Multρ(L, ·) ≤ SY M(L, ·). The set

Mult(L, ·) =
〈
{Rx, R

−1
x , Lx, L

−1
x : x ∈ L}

〉

is called the multiplication group of (L, ·). Mult(L, ·) ≤ SY M(L, ·).

1.1.2 Inner Mappings Of A Loop

If eα = e in a loop G such that α ∈ Mult(G), then α is called an inner mapping and

they form a group Inn(G) called the inner mapping group. The right, left and middle inner

mappings

R(x, y) = RxRyR
−1
xy , L(x, y) = LxLyL

−1
yx and T (x) = RxL

−1
x

respectively form the left inner mapping group Innλ(G), right inner mapping group

Innρ(G) and the middle inner mapping Innµ(G). If

Innλ(G) ≤ AUM(G), Innρ(G) ≤ AUM(G), Innµ(G) ≤ AUM(G) and Inn(G) ≤ AUM(G),
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where AUM(G) denotes the automorphism group of G, then G is called a left A-loop(Aλ-

loop), right A-loop(Aρ-loop), middle A-loop(Aµ-loop) and A-loop respectively. The defini-

tions above are in accordance with those in [36].

1.1.3 Basic Quasigroups And Loops Properties

For associative binary systems, the concept of an inverse element is only meaningful if the

system has an identity element. For example, in a group (G, ·) with identity element e ∈ G,

if x ∈ G then the inverse element for x is the element x−1 ∈ G such that

x · x−1 = x−1 · x = e.

In a loop (G, ·) with identity element e, the left inverse element of x ∈ G is the element

xλ ∈ G such that

xλ · x = e

while the right inverse element of x ∈ G is the element xρ ∈ G such that

x · xρ = e

In case (G, ·) is a quasigroup, then (G, ·) is called a left inverse property quasigroup(LIPQ)

if it has the left inverse property(LIP) i.e if there exists a bijection

Jλ : x 7→ xλ on G such that xλ · xy = y.

Similarly, (G, ·) is called a right inverse property quasigroup(RIPQ) if it has the right inverse

property(RIP) i.e if there exists a bijection

Jρ : x 7→ xρ on G such that yx · xρ = y.
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A quasigroup that is both a LIPQ and a RIPQ is said to have the inverse property(IP) hence

called an inverse property quasigroup(IPQ).

The same definitions hold for a loop and such a loop is called a left inverse property

loop(LIPL), right inverse property loop(RIPL) and inverse property loop(IPL) accordingly.

Jλ and Jρ are respectively called the left and right inverse maps. If Jλ = Jρ, then we simply

write J = Jλ = Jρ and as well we write x−1 = xλ = xρ.

Throughout, we shall employ the use of the bijections;

Jρ : x 7→ xρ, Jλ : x 7→ xλ, Lx : y 7→ xy and Rx : y 7→ yx

for a loop and the bijections;

J ′ρ : x 7→ xρ′ , J ′λ : x 7→ xλ′ , L′x : y 7→ xy and R′
x : y 7→ yx

for its loop isotope. If the identity element of a loop is e then that of the isotope shall be

denoted by e′.

There are some classes of loops which do not have the inverse property but have properties

which can be considered as variations of the inverse property.

A loop (G, ·) is called a weak inverse property loop(WIPL) if and only if it obeys the

identity

x(yx)ρ = yρ or (xy)λx = yλ (1.1)

for all x, y ∈ G.

A loop (G, ·) is called a cross inverse property loop(CIPL) if and only if it obeys the

identity

xy · xρ = y or x · yxρ = y or xλ · (yx) = y or xλy · x = y (1.2)
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for all x, y,∈ G.

A loop (G, ·) is called an automorphic inverse property loop(AIPL) if and only if it obeys

the identity

(xy)ρ = xρyρ or (xy)λ = xλyλ (1.3)

for all x, y,∈ G.

A loop (G, ·) is called an anti-automorphic inverse property loop(or AAIPL) if and only

if it obeys the identity

(xy)ρ = yρxρ or (xy)λ = yλxλ (1.4)

for all x, y,∈ G.

A loop (G, ·) is called a semi-automorphic inverse property loop(SAIPL) if and only if it

obeys the identity

(xy · x)ρ = xρyρ · xρ or (xy · x)λ = xλyλ · xλ (1.5)

for all x, y,∈ G.
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In the quest for the application of CIPQs with long inverse cycles to cryptography, Keed-

well [51] constructed the following CIPQ which we shall specifically call Keedwell CIPQ.

Theorem 1.1.1 (Keedwell CIPQ)

Let (G, ·) be an abelian group of order n such that n + 1 is composite. Define a binary

operation ’◦’ on the elements of G by the relation a◦b = arbs, where rs = n+1. Then (G, ◦)
is a CIPQ and the right crossed inverse of the element a is au, where u = (−r)3.

The author also gave examples and detailed explanation and procedures of the use of this

CIPQ for cryptography. We shall later introduce the Smarandache Keedwell CIPQ and

demonstrate its application to double cryptography.

Quasigroup and loops are known to lack associativity. But some quasigroups and loops

obey identities that are called weak-associative laws. Among such identities is the inverse

property. Other weak-associative laws shall be introduced under quasigroup and loop vari-

eties and identities.

A quasigroup (G, ·) is called a left alternative property quasigroup(LAPQ) if the left

alternative property(LAP),

xx · y = x · xy

holds for all x, y ∈ G.

A quasigroup (G, ·) is called a right alternative property quasigroup(RAPQ) if the right

alternative property(RAP),

y · xx = yx · x

holds for all x, y ∈ G.

A quasigroup (G, ·) is called an alternative property quasigroup(APQ) if the alternative

property(AP) i.e both the LAP and RAP hold.

The same definitions hold for a loop and such a loop is called a left alternative property
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Figure 1.1: Varieties of Inverse Property Loops
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loop(LAPL), right alternative property loop(RAPL) and alternative property loop(APL)

accordingly.

A loop (G, ·) is called a flexible or elastic loop if the flexiblity or elasticity property

xy · x = x · yx

holds for all x, y ∈ G. (G, ·) is said to be a power associative loop if < x > is a subgroup

for all x ∈ G and a diassociative loop if < x, y > is a subgroup for all x, y ∈ G.

1.2 Varieties of Quasigroups And Loops

The varieties of quasigroups and loops can be categorized mainly into two.

(a) Quasigroups and loops of Bol-Moufang type; these are variety of quasigroups and loops

defined by a single identity that

(i) involves three distinct variables on both sides,

(ii) contains variables in the same order on both sides

(iii) exactly one of the variables appears twice on both sides.

(b) Quasigroups and loops that are not of Bol-Moufang type; these are variety of quasi-

groups and loops defined by a single identity or more but which are not of Bol-Moufang

type.

1.2.1 Quasigroups And Loops Of Bol-Moufang Types

Fenyves [34] and [33] in the 1960s was the first to classify loops of Bol-Moufang type by

showing that there are sixty of them among which thirty are equivalent to the associativity
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law. In the beginning of this 21st century, Phillips and Vojtěchovský [73] and [74] gener-

alised and completed the study of Fenyves by showing that there are sixteen varieties of

quasigroups and fourteen varieties of loops of Bol-Moufang type. The identities describing

the most popular quasigroups and loops of Bol-Moufang are highlighted below. For some

particular varieties, the identity or identities named after them are equivalent to each other

in quasigroups or in loops or in both quasigroups and loops.

(yx · x)z = y(x · xz) central identity (1.6)

(xy · z)x = x(y · zx) extra identity (1.7)

xy · xz = x(yx · z) extra identity (1.8)

yx · zx = (y · xz)x extra identity (1.9)

xx · yz = (x · xy)z left central identity (1.10)

(x · xy)z = x(x · yz) left central identity (1.11)

(xx · y)z = x(x · yz) left central identity (1.12)

(y · xx)z = y(x · xz) left central identity (1.13)

yz · xx = y(zx · x) right central identity (1.14)

(yz · x)x = y(zx · x) right central identity (1.15)

(yz · x)x = y(z · xx) right central identity (1.16)

(yx · x)z = y(xx · z) right central identity (1.17)

xy · zx = (x · yz)x Moufang identity (1.18)
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xy · zx = x(yz · x) Moufang identity (1.19)

(xy · x)z = x(y · xz) Moufang identity (1.20)

(yx · z)x = y(x · zx) Moufang identity (1.21)

(x · yx)z = x(y · xz) left Bol identity (1.22)

(yx · z)x = y(xz · x) right Bol identity (1.23)

So if a quasigroup or loop obeys any of the identities above say identity ’I’, then it is

called a ’I-quasigroup’ or ’I-loop’ accordingly.
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A loop Q is called a conjugacy closed loop (CC-loop) if and only if the identities

x · yz = (xy)/x · xz and zy · x = zx · x\(yx)

hold in Q.

1.3 Universality Of Loops

Consider (G, ·) and (H, ◦) been two distinct groupoids(quasigroups, loops). Let A,B and

C be three bijective mappings, that map G onto H. The triple α = (A,B, C) is called an

isotopism of (G, ·) onto (H, ◦) if and only if

xA ◦ yB = (x · y)C ∀ x, y ∈ G.

So, (H, ◦) is called a groupoid(quasigroup, loop) isotope of (G, ·).

Similarly, the triple

α−1 = (A,B,C)−1 = (A−1, B−1, C−1)

is an isotopism from (H, ◦) onto (G, ·) so that (G, ·) is also called a groupoid(quasigroup,loop)

isotope of (H, ◦). Hence, both are said to be isotopic to each other.

If one of two isotopic groupoids is a quasigroup, then both are quasigroups, but the same

statement is not true if two quasigroups are isotopic and one is a loop. This fact makes it

possible and reasonable to study and consider quasigroups as isotopes of groups.

If C = I, the identity map on G so that H = G, then the triple α = (A,B, I) is called

a principal isotopism of (G, ·) onto (G, ◦) and (G, ◦) is called a principal isotope of (G, ·).
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Figure 1.2: Varieties of Loops of Bol-Moufang type
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Eventually, the equation of relationship now becomes

x · y = xA ◦ yB ∀ x, y ∈ G

which is easier to work with. But taken A = Rg and B = Lf for some f, g ∈ G, the

relationship now becomes

x · y = xRg ◦ yLf ∀ x, y ∈ G

or

x ◦ y = xR−1
g · yL−1

f ∀ x, y ∈ G.

With this new form, the triple α = (Rg, Lf , I) is called an f, g-principal isotopism of (G, ·)
onto (G, ◦), f and g are called translation elements of G or at times written in the pair form

(g, f), while (G, ◦) is called an f, g-principal isotope of (G, ·).
The last form of α above gave rise to an important result in the study of loop isotopes

of loops.

Theorem 1.3.1 (Bruck [21])

Let (G, ·) and (H, ◦) be two distinct isotopic loops. For some f, g ∈ G, there exists an

f, g-principal isotope (G, ∗) of (G, ·) such that (H, ◦) ∼= (G, ∗).

With this result, to investigate the isotopic invariance of an isomorphic invariant property

in loops, one simply needs only to check if the property in consideration is true in all f, g-

principal isotopes of the loop. A property is isotopic invariant if whenever it holds in the

domain loop i.e (G, ·) then it must hold in the co-domain loop i.e (H, ◦) which is an isotope

of the former. In such a situation, the property in consideration is said to be a universal

property hence the loop is called a universal loop relative to the property in consideration

as often used by Nagy and Strambach [69] in their algebraic and geometric study of the

universality of some types of loops. For instance, if every isotope of ”certain” loop is a
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”certain” loop, then the formal is called a universal ”certain” loop. So, we can now restate

Theorem 1.3.1 as :

Theorem 1.3.2 Let (G, ·) be a ”certain” loop where ”certain” is an isomorphic invariant

property. (G, ·) is a universal ”certain” loop if and only if every f, g-principal isotope (G, ∗)
of (G, ·) has the ”certain” loop property.

The procedure that has been described so far is called isotopy-isomorphy of loops. It

has been used to study the universality of Bol-Moufang type loops such as Bol loops and

Moufang loops in [72] which are indeed universal. This approach was difficult for the study

of the universality of central loops in Jáıyéo. lá [45], so it resulted into the use of left and

right translations combined with autotopic characterization and these gave success although

not all central loops were found to be universal. We shall later on prove the Smarandache

versions of Theorem 1.3.1 and Theorem 1.3.2 for Smarandache loops.

1.3.1 Universality Of Bol-Moufang Type Loops

The isotopic invariance of types and varieties of quasigroups and loops described by one or

more equivalent identities, especially those that fall in the class of Bol-Moufang type loops as

first named by Fenyves [34] and [33] in the 1960s and later on in this 21st century by Phillips

and Vojtěchovský [73], [74] and [64] have been of interest to researchers in loop theory in the

recent past. Among such is Etta Falconer’s Ph.D [31] and her paper [32] which investigated

isotopy invariants in quasigroups. Loops such as Bol loops, Moufang loops, central loops

and extra loops are the most popular loops of Bol-Moufang type whose isotopic invariance

have been considered.

17



1.4 Autotopisms Of A Loop

From the earlier discussions, if (H, ◦) = (G, ·) then the triple α = (A,B, C) is called an

autotopism where A, B, C ∈ SY M(G, ·). Such triples form a group AUT (G, ·) called the

autotopism group of (G, ·). If A = B = C then A is an automorphism and the group such

bijections form is called the automorphism group AUM(G, ·) of (G, ·). Chiboka and Solarin

[27] solved an open problem by characterizing G-loops by autotopisms. If

(ULc, U, ULc) ∈ AUT (G, ·) for some c ∈ G,

then U is called a left pseudo-automorphism of G with companion c. However, if

(V, V Rc, V Rc) ∈ AUT (G, ·) for some c ∈ G,

then V is called a right pseudo-automorphism of G with companion c. Such Us and V s form

groups called the left pseudo-automorphism group PSλ(G, ·) and right pseudo-automorphism

group PSρ(G, ·) respectively.

1.5 G-Loops

G-loops are loops that are isomorphic to all their loop isotopes, hence if they have a ”certain”

isomorphic invariant property, they will be universal relative to that property. This is the

case of extra loops, they are Moufang loops and conjugacy closed loops(CC-loops introduced

by Goodaire and Robinson [38] and [39]), the reverse is also true as well, hence since CC-

loops are G-loops, extra loops are G-loops so they are universal Moufang loops since they

are Moufang loops and Moufang loops are universal.

Theorem 1.5.1 (Chiboka and Solarin [27], Kunen [61])
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Let (G, ·) be a loop. G is a G-loop if and only if there exists θ ∈ SY M(G, ·) such that

(θR−1
x , θL−1

y , θ) ∈ AUT (G, ·) ∀ x, y ∈ G.

1.5.1 Special Mappings Of A Loop

Definition 1.5.1 (Robinson [77])

Let (G, ·) be a loop. A mapping θ ∈ SY M(G, ·) is a special map for G means that there

exist f, g ∈ G so that

(θR−1
g , θL−1

f , θ) ∈ AUT (G, ·).

From Definition 1.5.1, it can be observed that θ is a special map for a loop (G, ·) if and

only if θ is an isomorphism of (G, ·) onto some f, g-principal isotope (G, ◦) of (G, ·). This is

clearly seen because ;

(θR−1
g , θL−1

f , θ) = (θ, θ, θ)(R−1
g , L−1

f , I) ∈ AUT (G, ·).

But since

(R−1
g , L−1

f , I) : (G, ◦) → (G, ·),

then for

(θR−1
g , θL−1

f , θ) ∈ AUT (G, ·),

we must have

(θ, θ, θ) : (G, ·) → (G, ◦)

which means (G, ·) θ∼= (G, ◦).
The importance of special maps can clearly be seen, for their existence is another form

of isotopy-isomorphy property for loops. The autotopism in Definition 1.5.1 looks exactly

like that in Theorem 1.5.1. We shall be discussing about Smarandache special maps later.
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1.6 Bryant-Schneider Group Of A Loop

Robinson [77] went further to show that if

BS(G, ·) = {θ ∈ SY M(G) : ∃ f, g ∈ G 3 (θR−1
g , θL−1

f , θ) ∈ AUT (G, ·)}

i.e the set of all special maps in a loop, then BS(G, ·) ≤ SY M(G) called the Bryant-

Schneider group of the loop (G, ·) because its importance and motivation stem from the

work of Bryant and Schneider [23]. In fact, he established that if (G, ◦) is an f, g-principal

isotope of (G, ·), then BS(G, ·) = BS(G, ◦). Actually, as shown in Bruck [72], for a loop

(G, ·) with left multiplication group Multλ(G, ·), right multiplication group Multρ(G, ·) and

multiplication group Mult(G, ·), if a loop (H, ◦) is an isotope of (G, ·), then

Multλ(G, ·) ∼= Multλ(H, ◦), Multρ(G, ·) ∼= Multρ(H, ◦) and Mult(G, ·) ∼= Mult(H, ◦).

But if H = G and the isotopism is an f, g-principal isotopism, then

Multλ(G, ·) = Multλ(H, ◦), Multρ(G, ·) = Multρ(H, ◦) and Mult(G, ·) = Mult(H, ◦).

We call

Multµ(G, ·) =
〈
{Rx, Lx : x ∈ G}

〉

the middle multiplication group. Since the advent of the Bryant-Schneider group, some

studies by Adeniran [2, 6, 3, 4, 5] and Chiboka [28] have been done on it relative to CC-

loops, Bol loops and extra loops. We shall later on introduce Smarandache Bryant-Schneider

group and carry out a study on it for Smarandache loops.
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1.7 Smarandache Quasigroups And Loops

The study of Smarandache loops was initiated by W.B. Vasantha Kandasamy in 2002. In

her book [86], she defined a Smarandache loop (S-loop) as a loop with at least a subloop

which forms a subgroup under the binary operation of the loop. In her book, she introduced

over 75 Smarandache concepts on loops. In her first paper [87], she introduced Smarandache

: left(right) alternative loops, Bol loops, Moufang loops and Bruck loops. But in our study

here, Smarandache : inverse property loops (IPL), weak inverse property loops (WIPL), G-

loops, conjugacy closed loops (CC-loop), central loops, extra loops, A-loops, K-loops, Bruck

loops, Kikkawa loops, Burn loops and homogeneous loops will be introduced and studied

relative to the holomorphs of loops.

We shall also the study new concepts in Smarandache quasigroups after their introduction

in Muktibodh [67] and [68].

For this study: a K-loop is an A-loop with the AIP, a Bruck loop is a Bol loop with the

AIP, a Burn loop is Bol loop with the conjugacy closed property, an homogeneous loop is

an A-loop with the IP and a Kikkawa loop is an A-loop with the IP and AIP.

If there exists at least a non-empty and non-trivial subset M of a groupoid(quasigroup

or semigroup or loop) L such that (M, ·) is a non-trivial subsemigroup(subgroup

or subgroup or subgroup) of (L, ·), then L is called a Smarandache: groupoid(S-

groupoid)
(
quasigroup(S-quasigroup) or semigroup(S-semigroup) or loop(S-loop)

)
with

Smarandache: subsemigroup(S-subsemigroup)
(
subgroup(S-subgroup) or subgroup(S-

subgroup) or subgroup(S-subgroup)
)

M .

A quasigroup(loop) is called a Smarandache ”certain” quasigroup(loop) if it has at least

a non-trivial subquasigroup(subloop) with the ”certain” property and the latter is referred

to as the Smarandache ”certain” subquasigroup(subloop). For example, a loop is called a

Smarandache Bol-loop if it has at least a non-trivial subloop that is a Bol-loop and the

latter is referred to as the Smarandache Bol-subloop. By an ”initial S-quasigroup” L with

21



an ”initial S-subquasigroup” L′, we mean L and L′ are pure quasigroups, i.e. they do not

obey a ”certain” property(not of any variety).

Definition 1.7.1 A loop is called a Smarandache left inverse property loop (SLIPL) if it

has at least a non-trivial subloop with the LIP.

A loop is called a Smarandache right inverse property loop (SRIPL) if it has at least a

non-trivial subloop with the RIP.

A loop is called a Smarandache inverse property loop (SIPL) if it has at least a non-trivial

subloop with the IP.

A loop is called a Smarandache right Bol-loop (SRBL) if it has at least a non-trivial

subloop that is a right Bol(RB)-loop.

A loop is called a Smarandache left Bol-loop (SLBL) if it has at least a non-trivial subloop

that is a left Bol(LB)-loop.

A loop is called a Smarandache weak inverse property loop (SWIPL) if it has at least a

non-trivial subloop with the WIP.

A loop is called a Smarandache G-loop (SG-loop) if it has at least a non-trivial subloop

that is a G-loop.

A loop is called a Smarandache CC-loop (SCCL) if it has at least a non-trivial subloop

that is a CC-loop.

A loop is called a Smarandache Bol-loop (SBL) if it has at least a non-trivial subloop that

is a Bol-loop.

A loop is called a Smarandache central-loop (SCL) if it has at least a non-trivial subloop

that is a central-loop.

A loop is called a Smarandache extra-loop (SEL) if it has at least a non-trivial subloop

that is a extra-loop.

A loop is called a Smarandache A-loop (SAL) if it has at least a non-trivial subloop that

is a A-loop.
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A loop is called a Smarandache K-loop (SKL) if it has at least a non-trivial subloop that

is a K-loop.

A loop is called a Smarandache Moufang-loop (SML) if it has at least a non-trivial subloop

that is a Moufang-loop.

A loop is called a Smarandache Bruck-loop (SBRL) if it has at least a non-trivial subloop

that is a Bruck-loop.

A loop is called a Smarandache Kikkawa-loop (SKWL) if it has at least a non-trivial

subloop that is a Kikkawa-loop.

A loop is called a Smarandache Burn-loop (SBNL) if it has at least a non-trivial subloop

that is a Burn-loop.

A loop is called a Smarandache homogeneous-loop (SHL) if it has at least a non-trivial

subloop that is a homogeneous-loop.
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Chapter 2

HOLOMORPHY OF

SMARANDACHE QUASIGROUPS

AND LOOPS

2.1 Holomorph And Smarandache Holomorph

To every loop (L, ·) with automorphism group AUM(L, ·), there corresponds another loop.

Let the set H = (L, ·)× AUM(L, ·). If we define ’◦’ on H such that

(α, x) ◦ (β, y) = (αβ, xβ · y) for all (α, x), (β, y) ∈ H,

then H(L, ·) = (H, ◦) is a loop as shown in Bruck [19] and is called the Holomorph of (L, ·).

Let (L, ·) be an S-quasigroup(S-loop) with S-subgroup (L′, ·). Define a Smarandache

automorphism of L to be the elements of the set

SAUM(L) = SAUM(L, ·) = {α ∈ AUM(L) : α : L′ → L′}.
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It is easy to see that SAUM(L) ≤ AUM(L). So, SAUM(L) will be called the Smarandache

automorphism group(SAG) of L. SAUM(L) was called the group of Smarandache loop

automorphisms on L′ in [86]. Now, set HS = (L, ·) × SAUM(L, ·). If we define ’◦’ on HS

such that

(α, x) ◦ (β, y) = (αβ, xβ · y) for all (α, x), (β, y) ∈ HS,

then HS(L, ·) = (HS, ◦) is a S-quasigroup(S-loop) with S-subgroup (H ′, ◦) where H ′ =

L′×SAUM(L) and thus will be called the Smarandache Holomorph(SH or S-holomorph) of

(L, ·). If L is a S-groupoid with a S-subsemigroup H, then the set SSY M(L, ·) = SSY M(L)

of all bijections A in L such that A : H → H forms a group called the Smarandache

permutation(symmetric) group of the S-groupoid. In fact, SSY M(L) ≤ SY M(L).

If in L,

x−1 · xα ∈ N(L) or xα · x−1 ∈ N(L) for all x ∈ L and α ∈ AUM(L, ·),

(H, ◦) is called a Nuclear-holomorph of L, if

x−1 · xα ∈ C(L) or xα · x−1 ∈ C(L) for all x ∈ L and α ∈ AUM(L, ·),

(H, ◦) is called a Centrum-holomorph of L hence a Central-holomorph if

x−1 · xα ∈ Z(L) or xα · x−1 ∈ Z(L) for all x ∈ L and α ∈ AUM(L, ·).

The left Smarandache nucleus of L denoted by SNλ(L, ·) = Nλ(L, ·)∩H. The right Smaran-

dache nucleus of L denoted by SNρ(L, ·) = Nρ(L, ·) ∩H. The middle Smarandache nucleus

of L denoted by SNµ(L, ·) = Nµ(L, ·) ∩ H. The Smarandache nucleus of L denoted by

SN(L, ·) = N(L, ·)∩H. The Smarandache centrum of L denoted by SC(L, ·) = C(L, ·)∩H.
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The Smarandache center of L denoted by SZ(L, ·) = Z(L, ·) ∩H.

If in L,

sλ · sα ∈ SN(L) or sα · sρ ∈ SN(L) for all s ∈ H and α ∈ SAUM(L, ·),

(HS, ◦) is called a Smarandache Nuclear-holomorph of L, if

sλ · sα ∈ SC(L) or sα · sρ ∈ SC(L) for all s ∈ H and α ∈ SAUM(L, ·),

(HS, ◦) is called a Smarandache Centrum-holomorph of L hence a Smarandache Central-

holomorph if

sλ · sα ∈ SZ(L) or sα · sρ ∈ SZ(L) for all s ∈ H and α ∈ SAUM(L, ·).

Interestingly, Adeniran [1] and Robinson [75], Oyebo and Adeniran [71], Chiboka and Solarin

[26], Bruck [19], Bruck and Paige [22], Robinson [76], Huthnance [40] and Adeniran [1] have

respectively studied the holomorphs of Bol loops, central loops, conjugacy closed loops,

inverse property loops, A-loops, extra loops, weak inverse property loops, Osborn loops and

Bruck loops. Huthnance [40] showed that if (L, ·) is a loop with holomorph (H, ◦), (L, ·) is

a WIPL if and only if (H, ◦) is a WIPL. The holomorphs of an AIPL and a CIPL are yet to

be studied.

Theorem 2.1.1 (Adeniran [1] and Robinson [75])

Let (L, ·) be a loop with nuclear holomorph H(L). L is a Bol loop if and only if H(L) is

a Bol loop.

Theorem 2.1.2 (Oyebo and Adeniran [71])

Let (L, ·) be a loop with nuclear holomorph H(L). L is a central loop if and only if H(L)

is a central loop.
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Theorem 2.1.3 (Robinson [76])

Let (L, ·) be a loop with nuclear holomorph H(L). L is an extra loop if and only if H(L)

is an extra loop.

Theorem 2.1.4 (Chiboka and Solarin [26])

Let (L, ·) be a loop with nuclear holomorph H(L). L is a CC-loop if and only if H(L) is

a CC-loop.

Theorem 2.1.5 (Bruck [19])

Let (L, ·) be a loop with holomorph H(L). L is an IPL if and only if H(L) is an IPL.

Theorem 2.1.6 (Bruck and Paige [22])

Let (L, ·) be a loop with central holomorph H(L). L is an A-loop if and only if H(L) is

an A-loop.

Theorem 2.1.7 (Huthnance [40] )

Let (L, ·) be a loop with holomorph H(L). L is an WIPL if and only if H(L) is an WIPL.

2.2 Smarandache Isotopism And Autotopism

Definition 2.2.1 Now, if (L, ·) and (G, ◦) are S-groupoids with S-subsemigroups L′ and G′

respectively such that A : L′ → G′, where A ∈ {U, V, W}, then the isotopism (U, V, W ) :

(L, ·) → (G, ◦) is called a Smarandache isotopism(S-isotopism). Thus, if U = V = W ,

then U is called a Smarandache isomorphism, hence we write (L, ·) % (G, ◦).
Similarly, if (L, ·) is an S-groupoid with S-subsemigroup L′ such that A ∈ {U, V, W} is

a Smarandache permutation, then the autotopism (U, V, W ) is called a Smarandache auto-

topism (S-autotopism) and they form a group SAUT (L, ·) which will be called the Smaran-

dache autotopism group of (L, ·). Observe that SAUT (L, ·) ≤ AUT (L, ·).
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Discussions To be more precise about the notion of S-isotopism in Definition 2.2.1, the

following explanations are given. For a given S-groupoid, the S-subsemigroup is arbitrary.

But in the proofs, we shall make use of one arbitrary S-subsemigroup for an S-groupoid at a

time for our arguments. Now, if (L, ·) and (G, ◦) are S-isotopic S-groupoids with arbitrary S-

subsemigroups L′ and G′ respectively under the triple (U, V,W ). In case the S-subsemigroup

L′ of the S-groupoid L is replaced with another S-groupoid L′′ of L(i.e a situation where

by L has at least two S-subsemigroups), then under the same S-isotopism (U, V,W ), the S-

groupoid isotope G has a second S-subsemigroups G′′. Hence, when studying the S-isotopism

(U, V, W ), it will be for the system

{(L, ·), (L′, ·)} → {(G, ◦), (G′, ◦)} or {(L, ·), (L′′, ·)} → {(G, ◦), (G′′, ◦)}

and not

{(L, ·), (L′, ·)} → {(G, ◦), (G′′, ◦)} or {(L, ·), (L′′, ·)} → {(G, ◦), (G′, ◦)}.

This is because |L′| = |G′| and |L′′| = |G′′| since (L′)A = G′ and (L′′)A = G′′ for all

A ∈ {U, V, W} while it is not compulsory that |L′| = |G′′| and |L′′| = |G′|. It is very

easy to see from the definition that the component transformations U, V, W of isotopy after

restricting them to the S-subsemigroup or S-subgroup L′ are bijections. Let x1, x2 ∈ L′, then

x1A = x2A implies that x1 = x2 because x1, x2 ∈ L′ implies x1, x2 ∈ L, hence x1A = x2A

in L implies x1 = x2. The mappings A : L′ → G′ and A : L− L′ → G− G′ are bijections

because A : L → G is a bijection. Our explanations above are illustrated with the following

examples.

Example 2.2.1 The systems (L, ·) and (L, ∗), L = {0, 1, 2, 3, 4} with the multiplication

Table 2.1 and Table 2.2 are S-quasigroups with S-subgroups (L′, ·) and (L′′, ∗) respectively,

L′ = {0, 1} and L′′ = {1, 2}. (L, ·) is taken from Example 2.2 of [68]. The triple (U, V, W )
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· 0 1 2 3 4

0 0 1 3 4 2
1 1 0 2 3 4
2 3 4 1 2 0
3 4 2 0 1 3
4 2 3 4 0 1

Table 2.1: A Smarandache Quasigroup

∗ 0 1 2 3 4

0 1 0 4 2 3
1 3 1 2 0 4
2 4 2 1 3 0
3 0 4 3 1 2
4 2 3 0 4 1

Table 2.2: A Smarandache Quasigroup Isotope

such that

U =




0 1 2 3 4

1 2 3 4 0


 , V =




0 1 2 3 4

1 2 4 0 3


 and W =




0 1 2 3 4

1 2 0 4 3




are permutations on L, is an S-isotopism of (L, ·) onto (L, ∗). Notice that A(L′) = L′′ for

all A ∈ {U, V, W} and U, V, W : L′ → L′′ are all bijcetions.

Example 2.2.2 According to Example 4.2.2 of [89], the system (Z6,×6) i.e the set L = Z6

under multiplication modulo 6 is an S-semigroup with S-subgroups (L′,×6) and (L′′,×6),

L′ = {2, 4} and L′′ = {1, 5}. This can be deduced from its multiplication Table 2.3. The

triple (U, V, W ) such that
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×6 0 1 2 3 4 5

0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

Table 2.3: A Smarandache Semigroup

∗ 0 1 2 3 4 5

0 0 1 2 3 4 5
1 4 1 1 4 4 1
2 5 1 5 2 1 2
3 3 1 5 0 4 2
4 1 1 1 1 1 1
5 2 1 2 5 1 5

Table 2.4: A Smarandache Semigroup

U =




0 1 2 3 4 5

4 3 5 1 2 0


 , V =




0 1 2 3 4 5

1 3 2 4 5 0


 and W =




0 1 2 3 4 5

1 0 5 4 2 3




are permutations on L, is an S-isotopism of (Z6,×6) unto an S-semigroup (Z6, ∗) with S-

subgroups (L′′′, ∗) and (L′′′′, ∗), L′′′ = {2, 5} and L′′′′ = {0, 3} as shown in Table 2.4. Notice

that A(L′) = L′′′ and A(L′′) = L′′′′ for all A ∈ {U, V,W} and U, V, W : L′ → L′′′ and

U, V,W : L′′ → L′′′′ are all bijcetions.

From Example 2.2.1 and Example 2.2.2, it is very clear that the study of of S-isotopy

of two S-groupoids or S-quasigroups or S-semigroups or S-loops is independent of the S-

subsemigroup or S-subgroup that is in consideration. All results in this paper are true for

any given S-subsemigroups or S-subgroups of two S-isotopic S-groupoids or S-quasigroups or
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S-semigroups or S-loops. More examples of S-isotopic S-groupoids can be constructed using

S-groupoids in [88].

Remark 2.2.1 Taking careful look at Definition 2.2.1 and comparing it with [Defini-

tion 4.4.1,[86]], it will be observed that the author did not allow the component bijections

U ,V and W in (U, V, W ) to act on the whole S-loop L but only on the S-subloop(S-subgroup)

L′. We feel this is necessary to adjust here so that the set L − L′ is not out of the study.

Apart from this, our adjustment here will allow the study of Smarandache isotopy to be

explorable. Therefore, the S-isotopism and S-isomorphism here are clearly special types of

relations(isotopism and isomorphism) on the whole domain into the whole co-domain but

those of Vasantha Kandasamy [86] only take care of the structure of the elements in the S-

subloop and not the S-loop. Nevertheless, we do not fault her study for we think she defined

them to apply them to some life problems as an applied algebraist.

2.3 Holomorphy Of Some Smarandache Loops

Theorem 2.3.1 Let (L, ·) be a Smarandanche loop with subgroup (S, ·). The holomorph

H(S) of S is a group.

Theorem 2.3.2 A loop is a Smarandache loop if and only if its holomorph is a Smarandache

loop.

Proof

Let L be a Smarandache loop with subgroup S. By Theorem 2.3.1, (H(S), ◦) is a group

where H(S) = AUM(S, ·) × (S, ·). Clearly, H(S) 6⊂ H(L, ·). So, let us replace AUM(S, ·)
in H(S) by SAUM(L, ·). SAUM(L, ·) ≤ AUM(L, ·) hence, H(S) = SAUM(L, ·) × (S, ·)
remains a group. In fact, (H(S), ◦) ⊂ (H, ◦) and (H(S), ◦) ≤ (H, ◦). Thence, the holomorph

of a Smarandache loop is a Smarandache loop.
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To prove the converse, recall that H(L) = AUM(L)×L. If H(L) is a Smarandache loop

then ∃ SH ⊂ H(L) 3 SH ≤ H(L).

SH ⊂ H(L) ⇒ ∃ BUM(L) ⊂ AUM(L) and B ⊂ L 3 SH = BUM(L)×B.

Let us choose

BUM(L) = {α ∈ AUM(L) : bα ∈ B ∀ b ∈ B},

this is the group of Smarandache loop automorphisms on B. So, (SH , ◦) = (BUM(L)×B, ◦)
is expected to be a group. Thus,

(α, x) ◦ [(β, y) ◦ (γ, z)] = [(α, x) ◦ (β, y)] ◦ (γ, z) ∀ x, y, z ∈ B, α, β, γ ∈ Bum(L)

⇔ xβγ · (yγ · z) = (xβγ · yγ) · z ⇔

x′ · (y′ · z) = (x′ · y′) · z ∀ x′, y′, z ∈ B.

So, (B, ·) must be a group. Hence, L is a Smarandache loop.

Remark 2.3.1 It must be noted that if AUM(L, ·) = SAUM(L, ·), then S is a characteristic

subloop. A subloop S of a loop L is said to be characteristic if it is its own automorphic

image under any automorphism of the loop L.

Theorem 2.3.3 Let L and L′ be loops. L ∼= L′ implies H(L) ∼= H(L′).

Proof

If L ∼= L′ then we need to find a bijection φ such that

AUM(L))
φ∼= AUM(L′) ⇒ H(L) = AUM(L)× L ∼= AUM(L′)× L′ = H(L′).

Already, α : L → L′ 3 (α, α, α) : L → L′
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is an isotopism. According to [72], if two loops are isotopic, then their groups of autotopism

are isomorphic. The automorphism group is one of such since it is a form of autotopism.

Thus;

AUM(L) ∼= AUM(L′) ⇒ H(L) = AUM(L)× L ∼= AUM(L′)× L′ = H(L′).

Theorem 2.3.4 Let U = (L,⊕) and V = (L,⊗) be initial S-quasigroups such that

SAUM(U) and SAUM(V ) are conjugates in SSY M(L) i.e there exists a ψ ∈ SSY M(L)

such that for any γ ∈ SAUM(V ), γ = ψ−1αψ where α ∈ SAUM(U). Then, HS(U) %

HS(V ) if and only if

xδ ⊗ yγ = (xβ ⊕ y)δ ∀ x, y ∈ L, β ∈ SAUM(U) and some δ, γ ∈ SAUM(V ).

Hence:

1. γ ∈ SAUM(U) if and only if (I, γ, δ) ∈ SAUT (V ).

2. if U is a initial S-loop, then;

(a) Leδ ∈ SAUM(V ).

(b) β ∈ SAUM(V ) if and only if Reγ ∈ SAUM(V ).

where e is the identity element in U and Lx, Rx are respectively the left and right

translations mappings of x ∈ V .

3. if δ = I, then |SAUM(U)| = |SAUM(V )| = 3 and so SAUM(U) and SAUM(V ) are

boolean groups.

4. if γ = I, then |SAUM(U)| = |SAUM(V )| = 1.
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Proof

Let HS(L,⊕) = (HS, ◦) and HS(L,⊗) = (HS,¯). HS(U) % HS(V ) if and only if there exists

a bijection φ : HS(U) → HS(V ) such that

[(α, x) ◦ (β, y)]φ = (α, x)φ¯ (β, y)φ and (H ′,⊕)
φ∼= (H ′′,⊗)

where H ′ = L′×SAUM(U) and H ′′ = L′′×SAUM(V ), (L′,⊕) and (L′′,⊗) been the initial

S-subquasigroups of U and V . Define

(α, x)φ = (ψ−1αψ, xψ−1αψ) ∀ (α, x) ∈ (HS, ◦) where ψ ∈ SSY M(L).

HS(U) ∼= HS(V ) ⇔ (αβ, xβ ⊕ y)φ = (ψ−1αψ, xψ−1αψ)¯ (ψ−1βψ, yψ−1βψ)

⇔ (ψ−1αβψ, (xβ ⊕ y)ψ−1αβψ) = (ψ−1αβψ, xψ−1αβψ ⊗ yψ−1βψ) ⇔

(xβ ⊕ y)ψ−1αβψ = xψ−1αβψ ⊗ yψ−1βψ ⇔ xδ ⊗ yγ = (xβ ⊕ y)δ

where δ = ψ−1αβψ, γ = ψ−1βψ.

Note that,

γLxδ = Lxβδ and δRyγ = βRyδ ∀ x, y ∈ L.

So, when U is an S-loop,

γLeδ = δ and δReγ = βδ.

These can easily be used to prove the remaining part of the theorem.

Corollary 2.3.1 Let U = (L,⊕) and V = (L,⊗) be initial S-quasigroups. HS(U) % HS(V )

implies U and V are S-isotopic under a triple of the form (δ, I, δ).
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Proof

In Theorem 2.3.4, let β = I, then γ = I. The conclusion follows immediately.

Remark 2.3.2 By Theorem 2.3.3 and Corollary 2.3.1, any two distinct S-isomorphic S-

loops with the same underlining set are non-trivially S-isotopic.

Corollary 2.3.2 Let L be a Smarandache loop. If L is isomorphic to L′, then {H(L), H(L′)}
and {L,L′} are both systems of isomorphic Smarandache loops.

Proof

This follows from Theorem 2.3.2, Theorem 2.3.3 and the obvious fact that the Smarandache

loop property in loops is isomorphic invariant.

Remark 2.3.3 The fact in Corollary 2.3.2 that H(L) and H(L′) are isomorphic Smaran-

dache loops could be a clue to solve one of the problems posed in [87]. The problem required

us to prove or disprove that every Smarandache loop has a Smarandache loop isomorph.

2.3.1 Holomorphy Of Smarandache Inverse Property Loops

Theorem 2.3.5 Let L be a loop with holomorph H(L). L is an IP-SIPL if and only if H(L)

is an IP-SIPL.

Proof

In an IPL, every subloop is an IPL. So if L is an IPL, then it is an IP-SIPL. From Theo-

rem 2.1.5, it was stated that L is an IPL if and only if H(L) is an IPL. Hence, H(L) is an

IP-SIPL. Conversely assuming that H(L) is an IP-SIPL and using the same argument, L is

an IP-SIPL

Theorem 2.3.6 Let L be a loop with S-holomorph HS(L). L is a SIPL if and only if HS(L)

is a SIPL.
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Proof

Assume that L is a SIPL and let L′ be the S-IP subloop in L. Then, consider H ′ =

L′×SAUM(L) ⊂ HS = L×SAUM(L). Recall that (Hs, ◦) is a loop. It can be drawn from

Theorem 2.1.5 that (H ′, ◦) is an IPL, hence, a S-IP subloop of HS. Thus, HS(L) is a SIPL.

Conversely, if HS(L) is a SIPL, then it has a S-IP subloop H ′. Say, H ′ = L′ × SAUM(L)

which means L′ is an IPL since H ′′ = L′ × {I} is a subloop of H ′ and H ′′ ∼= L′. Therefore,

L is a SIPL.

Theorem 2.3.7 Let L be a loop with holomorph H(L). L is an WIP-SWIPL if and only if

H(L) is an WIP-SWIPL.

Proof

In a WIPL, every subloop is a WIPL. So if L is a WIPL, then it is a WIP-SWIPL. From

Theorem 2.1.7, it can be stated that L is a WIPL if and only if H(L) is a WIPL. Hence,

H(L) is a WIP-SWIPL. Conversely assuming that H(L) is a WIP-SWIPL and using the

same argument L is a WIP-SWIPL.

Theorem 2.3.8 Let L be a loop with S-holomorph HS(L). L is a SWIPL if and only if

HS(L) is a SWIPL.

Proof

Assume that L is a SWIPL and let L′ be the S-WIP subloop in L. Then, consider H ′ =

L′ × SAUM(L) ⊂ HS = L × SAUM(L). Recall that (Hs, ◦) is a loop. It can be drawn

from Theorem 2.1.7 that (H ′, ◦) is an WIPL, hence, a S-WIP subloop of HS. Thus, HS(L)

is a SWIPL. Conversely, if HS(L) is a SWIPL, then it has a S-WIP subloop H ′. Say,

H ′ = L′×SAUM(L) which means L′ is a WIPL since H ′′ = L′×{I} is a subloop of H ′ and

H ′′ ∼= L′. Therefore, L is a SWIPL.

Theorem 2.3.9 Let (L, ·) be a quasigroup(loop) with holomorph H(L). H(L) is an

AIPQ(AIPL) if and only if
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1. AUM(L) is an abelian group,

2. (β−1, α, I) ∈ AUT (L) ∀ α, β ∈ AUM(L) and

3. L is a AIPQ(AIPL).

Proof

A quasigroup(loop) is an automorphic inverse property loop(AIPL) if and only if it obeys

the AIP identity. Using either of the definitions of an AIPQ(AIPL), it can be shown that

H(L) is a AIPQ(AIPL) if and only if AUM(L) is an abelian group and

(β−1Jρ, αJρ, Jρ) ∈ AUT (L) ∀ α, β ∈ AUM(L).

L is isomorphic to a subquasigroup(subloop) of H(L), so L is a AIPQ(AIPL) which implies

(Jρ, Jρ, Jρ) ∈ AUT (L). So,

(β−1, α, I) ∈ AUT (L) ∀ α, β ∈ AUM(L).

Corollary 2.3.3 Let (L, ·) be a quasigroup(loop) with holomorph H(L). H(L) is a

CIPQ(CIPL) if and only if

1. AUM(L) is an abelian group,

2. (β−1, α, I) ∈ AUT (L) ∀ α, β ∈ AUM(L) and

3. L is a CIPQ(CIPL).

Proof

A quasigroup(loop) is a CIPQ(CIPL) if and only if it is a WIPQ(WIPL) and an AIPQ(AIPL).

L is a WIPQ(WIPL) if and only if H(L) is a WIPQ(WIPL).
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If H(L) is a CIPQ(CIPL), then H(L) is both a WIPQ(WIPL) and a AIPQ(AIPL) which

implies 1., 2., and 3. of Theorem 2.3.9. Hence, L is a CIPQ(CIPL). The converse follows by

just doing the reverse.

Corollary 2.3.4 Let (L, ·) be a quasigroup(loop) with holomorph H(L). If H(L) is an

AIPQ(AIPL) or CIPQ(CIPL), then H(L) ∼= L.

Proof

By 2. of Theorem 2.3.9,

(β−1, α, I) ∈ AUT (L) ∀ α, β ∈ AUM(L)

implies xβ−1 · yα = x · y which means α = β = I by substituting x = e and y = e. Thus,

AUM(L) = {I} and so H(L) ∼= L.

Theorem 2.3.10 The holomorph of a quasigroup(loop) L is a AIPQ(AIPL) or

CIPQ(CIPL) if and only if AUM(L) = {I} and L is a AIPQ(AIPL) or CIPQ(CIPL).

Proof

This is established using Theorem 2.3.9, Corollary 2.3.3 and Corollary 2.3.4.

Theorem 2.3.11 Let (L, ·) be a quasigroups(loop) with holomorph H(L). H(L) is a

CIPQ(CIPL) if and only if AUM(L) is an abelian group and any of the following is true for

all x, y ∈ L and α, β ∈ AUM(L):

1. (xβ · y)xρ = yα.

2. xβ · yxρ = yα.

3. (xλα−1βα · yα) · x = y.

4. xλα−1βα · (yα · x) = y.
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Proof

This is achieved by simply using the four equivalent identities that define a CIPQ(CIPL):

Corollary 2.3.5 Let (L, ·) be a quasigroups(loop) with holomorph H(L). If H(L) is a

CIPQ(CIPL) then, the following are equivalent to each other

1. (β−1Jρ, αJρ, Jρ) ∈ AUT (L) ∀ α, β ∈ AUM(L).

2. (β−1Jλ, αJλ, Jλ) ∈ AUT (L) ∀ α, β ∈ AUM(L).

3. (xβ · y)xρ = yα.

4. xβ · yxρ = yα.

5. (xλα−1βα · yα) · x = y.

6. xλα−1βα · (yα · x) = y.

Hence,

(β, α, I), (α, β, I), (β, I, α), (I, α, β) ∈ AUT (L) ∀ α, β ∈ AUM(L).

Proof

The equivalence of the six conditions follows from Theorem 2.3.11 and the proof of Theo-

rem 2.3.9. The last part is simple.

Corollary 2.3.6 Let (L, ·) be a quasigroup(loop) with holomorph H(L). If H(L) is a

CIPQ(CIPL) then, L is a flexible unipotent CIPQ(flexible CIPL of exponent 2).

Proof

It is observed that Jρ = Jλ = I. Hence, the conclusion follows.

Remark 2.3.4 The holomorphic structure of loops such as extra loop, Bol-loop, C-loop, CC-

loop and A-loop have been found to be characterized by some special types of automorphisms

such as
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1. Nuclear automorphism(in the case of Bol-,CC- and extra loops),

2. central automorphism(in the case of central and A-loops).

By Theorem 2.3.9 and Corollary 2.3.3, the holomorphic structure of AIPLs and CIPLs is

characterized by commutative automorphisms.

Theorem 2.3.12 The holomorph H(L) of a quasigroup(loop) L is a Smarandache

AIPQ(AIPL) or CIPQ(CIPL) if and only if SAUM(L) = {I} and L is a Smarandache

AIPQ(AIPL) or CIPQ(CIPL).

Proof

Let L be a quasigroup with holomorph H(L). If H(L) is a SAIPQ(SCIPQ), then there

exists a S-subquasigroup H ′(L) ⊂ H(L) such that H ′(L) is a AIPQ(CIPQ). Let H ′(L) =

G× SAUM(L) where G is the S-subquasigroup of L. From Theorem 2.3.10, it can be seen

that H ′(L) is a AIPQ(CIPQ) if and only if SAUM(L) = {I} and G is a AIPQ(CIPQ). So

the conclusion follows.

2.3.2 Holomorphy Of Smarandache Conjugacy Closed Loops

Theorem 2.3.13 Every G-loop is a SG-loop.

Proof

As shown in [Lemma 2.2, [27]], every subloop in a G-loop is a G-loop. Hence, the claim

follows.

Corollary 2.3.7 CC-loops are SG-loops.

Proof

In [38], CC-loops were shown to be G-loops. Hence, the result follows by Theorem 2.3.13.
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Theorem 2.3.14 Let G be a CC-loop with normal subloop H. G/H is a SG-loop.

Proof

According to [Theorem 2.1,[27]], G/H is a G-loop. Hence, by Theorem 2.3.13, the result

follows.

Theorem 2.3.15 Every SCCL is a SG-loop.

Proof

If a loop L is a SCCL, then there exist a subloop H of L that is a CC-loop. CC-loops are

G-loops, hence, H is a G-loop which implies L is a SG-loop.

Theorem 2.3.16 Every CC-loop is a SCCL.

Proof

By the definition of CC-loop in [59], [58] and [61], every subloop of a CC-loop is a CC-loop.

Hence, the conclusion follows.

Remark 2.3.5 The fact in Corollary 2.3.7 that CC-loops are SG-loops can be seen from

Theorem 2.3.15 and Theorem 2.3.16.

Theorem 2.3.17 Let L be a loop with Nuclear-holomorph H(L). L is an IP-CC-SIP-SCCL

if and only if H(L) is an IP-CC-SIP-SCCL.

Proof

If L is an IP-CCL, then by Theorem 2.3.5, H(L) is an IP-SIPL and hence by Theorem 2.1.4

and Theorem 2.3.16, H(L) is an IP-CC-SIP-SCCL. The converse is true by assuming that

H(L) is an IP-CC-SIP-SCCL and using the same reasoning.

Theorem 2.3.18 Let L be a loop with S-nuclear holomorph HS(L). L is a SCCL if and

only if HS(L) is a SCCL.
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Proof

Assume that L is a SCCL and let L′ be the S-CC subloop in L. Then, consider H ′ =

L′×SAUM(L) ⊂ HS = L×SAUM(L). Recall that (Hs, ◦) is a loop. It can be drawn from

Theorem 2.1.4 that (H ′, ◦) is a CCL, hence, a S-CC subloop of HS. Thus, HS(L) is a SCCL.

Conversely, if HS(L) is a SCCL, then it has a S-CC subloop H ′. Say, H ′ = L′ × SAUM(L)

which means L′ is a CCL since H ′′ = L′ × {I} is a subloop of H ′ and H ′′ ∼= L′. Therefore,

L is a SCCL.

2.3.3 Holomorphy Of Smarandache: Bol Loops, Central Loops,

Extra Loops And Burn Loops

Theorem 2.3.19 Let L be a loop with Nuclear-holomorph H(L). L is a Bol-SBL if and

only if H(L) is a Bol-SBL.

Proof

If L is a Bol-loop, then by Theorem 2.1.1, H(L) is a Bol-loop. According to [Theorem 6,

[87]], every Bol-loop is a SBL. Hence, H(L) is a Bol-SBL. The Converse is true by using the

same argument.

Theorem 2.3.20 Let L be a loop with S-nuclear holomorph HS(L). L is a SBL if and only

if HS(L) is a SBL.

Proof

Assume that L is a SBL and let L′ be the S-Bol subloop in L. Then, consider H ′ =

L′×SAUM(L) ⊂ HS = L×SAUM(L). Recall that (Hs, ◦) is a loop. It can be drawn from

Theorem 2.1.1 that (H ′, ◦) is a Bol loop, hence, a S-Bol subloop of HS. Thus, HS(L) is a SBL.

Conversely, if HS(L) is a SBL, then it has a S-Bol subloop H ′. Say, H ′ = L′ × SAUM(L)

which means L′ is a Bol loop since H ′′ = L′×{I} is a subloop of H ′ and H ′′ ∼= L′. Therefore,

L is a SBL.
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Theorem 2.3.21 Let L be a loop with Nuclear-holomorph H(L). L is a central-SCL if and

only if H(L) is a central-SCL.

Proof

If L is a central-loop, then by Theorem 2.1.2, H(L) is a central-loop. Every central-loop is

a SCL. Hence, H(L) is a central-SCL. The Converse is true by using the same argument.

Theorem 2.3.22 Let L be a loop with S-nuclear holomorph HS(L). L is a SCL if and only

if HS(L) is a SCL.

Proof

Assume that L is a SCL and let L′ be the S-central subloop in L. Then, consider H ′ =

L′ × SAUM(L) ⊂ HS = L × SAUM(L). Recall that (Hs, ◦) is a loop. It can be drawn

from Theorem 2.1.2 that (H ′, ◦) is a central loop, hence, a S-central subloop of HS. Thus,

HS(L) is a SCL. Conversely, if HS(L) is a SCL, then it has a S-central subloop H ′. Say,

H ′ = L′ × SAUM(L) which means L′ is a central loop since H ′′ = L′ × {I} is a subloop of

H ′ and H ′′ ∼= L′. Therefore, L is a SCL.

Theorem 2.3.23 Let L be a loop with Nuclear-holomorph H(L). L is a extra-SEL if and

only if H(L) is an extra-SEL.

Proof

If L is a extra-loop, then by Theorem 2.1.3, H(L) is a extra-loop. Every extra-loop is a SEL.

Hence, H(L) is a extra-SEL. The Converse is true by using the same argument.

Theorem 2.3.24 Let L be a loop with S-nuclear holomorph HS(L). L is a SEL if and only

if HS(L) is a SEL.

Proof

Assume that L is a SEL and let L′ be the S-extra subloop in L. Then, consider H ′ =

L′ × SAUM(L) ⊂ HS = L × SAUM(L). Recall that (Hs, ◦) is a loop. It can be drawn
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from Theorem 2.1.3 that (H ′, ◦) is a extra loop, hence, a S-extra subloop of HS. Thus,

HS(L) is a SEL. Conversely, if HS(L) is a SEL, then it has a S-extra subloop H ′. Say,

H ′ = L′×SAUM(L) which means L′ is a extra loop since H ′′ = L′×{I} is a subloop of H ′

and H ′′ ∼= L′. Therefore, L is a SEL.

Corollary 2.3.8 Let L be a loop with Nuclear-holomorph H(L). L is a IP-Burn-SIP-SBNL

if and only if H(L) is an IP-Burn-SIP-SBNL.

Proof

This follows by combining Theorem 2.3.17 and Theorem 2.3.19.

Corollary 2.3.9 Let L be a loop with S-nuclear holomorph HS(L). L is a SBNL if and only

if HS(L) is a SBNL.

Proof

This follows by combining Theorem 2.3.18 and Theorem 2.3.20.

2.3.4 Holomorphy Of Smarandache: A-Loops, Homogeneous

Loops

Theorem 2.3.25 Every A-loop is a SAL.

Proof

According to [Theorem 2.2, [22]], every subloop of an A-loop is an A-loop. Hence, the

conclusion follows.

Theorem 2.3.26 Let L be a loop with Central-holomorph H(L). L is an A-SAL if and only

if H(L) is an A-SAL.

Proof

If L is an A-loop, then by Theorem 2.1.6, H(L) is a A-loop. By Theorem 2.3.25, every A-loop

is a SAL. Hence, H(L) is an A-SAL. The Converse is true by using the same argument.
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Theorem 2.3.27 Let L be a loop with S-central holomorph HS(L). L is a SAL if and only

if HS(L) is a SAL.

Proof

Assume that L is a SAL and let L′ be the S-extra subloop in L. Then, consider H ′ =

L′×SAUM(L) ⊂ HS = L×SAUM(L). Recall that (Hs, ◦) is a loop. It can be drawn from

Theorem 2.1.6 that (H ′, ◦) is an A-loop, hence, a S-A-subloop of HS. Thus, HS(L) is a SAL.

Conversely, if HS(L) is a SAL, then it has a S-A subloop H ′. Say, H ′ = L′ × SAUM(L)

which means L′ is a A-loop since H ′′ = L′×{I} is a subloop of H ′ and H ′′ ∼= L′. Therefore,

L is a SAL.

Corollary 2.3.10 Let L be a loop with Central-holomorph H(L). L is an homogeneous-SHL

if and only if H(L) is an homogeneous-SHL.

Proof

This can be seen by combining Theorem 2.3.5 and Theorem 2.3.26.

Corollary 2.3.11 Let L be a loop with S-Central-holomorph HS(L). L is an homogeneous-

SHL if and only if HS(L) is an homogeneous-SHL.

Proof

This can be seen by combining Theorem 2.3.6 and Theorem 2.3.27.

2.3.5 Holomorphy Of Smarandache: K-Loops, Bruck-Loops and

Kikkawa-Loops

Corollary 2.3.12 The holomorph H(L) of a loop L is a SKL or SBRL or SKWL if and

only if SAUM(L) = {I} and L is a SKL or SBRL or SKWL.

Proof

Let L be a loop with holomorph H(L). Consider a subloop H ′(L) of H(L) such that

H ′(L) = G× SAUM(L) where G is a subloop of L.
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1. Recall that by Theorem 2.1.6, H ′(L) is an A-loop if and only if it is a Smarandache

Central-holomorph of L and G is an A-loop. Combing this fact with Theorem 2.3.12,

it can be concluded that: the holomorph H(L) of a loop L is a SKL if and only if

SAUM(L) = {I} and L is a SKL.

2. Recall that by Theorem 2.1.1, H ′(L) is a Bol loop if and only if it is a Smarandache

Nuclear-holomorph of L and G is a Bol-loop. Combing this fact with Theorem 2.3.12,

it can be concluded that: the holomorph H(L) of a loop L is a SBRL if and only if

SAUM(L) = {I} and L is a SBRL.

3. Following the first reason in 1., and using Theorem 2.3.12, it can be concluded that:

the holomorph H(L) of a loop L is a SKWL if and only if SAUM(L) = {I} and L is

a SKWL.

2.4 Double Cryptography Using The Smarandache

Keedwell CIQ

In the quest for the application of CIPQs with long inverse cycles to cryptography, Keed-

well [51] constructed the following CIPQ which we shall specifically call Keedwell CIPQ.

Theorem 2.4.1 (Keedwell CIPQ)

Let (G, ·) be an abelian group of order n such that n + 1 is composite. Define a binary

operation ’◦’ on the elements of G by the relation a◦b = arbs, where rs = n+1. Then (G, ◦)
is a CIPQ and the right crossed inverse of the element a is au, where u = (−r)3

The author also gave examples and detailed explanation and procedures of the use of this

CIPQ for cryptography. Cross inverse property quasigroups have been found appropriate for

cryptography because of the fact that the left and right inverses xλ and xρ of an element x
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do not coincide unlike in left and right inverse property loops, hence this gave rise to what

is called ’cycle of inverses’ or ’inverse cycles’ or simply ’cycles’ i.e finite sequence of elements

x1, x2, · · · , xn such that xρ
k = xk+1 mod n.

The number n is called the length of the cycle. The origin of the idea of cycles can be traced

back to Artzy [7, 9] where he also found there existence in WIPLs apart form CIPLs. In his

two papers, he proved some results on possibilities for the values of n and for the number m

of cycles of length n for WIPLs and especially CIPLs. We call these ”Cycle Theorems” for

now.

In application, it is assumed that the message to be transmitted can be represented as

single element x of a quasigroup (L, ·) and that this is enciphered by multiplying by another

element y of L so that the encoded message is yx. At the receiving end, the message is

deciphered by multiplying by the right inverse yρ of y. If a left(right) inverse quasigroup

is used and the left(right) inverse of x is xλ (xρ), then the left(right) inverse of xλ (xρ) is

necessarily x. But if a CIPQ is used, this is not necessary the situation. This fact makes an

attack on the system more difficult in the case of CIPQs.

Definition 2.4.1 (Smarandache Keedwell CIPQ)

Let Q be an initial S-quasigroup with an initial S-subquasigroup P . Q is called a Smaran-

dache Keedwell CIPQ(SKCIPQ) if P is isomorphic to the Keedwell CIPQ, say under a

mapping φ.

Theorem 2.4.2 Let F be any class of variety of S-quasigroups(loops). Let U = (L,⊕) and

V = (L,⊗) be initial S-quasigroups(S-loops) that are S-isotopic under the triple of the form

(δ−1β, γ−1, δ−1) for all β ∈ SAUM(U) and some δ, γ ∈ SAUM(V )
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such that their SAGs are non-trivial and are conjugates in SSY M(L) i.e there exists a

ψ ∈ SSY M(L) such that for any

γ ∈ SAUM(V ), γ = ψ−1αψ where α ∈ SAUM(U).

Then, U ∈ F if and only if V ∈ F.

Proof

By Theorem 2.3.4, HS(U) ∼= HS(V ). Let U ∈ F, then since H(U) has an initial

S-subquasigroup(S-subloop) that is isomorphic to U and that initial S-subquasigroup(S-

subloop) is isomorphic to an S-subquasigroup(S-subloop) of H(V ) which is isomorphic to V ,

V ∈ F. The proof for the converse is similar.

Theorem 2.4.3 Let U = (L,⊕) and V = (L,⊗) be initial S-quasigroups(S-loops) that are

S-isotopic under the triple of the form

(δ−1β, γ−1, δ−1) for all β ∈ SAUM(U) and some δ, γ ∈ SAUM(V )

such that their Smarandache automorphism groups are non-trivial and are conjugates in

SSY M(L) i.e there exists a ψ ∈ SSY M(L) such that for any

γ ∈ SAUM(V ), γ = ψ−1αψ where α ∈ SAUM(U).

Then, U is a SCIPQ(SCIPL) if and only if V is a SCIPQ(SCIPL).

Proof

Following Theorem 2.3.4, HS(U) % HS(V ). Also, by Theorem 2.3.12, HS(U)(HS(V )) is

a SCIPQ(SCIPL) if and only if SAUM(U) = {I}(SAUM(V ) = {I}) and U(V ) is a

SCIPQ(SCIPL).
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Let U be an SCIPQ(SCIPL), then since HS(U) has a subquasigroup(subloop) that

is isomorphic to a S-CIP-subquasigroup(subloop) of U and that subquasigroup(subloop)

is isomorphic to a S-subquasigroup(subloop) of HS(V ) which is isomorphic to a S-

subquasigroup(subloop) of V , V is a SCIPQ(SCIPL). The proof for the converse is similar.

Application To Cryptography Let the Smarandache Keedwell CIPQ be the SCIPQ U

in Theorem 2.4.3. Definitely, its Smarandache automorphism group is non-trivial because

as shown in Theorem 2.1 of Keedwell [51], for any CIPQ, the mapping Jρ : x → xρ is

an automorphism. This mapping will be trivial only if the S-CIP-subquasigroup of U is

unipotent. For instance, in Example 2.1 of Keedwell [51], the CIPQ (G, ◦) obtained is

unipotent because it was constructed using the cyclic group C5 =< c : c5 = e > and defined

as a ◦ b = a3b2. But in Example 2.2, the CIPQ gotten is not unipotent as a result of using

the cyclic group C11 =< c : c11 = e >. Thus, the choice of a Smarandache Keedwell CIPQ

which suits our purpose in this work for a cyclic group of order n is one in which rs = n + 1

and r + s 6= n. Now that we have seen a sample for the choice of U , the initial S-quasigroup

V can then be obtained as shown in Theorem 2.4.3. By Theorem 2.4.3, V is a SCIPQ.

Now, according to Theorem 2.3.4, by the choice of the mappings α, β ∈ SAUM(U) and

ψ ∈ SSY M(L) to get the mappings δ, γ, a SCIPQ V can be produced following Theo-

rem 2.4.3. So, the secret keys for the systems are

{α, β, ψ, φ} ≡ {δ, γ, φ}.

Thus whenever a set of information or messages is to be transmitted, the sender will enci-

phere in the Smarandache Keedwell CIPQ by using specifically the S-CIP-subquasigroup in
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it(as described earlier on in the introduction) and then enciphere again with

{α, β, ψ, φ} ≡ {δ, γ, φ}

to get a SCIPQ V which is the set of encoded messages. At the receiving end, the message

V is deciphered by using an inverse isotopism i.e inverse key of

{α, β, ψ} ≡ {δ, γ})

to get U and then deciphere again(as described earlier on in the introduction) to get the

messages. The secret key can be changed over time. The method described above is a

double encryption and its a double protection. It protects each piece of information(element

of the quasigroup) and protects the combined information(the quasigroup as a whole). Its

like putting on a pair of socks and shoes or putting on under wears and clothes, the body

gets better protection. An added advantage of the use of Smarandache Keedwell CIPQ

over Keedwell CIPQ in double encryption is that the since the S-CIP-subquasigroups of the

Smarandache Keedwell CIPQ in use could be more than one, then, the S-CIP-subquasigroups

can be replaced overtime.
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Chapter 3

PARASTROPHY OF

SMARANDACHE QUASIGROUPS

AND LOOPS

3.1 Parastrophy Of Quasigroups And Loops

It has been noted that every quasigroup (L, ·) belongs to a set of 6 quasigroups, called

adjugates by Fisher and Yates [35], conjugates by Stein [84], [83] and Belousov [17] and

parastrophes by Sade [78]. They have been studied by Artzy [10], Charles Lindner and

Dwight Steedley [65] and a detailed study on them can be found in [72], [25] and [29]. The

most recent studies of the parastrophes of a quasigroup(loop) are by Sokhatskii [81, 82],

Duplak [30] and Shchukin and Gushan [80]. For a quasigroup (L, ·), its parastrophes are

denoted by (L, πi), i ∈ {1, 2, 3, 4, 5, 6} hence one can take (L, ·) = (L, π1). A quasigroup

which is equivalent to all its parastrophes is called a totally symmetric quasigroup(introduced

by Bruck [20]) while its loop is called a Steiner loop.

Definition 3.1.1 Let (G, θ) be a quasigroup. The 5 parastrophes or conjugates or adjugates
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of (G, θ) are quasigroups

(G, θ∗) , (G, θ−1) , (G, −1θ) ,

(
G,

(
θ−1

)∗)
and

(
G,

(−1θ
)∗)

whose binary operations

θ∗ , θ−1 , −1θ , (θ−1)∗ and (−1θ)∗

defined on L satisfies the conditions :

yθ∗x = z ⇔ xθy = z ∀ x, y, z ∈ G

xθ−1z = y ⇔ xθy = z ∀ x, y, z ∈ G

z −1θy = x ⇔ xθy = z ∀ x, y, z ∈ G

z
(
θ−1

)∗
x = y ⇔ xθy = z ∀ x, y, z ∈ G

and

y
(−1θ

)∗
z = x ⇔ xθy = z ∀ x, y, z ∈ G

respectively.

Definition 3.1.2 Let (G, θ) be a quasigroup.

(a) Rx and Lx represent the right and left translation maps in (G, θ) for all x ∈ G.

(b) R∗
x and L∗x represent the right and left translation maps in (G, θ∗) for all x ∈ G.

(c) Rx and Lx represent the right and left translation maps in (G, θ−1) for all x ∈ G.

(d) IRx and ILx represent the right and left translation maps in (G, −1θ) for all x ∈ G.

(e) R∗
x and L∗x represent the right and left translation maps in (G, (θ−1)∗) for all x ∈ G.
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(f) IR∗
x and IL∗x represent the right and left translation maps in (G, (−1θ)∗) for all x ∈ G.

Remark 3.1.1 If (L, θ) is a loop, (L, θ∗) is also a loop(and vice versa) while the other

adjugates are quasigroups. Furthermore,

(L, θ−1) and (L, (−1θ)∗)

have left identity elements, that is they are left loops while

(L, −1θ) and (L, (θ−1)∗)

have right identity elements, that is they are right loops.

(L, θ−1) or (L, −1θ) or (L, (θ−1)∗) or (L, (−1θ)∗)

is a loop if and only if (L, θ) is a loop of exponent 2.

Lemma 3.1.1 If (L, θ) is a quasigroup, then

1. R∗
x = Lx , L∗x = Rx , Lx = L−1

x , IRx = R−1
x , R∗

x = L−1
x , IL∗x = R−1

x ∀ x ∈ L.

2. Lx = R∗−1
x , IRx = L∗−1

x , R∗
x = R∗−1

x = Lx , IL∗x = L∗−1
x = IRx ∀ x ∈ L.

Proof

The proof of these follows by using Definition 3.1.1 and Definition 3.1.1.
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(1)

yθ∗x = z ⇔ xθy = z ⇒ yθ∗x = xθy ⇒ yR∗
x = yLx ⇒ R∗

x = Lx.

Also, yθ∗x = xθy ⇒ xL∗y = xRy ⇒ L∗y = Ry.

xθ−1z = y ⇔ xθy = z ⇒ xθ(xθ−1z) = z ⇒ xθzLx = z ⇒ zLxLx = z ⇒ LxLx = I.

Also, xθ−1(xθy) = y ⇒ xθ−1yLx = y ⇒ yLxLx = y ⇒ LxLx = I.

Hence, Lx = L−1
x ∀ x ∈ L.

z(−1θ)y = x ⇔ xθy = z ⇒ (xθy)(−1θ)y = x ⇒ xRy(
−1θ)y = x ⇒ xRyIRy = x ⇒ RyIRy = I.

Also, (z(−1θ)y)θy = z ⇒ zIRyθy = z ⇒ zIRyRy = z ⇒ IRyRy = I.

Thence, IRy = R−1
y ∀ x ∈ L.

z(θ−1)∗x = y ⇔ xθy = z, so, xθ(z(θ−1)∗x) = z ⇒ xθzR∗
x = z ⇒ zR∗

xLx = z ⇒R∗
xLx = I.

Also, (xθy)(θ−1)∗x = y ⇒ yLx(θ
−1)∗x = y ⇒ yLxR∗

x = y ⇒ LyR∗
x = I.

Whence, R∗
x = L−1

x .

y(−1θ)∗z = x ⇔ xθy = z, so, y(−1θ)∗(xθy) = x ⇒ y(−1θ)∗xRy = x ⇒ xRyIL
∗
y = x ⇒ RyIL

∗
y = I.

Also, (y(−1θ)∗z)θy = z ⇒ zIL∗yθy = z ⇒ zIL∗yRy = z ⇒ IL∗yRy = I.

Thus, IL∗y = R−1
y .

(2) These ones follow from (1).

Lemma 3.1.2 Every quasigroup which is a Smarandache quasigroup has at least a subgroup.

Proof

If a quasigroup (L, ·) is a SQ, then there exists a subquasigroup S ⊂ L such that (S, ·) is

associative. According [60], every quasigroup satisfying the associativity law has an identity

hence it is a group. So, S is a subgroup of L.
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Theorem 3.1.1 (Khalil Conditions [79])

A quasigroup is an isotope of a group if and only if any one of the following six identities

are true in the quasigroup for all elements x, y, z, u, v.

1. x{z\[(z/u)v]} = {[x(z\z)]/u}v

2. x{u\[(z/u)v]} = {[x(u\z)]/u}v

3. x{z\[(u/u)v]} = {[x(z\u)]/u}v

4. x[y\{[(yy)/z]u}] = [{x[y\(yy)]}/z]u

5. x[y\{[(yz)/y]u}] = [{x[y\(yz)]}/y]u

6. x[z\{[(yy)/y]u}] = [{x[z\(yy)]}/y]u

3.2 Parastrophy Of Smarandache Quasigroups

Theorem 3.2.1 (L, θ) is a Smarandache quasigroup with associative subquasigroup (S, θ) if

and only if any of the following equivalent statements is true.

1. (S, θ) is isotopic to (S, (θ−1)∗).

2. (S, θ∗) is isotopic to (S, θ−1).

3. (S, θ) is isotopic to (S, (−1θ)∗).

4. (S, θ∗) is isotopic to (S, −1θ).

Proof

L is a SQ with associative subquasigroup S if and only if

s1θ(s2θs3) = (s1θs2)θs3 ⇔

Rs2Rs3 = Rs2θs3 ⇔ Ls1θs2 = Ls2Ls1 ∀ s1, s2, s3 ∈ S.
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The proof of the equivalence of (1) and (2) is as follows.

Ls1θs2 = Ls2Ls1 ⇔ L−1
s1θs2

= L−1
s2
L−1

s1
⇔

Ls1θs2 = Ls1Ls2 ⇔ (s1θs2)θ
−1s3 = s2θ

−1(s1θ
−1s3) ⇔

(s1θs2)Rs3 = s2θ
−1s1Rs3 = s1Rs3(θ

−1)∗s2 ⇔ (s1θs2)Rs3 = s1Rs3(θ
−1)∗s2 ⇔

(s2θ
∗s1)Rs3 = s2θ

−1s1Rs3 ⇔ (Rs3 , I,Rs3) : (S, θ) → (S, (θ−1)∗) ⇔

(I,Rs3 ,Rs3) : (S, θ∗) → (S, θ−1) ⇔ (S, θ)

is isotopic to (S, (θ−1)∗) ⇔ (S, θ∗) is isotopic to (S, θ−1).

The proof of the equivalence of (3) and (4) is as follows.

Rs2Rs3 = Rs2θs3 ⇔ IR−1
s2

IR−1
s3

= IR−1
s2θs3

⇔

IRs3IRs2 = IRs2θs3 ⇔ (s1
−1θs3)

−1θs2 = s1
−1θ(s2θs3) ⇔

(s2θs3)ILs1 = s3ILs1

−1θs2 = s2(
−1θ)∗s3ILs1 ⇔

(s2θs3)ILs1 = s2(
−1θ)∗s3ILs1 ⇔ (s3θ

∗s2)ILs1 = s3ILs1

−1θs2 ⇔

(I, ILs1 , ILs1) : (S, θ) → (S, (−1θ)∗) ⇔ (ILs1 , I, ILs1) : (S, θ∗) → (S, −1θ) ⇔ (S, θ)

is isotopic to (S, (−1θ)∗) ⇔ (S, θ∗) is isotopic to (S, −1θ).

Remark 3.2.1 In the proof of Theorem 3.2.1, it can be observed that the isotopisms are

triples of the forms (A, I, A) and (I, B, B). All weak associative identities such as the Bol,

Moufang and extra identities have been found to be isotopic invariant in loops for any triple

of the form (A,B, C) while the central identities have been found to be isotopic invariant

only under triples of the forms (A,B,A) and (A,B, B). Since associativity obeys all the

Bol-Moufang identities, the observation in the theorem agrees with the latter stated facts.
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Corollary 3.2.1 (L, θ) is a Smarandache quasigroup with associative subquasigroup (S, θ)

if and only if any of the six Khalil conditions is true for some four parastrophes of (S, θ).

Proof

Let (L, θ) be the quasigroup in consideration. By Lemma 3.1.2, (S, θ) is a group. Notice

that

Rs2Rs3 = Rs2θs3 ⇔ L∗s2θs3
= L∗s3

L∗s2
.

Hence, (S, θ∗) is also a group. In Theorem 3.2.1, two of the parastrophes are isotopes of

(S, θ) while the other two are isotopes of (S, θ∗). Since the Khalil conditions are neccessary

and sufficient conditions for a quasigroup to be an isotope of a group, then they must be

necessarily and sufficiently true in the four quasigroup parastrophes of (S, θ).

Lemma 3.2.1 (L, θ∗) is a Smarandache quasigroup with associative subquasigroup (S, θ∗) if

and only if any of the following equivalent statements is true.

1. (S, θ∗) is isotopic to (S, −1θ).

2. (S, θ) is isotopic to (S, (−1θ)∗).

3. (S, θ∗) is isotopic to (S, θ−1).

4. (S, θ) is isotopic to (S, (θ−1)∗).

Proof

Replace (L, θ) with (L, θ∗) in Theorem 3.2.1.

Corollary 3.2.2 (L, θ∗) is a Smarandache quasigroup with associative subquasigroup (S, θ∗)

if and only if any of the six Khalil conditions is true for some four parastrophes of (S, θ).

Proof

Replace (L, θ) with (L, θ∗) in Corollary 3.2.1.
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Lemma 3.2.2 (L, θ−1) is a Smarandache quasigroup with associative subquasigroup (S, θ−1)

if and only if any of the following equivalent statements is true.

1. (S, θ−1) is isotopic to (S, θ∗) .

2. (S, (θ−1)∗) is isotopic to (S, θ).

3. (S, θ−1) is isotopic to (S, −1θ).

4. (S, (θ−1)∗) is isotopic to (S, (−1θ)∗).

Proof

Replace (L, θ) with (L, θ−1) in Theorem 3.2.1.

Corollary 3.2.3 (L, θ−1) is a Smarandache quasigroup with associative subquasigroup

(S, θ−1) if and only if any of the six Khalil conditions is true for some four parastrophes

of (S, θ).

Proof

Replace (L, θ) with (L, θ−1) in Corollary 3.2.1.

Lemma 3.2.3 (L, −1θ) is a Smarandache quasigroup with associative subquasigroup (S, −1θ)

if and only if any of the following equivalent statements is true.

1. (S, −1θ) is isotopic to (S, θ−1).

2. (S, (−1θ)∗) is isotopic to (S, (θ−1)∗).

3. (S, −1θ) is isotopic to (S, θ∗).

4. (S, (−1θ)∗) is isotopic to (S, θ).

Proof

Replace (L, θ) with (L, −1θ) in Theorem 3.2.1.
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Corollary 3.2.4 (L, −1θ) is a Smarandache quasigroup with associative subquasigroup

(S, −1θ) if and only if any of the six Khalil conditions is true for some four parastrophes

of (S, θ).

Proof

Replace (L, θ) with (L, −1θ) in Corollary 3.2.1.

Lemma 3.2.4 (L, (θ−1)∗) is a Smarandache quasigroup with associative subquasigroup

(S, (θ−1)∗) if and only if any of the following equivalent statements is true.

1. (S, (θ−1)∗) is isotopic to (S, (−1θ)∗) .

2. (S, θ−1) is isotopic to (S, −1θ).

3. (S, (θ−1)∗) is isotopic to (S, θ).

4. (S, θ−1)) is isotopic to (S, θ∗).

Proof

Replace (L, θ) with (L, (θ−1)∗) in Theorem 3.2.1.

Corollary 3.2.5 (L, (θ−1)∗) is a Smarandache quasigroup with associative subquasigroup

(S, (θ−1)∗) if and only if any of the six Khalil conditions is true for some four parastrophes

of (S, θ).

Proof

Replace (L, θ) with (L, (θ−1)∗) in Corollary 3.2.1.

Lemma 3.2.5 (L, (−1θ)∗) is a Smarandache quasigroup with associative subquasigroup

(S, (−1θ)∗) if and only if any of the following equivalent statements is true.

1. (S, (−1θ)∗) is isotopic to (S, θ).
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2. (S, −1θ) is isotopic to (S, θ∗).

3. (S, (−1θ)∗) is isotopic to (S, (θ−1)∗).

4. (S, −1θ) is isotopic to (S, θ−1).

Proof

Replace (L, θ) with (L, (−1θ)∗) in Theorem 3.2.1.

Corollary 3.2.6 (L, (−1θ)∗) is a Smarandache quasigroup with associative subquasigroup

(S, (−1θ)∗) if and only if any of the six Khalil conditions is true for some four parastrophes

of (S, θ).

Proof

Replace (L, θ) with (L, (−1θ)∗) in Corollary 3.2.1.

Theorem 3.2.2 (L, πi) is a Smarandache quasigroup with associative subquasigroup

(S, πi) ∀ i ∈ {1, 2, 3, 4, 5, 6} if and only if for any of some four j ∈ {1, 2, 3, 4, 5, 6}, (S, πj) is

an isotope of (S, πi) or (S, πk) for one k ∈ {1, 2, 3, 4, 5, 6} such that i 6= j 6= k.

Proof

This is simply the summary of Theorem 3.2.1, Lemma 3.2.1, Lemma 3.2.2, Lemma 3.2.3,

Lemma 3.2.4 and Lemma 3.2.5.

Corollary 3.2.7 (L, πi) is a Smarandache quasigroup with associative subquasigroup

(S, πi) ∀ i ∈ {1, 2, 3, 4, 5, 6} if and only if any of the six Khalil conditions is true for any of

some four of (S, πi).

Proof

This can be deduced from Theorem 3.2.2 and the Khalil conditions or by combining Corol-

lary 3.2.1, Corollary 3.2.2, Corollary 3.2.3, Corollary 3.2.4, Corollary 3.2.5 and Corol-

lary 3.2.6.

60



Chapter 4

UNIVERSALITY OF

SMARANDACHE LOOPS OF

BOL-MOUFANG TYPE

4.1 Smarandache f, g-Principal Isotopes

A subloop(subquasigroup) (S,⊗) of a loop(quasigroup) (G,⊗) is called a Smarandache

f, g-principal isotope of the subloop(subquasigroup) (S,⊕) of a loop(quasigroup) (G,⊕) if

for some f, g ∈ S,

xRg ⊗ yLf = (x⊕ y) ∀ x, y ∈ S.

On the other hand (G,⊗) is called a Smarandache f, g-principal isotope of (G,⊕) if for some

f, g ∈ S,

xRg ⊗ yLf = (x⊕ y) ∀ x, y ∈ G

where (S,⊕) is a S-subquasigroup(S-subloop) of (G,⊕). In these cases, f and g are called

Smarandache elements(S-elements).
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Theorem 4.1.1 ([21]) Let (G,⊕) and (H,⊗) be two distinct isotopic loops(quasigroups).

There exists an f, g-principal isotope (G, ◦) of (G,⊕) such that (H,⊗) ∼= (G, ◦).

Corollary 4.1.1 Let P be an isotopic invariant property in loops(quasigroups). If (G,⊕) is

a loop(quasigroup) with the property P, then (G,⊕) is a universal loop(quasigroup) relative

to the property P if and only if every f, g-principal isotope (G, ◦) of (G,⊕) has the property

P.

Proof

If (G,⊕) is a universal loop relative to the property P then every distinct loop isotope (H,⊗)

of (G,⊕) has the property P . By Theorem 4.1.1, there exists an f, g-principal isotope (G, ◦)
of (G,⊕) such that (H,⊗) ∼= (G, ◦). Hence, since P is an isomorphic invariant property,

every (G, ◦) has it.

Conversely, if every f, g-principal isotope (G, ◦) of (G,⊕) has the property P and since by

Theorem 4.1.1 for each distinct isotope (H,⊗) there exists an f, g-principal isotope (G, ◦)
of (G,⊕) such that (H,⊗) ∼= (G, ◦), then all (H,⊗) has the property. Thus, (G,⊕) is a

universal loop relative to the property P .

Lemma 4.1.1 Let (G,⊕) be a loop(quasigroup) with a subloop(subquasigroup) (S,⊕). If

(G, ◦) is an arbitrary f, g-principal isotope of (G,⊕), then (S, ◦) is a subloop(subquasigroup)

of (G, ◦) if (S, ◦) is a Smarandache f, g-principal isotope of (S,⊕).

Proof

If (S, ◦) is a Smarandache f, g-principal isotope of (S,⊕), then for some f, g ∈ S,

xRg ◦ yLf = (x⊕ y) ∀ x, y ∈ S ⇒ x ◦ y = xR−1
g ⊕ yL−1

f ∈ S ∀ x, y ∈ S

since f, g ∈ S. So, (S, ◦) is a subgroupoid of (G, ◦). (S, ◦) is a subquasigroup follows from

the fact that (S,⊕) is a subquasigroup. f ⊕g is a two sided identity element in (S, ◦). Thus,
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(S, ◦) is a subloop of (G, ◦).

4.2 Universality Of Smarandache Loops

Theorem 4.2.1 A Smarandache quasigroup is universal if all its f, g-principal isotopes are

Smarandache f, g-principal isotopes.

Proof

Let (G,⊕) be a Smarandache quasigroup with a S-subquasigroup (S,⊕). If (G, ◦) is an

arbitrary f, g-principal isotope of (G,⊕), then by Lemma 4.1.1, (S, ◦) is a subquasigroup of

(G, ◦) if (S, ◦) is a Smarandache f, g-principal isotope of (S,⊕). Let us choose all (S, ◦) in

this manner. So,

x ◦ y = xR−1
g ⊕ yL−1

f ∀ x, y ∈ S.

It shall now be shown that

(x ◦ y) ◦ z = x ◦ (y ◦ z) ∀ x, y, z ∈ S.

But in the quasigroup (G,⊕), xy will have preference over x⊕ y ∀ x, y ∈ G.

(x ◦ y) ◦ z = (xR−1
g ⊕ yL−1

f ) ◦ z = (xg−1 ⊕ f−1y) ◦ z = (xg−1 ⊕ f−1y)R−1
g ⊕ zL−1

f

= (xg−1 ⊕ f−1y)g−1 ⊕ f−1z = xg−1 ⊕ f−1yg−1 ⊕ f−1z.

x ◦ (y ◦ z) = x ◦ (yR−1
g ⊕ zL−1

f ) = x ◦ (yg−1 ⊕ f−1z) = xR−1
g ⊕ (yg−1 ⊕ f−1z)L−1

f

= xg−1 ⊕ f−1(yg−1 ⊕ f−1z) = xg−1 ⊕ f−1yg−1 ⊕ f−1z.

Thus, (S, ◦) is an S-subquasigroup of (G, ◦) hence, (G, ◦) is a S-quasigroup. By Theo-

rem 4.1.1, for any isotope (H,⊗) of (G,⊕), there exists a (G, ◦) such that (H,⊗) ∼= (G, ◦).
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So we can now choose the isomorphic image of (S, ◦) which will now be an S-subquasigroup

in (H,⊗). So, (H,⊗) is an S-quasigroup. This conclusion can also be drawn straight from

Corollary 4.1.1.

Theorem 4.2.2 A Smarandache loop is universal if all its f, g-principal isotopes are

Smarandache f, g-principal isotopes. But if a Smarandache loop is universal then

(I, LfR
−1
g RfρL−1

f , R−1
g Rfρ)

is an autotopism of an S-subloop of the S-loop such that f and g are S-elements.

Proof

Every loop is a quasigroup. Hence, the first claim follows from Theorem 4.2.1. The proof of

the second part is as follows. If a Smarandache loop (G,⊕) is universal then every isotope

(H,⊗) is an S-loop i.e there exists an S-subloop (S,⊗) in (H,⊗). Let (G, ◦) be the f, g-

principal isotope of (G,⊕), then by Corollary 4.1.1, (G, ◦) is an S-loop with say an S-subloop

(S, ◦). So,

(x ◦ y) ◦ z = x ◦ (y ◦ z) ∀ x, y, z ∈ S

where

x ◦ y = xR−1
g ⊕ yL−1

f ∀ x, y ∈ S.

(xR−1
g ⊕ yL−1

f )R−1
g ⊕ zL−1

f = xR−1
g ⊕ (yR−1

g ⊕ zL−1
f )L−1

f .

Replacing xR−1
g by x′, yL−1

f by y′ and taking z = e in (S,⊕) we have;

(x′ ⊕ y′)R−1
g Rfρ = x′ ⊕ y′LfR

−1
g RfρL−1

f ⇒ (I, LfR
−1
g RfρL−1

f , R−1
g Rfρ)

is an autotopism of an S-subloop (S,⊕) of the S-loop (G,⊕) such that f and g are S-elements.
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4.3 Universality of Smarandache Bol Loops, Moufang

Loops and Extra Loops

Theorem 4.3.1 A Smarandache right(left)Bol loop is universal if all its f, g-principal iso-

topes are Smarandache f, g-principal isotopes. But, if a Smarandache right(left)Bol loop is

universal then

T1 = (RgR
−1
fρ , LgλR−1

g RfρL−1
f , R−1

g Rfρ)

(
T2 = (RfρL−1

f LgλR−1
g , LfL

−1
gλ , L−1

f Lgλ)

)

is an autotopism of an SRB(SLB)-subloop of the SRBL(SLBL) such that f and g are S-

elements.

Proof

Let (G,⊕) be a SRBL(SLBL) with a S-RB(LB)-subloop (S,⊕). If (G, ◦) is an arbitrary

f, g-principal isotope of (G,⊕), then by Lemma 4.1.1, (S, ◦) is a subloop of (G, ◦) if (S, ◦) is

a Smarandache f, g-principal isotope of (S,⊕). Let us choose all (S, ◦) in this manner. So,

x ◦ y = xR−1
g ⊕ yL−1

f ∀ x, y ∈ S.

It is already known from [72] that RB(LB) loops are universal, hence (S, ◦) is a RB(LB) loop

thus an S-RB(LB)-subloop of (G, ◦). By Theorem 4.1.1, for any isotope (H,⊗) of (G,⊕),

there exists a (G, ◦) such that (H,⊗) ∼= (G, ◦). So we can now choose the isomorphic image

of (S, ◦) which will now be an S-RB(LB)-subloop in (H,⊗). So, (H,⊗) is an SRBL(SLBL).

This conclusion can also be drawn straight from Corollary 4.1.1.

The proof of the second is as follows. If a SRBL(SLBL) (G,⊕) is universal then every

isotope (H,⊗) is an SRBL(SLBL) i.e there exists an S-RB(LB)-subloop (S,⊗) in (H,⊗).

Let (G, ◦) be the f, g-principal isotope of (G,⊕), then by Corollary 4.1.1, (G, ◦) is an
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SRBL(SLBL) with say an SRB(SLB)-subloop (S, ◦). So for an SRB-subloop (S, ◦),

[(y ◦ x) ◦ z] ◦ x = y ◦ [(x ◦ z) ◦ x] ∀ x, y, z ∈ S

where

x ◦ y = xR−1
g ⊕ yL−1

f ∀ x, y ∈ S.

Thus,

[(yR−1
g ⊕ xL−1

f )R−1
g ⊕ zL−1

f ]R−1
g ⊕ xL−1

f = yR−1
g ⊕ [(xR−1

g ⊕ zL−1
f )R−1

g ⊕ xL−1
f ]L−1

f .

Replacing yR−1
g by y′, zL−1

f by z′ and taking x = e in (S,⊕) we have

(y′RfρR−1
g ⊕ z′)R−1

g Rfρ = y′ ⊕ z′LgλR−1
g RfρL−1

f .

Again, replace y′RfρR−1
g by y′′ so that

(y′′ ⊕ z′)R−1
g Rfρ = y′′RgR

−1
fρ ⊕ z′LgλR−1

g RfρL−1
f ⇒ (RgR

−1
fρ , LgλR−1

g RfρL−1
f , R−1

g Rfρ)

is an autotopism of an SRB-subloop (S,⊕) of the S-loop (G,⊕) such that f and g are S-

elements.

On the other hand, for a SLB-subloop (S, ◦),

[x ◦ (y ◦ x)] ◦ z = x ◦ [y ◦ (x ◦ z)] ∀ x, y, z ∈ S

where

x ◦ y = xR−1
g ⊕ yL−1

f ∀ x, y ∈ S.
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Thus,

[xR−1
g ⊕ (yR−1

g ⊕ xL−1
f )L−1

f ]R−1
g ⊕ zL−1

f = xR−1
g ⊕ [yR−1

g ⊕ (xR−1
g ⊕ zL−1

f )L−1
f ]L−1

f .

Replacing yR−1
g by y′, zL−1

f by z′ and taking x = e in (S,⊕) we have

y′RfρL−1
f LgλR−1

g ⊕ z′ = (y′ ⊕ z′LgλL−1
f )L−1

f Lgλ .

Again, replace z′LgλL−1
f by z′′ so that

y′RfρL−1
f LgλR−1

g ⊕ z′′LfL
−1
gλ = (y′ ⊕ z′′)L−1

f Lgλ ⇒ (RfρL−1
f LgλR−1

g , LfL
−1
gλ , L−1

f Lgλ)

is an autotopism of an SLB-subloop (S,⊕) of the S-loop (G,⊕) such that f and g are

S-elements.

Theorem 4.3.2 A Smarandache Moufang loop is universal if all its f, g-principal isotopes

are Smarandache f, g-principal isotopes. But, if a Smarandache Moufang loop is universal

then

(RgL
−1
f LgλR−1

g , LfR
−1
g RfρL−1

f , L−1
f LgλR−1

g Rfρ), (RgL
−1
f LgλR−1

g , LfR
−1
g RfρL−1

f , R−1
g RfρL−1

f Lgλ),

(RgL
−1
f LgλR−1

g RfρR−1
g , LfL

−1
gλ , L−1

f Lgλ), (RgR
−1
fρ , LfR

−1
g RfρL−1

f LgλL−1
f , R−1

g Rfρ),

(RgL
−1
f LgλR−1

g , LgλR−1
g RfρL−1

gλ , R−1
g RfρL−1

f Lgλ), (RfρL−1
f LgλR−1

fρ , LfR
−1
g RfρL−1

f , L−1
f LgλR−1

g Rfρ)

are autotopisms of an SM-subloop of the SML such that f and g are S-elements.

Proof

Let (G,⊕) be a SML with a SM-subloop (S,⊕). If (G, ◦) is an arbitrary f, g-principal isotope

of (G,⊕), then by Lemma 4.1.1, (S, ◦) is a subloop of (G, ◦) if (S, ◦) is a Smarandache f, g-
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principal isotope of (S,⊕). Let us choose all (S, ◦) in this manner. So,

x ◦ y = xR−1
g ⊕ yL−1

f ∀ x, y ∈ S.

It is already known from [72] that Moufang loops are universal, hence (S, ◦) is a Moufang

loop thus an SM-subloop of (G, ◦). By Theorem 4.1.1, for any isotope (H,⊗) of (G,⊕),

there exists a (G, ◦) such that (H,⊗) ∼= (G, ◦). So we can now choose the isomorphic image

of (S, ◦) which will now be an SM-subloop in (H,⊗). So, (H,⊗) is an SML. This conclusion

can also be drawn straight from Corollary 4.1.1.

The proof of the second part is as follows. If a SML (G,⊕) is universal then every

isotope (H,⊗) is an SML i.e there exists an SM-subloop (S,⊗) in (H,⊗). Let (G, ◦) be

the f, g-principal isotope of (G,⊕), then by Corollary 4.1.1, (G, ◦) is an SML with say an

SM-subloop (S, ◦). For an SM-subloop (S, ◦),

(x ◦ y) ◦ (z ◦ x) = [x ◦ (y ◦ z)] ◦ x ∀ x, y, z ∈ S

where

x ◦ y = xR−1
g ⊕ yL−1

f ∀ x, y ∈ S.

Thus,

(xR−1
g ⊕ yL−1

f )R−1
g ⊕ (zR−1

g ⊕ xL−1
f )L−1

f = [xR−1
g ⊕ (yR−1

g ⊕ zL−1
f )L−1

f ]R−1
g ⊕ xL−1

f .

Replacing yR−1
g by y′, zL−1

f by z′ and taking x = e in (S,⊕) we have

y′RgL
−1
f LgλR−1

g ⊕ z′LfR
−1
g RfρL−1

f = (y′ ⊕ z′)L−1
f LgλR−1

g Rfρ ⇒

(RgL
−1
f LgλR−1

g , LfR
−1
g RfρL−1

f , L−1
f LgλR−1

g Rfρ)
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is an autotopism of an SM-subloop (S,⊕) of the S-loop (G,⊕) such that f and g are S-

elements.

Again, for an SM-subloop (S, ◦),

(x ◦ y) ◦ (z ◦ x) = x ◦ [(y ◦ z) ◦ x] ∀ x, y, z ∈ S

where

x ◦ y = xR−1
g ⊕ yL−1

f ∀ x, y ∈ S.

Thus,

(xR−1
g ⊕ yL−1

f )R−1
g ⊕ (zR−1

g ⊕ xL−1
f )L−1

f = xR−1
g ⊕ [(yR−1

g ⊕ zL−1
f )R−1

g ⊕ xL−1
f ]L−1

f .

Replacing yR−1
g by y′, zL−1

f by z′ and taking x = e in (S,⊕) we have

y′RgL
−1
f LgλR−1

g ⊕ z′LfR
−1
g RfρL−1

f = (y′ ⊕ z′)R−1
g RfρL−1

f Lgλ ⇒

(RgL
−1
f LgλR−1

g , LfR
−1
g RfρL−1

f , R−1
g RfρL−1

f Lgλ)

is an autotopism of an SM-subloop (S,⊕) of the S-loop (G,⊕) such that f and g are S-

elements.

Also, if (S, ◦) is an SM-subloop then,

[(x ◦ y) ◦ x] ◦ z = x ◦ [y ◦ (x ◦ z)] ∀ x, y, z ∈ S

where

x ◦ y = xR−1
g ⊕ yL−1

f ∀ x, y ∈ S.
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Thus,

[(xR−1
g ⊕ yL−1

f )R−1
g ⊕ xL−1

f ]R−1
g ⊕ zL−1

f = xR−1
g ⊕ [yR−1

g ⊕ (xR−1
g ⊕ zL−1

f )L−1
f ]L−1

f .

Replacing yR−1
g by y′, zL−1

f by z′ and taking x = e in (S,⊕) we have

y′RgL
−1
f LgλR−1

g RfρR−1
g ⊕ z′ = (y′ ⊕ z′LgλL−1

f )L−1
f Lgλ .

Again, replace z′LgλL−1
f by z′′ so that

y′RgL
−1
f LgλR−1

g RfρR−1
g ⊕z′′LfL

−1
gλ = (y′⊕z′′)L−1

f Lgλ ⇒ (RgL
−1
f LgλR−1

g RfρR−1
g , LfL

−1
gλ , L−1

f Lgλ)

is an autotopism of an SM-subloop (S,⊕) of the S-loop (G,⊕) such that f and g are S-

elements.

Furthermore, if (S, ◦) is an SM-subloop then,

[(y ◦ x) ◦ z] ◦ x = y ◦ [x ◦ (z ◦ x)] ∀ x, y, z ∈ S

where

x ◦ y = xR−1
g ⊕ yL−1

f ∀ x, y ∈ S.

Thus,

[(yR−1
g ⊕ xL−1

f )R−1
g ⊕ zL−1

f ]R−1
g ⊕ xL−1

f = yR−1
g ⊕ [xR−1

g ⊕ (zR−1
g ⊕ xL−1

f )L−1
f ]L−1

f .

Replacing yR−1
g by y′, zL−1

f by z′ and taking x = e in (S,⊕) we have

(y′RfρR−1
g ⊕ z′)R−1

g Rfρ = y′ ⊕ z′LfR
−1
g RfρL−1

f LgλL−1
f .
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Again, replace y′RfρR−1
g by y′′ so that

(y′′⊕z′)R−1
g Rfρ = y′′RgR

−1
fρ ⊕z′LfR

−1
g RfρL−1

f LgλL−1
f ⇒ (RgR

−1
fρ , LfR

−1
g RfρL−1

f LgλL−1
f , R−1

g Rfρ)

is an autotopism of an SM-subloop (S,⊕) of the S-loop (G,⊕) such that f and g are S-

elements.

Lastly, (S,⊕) is an SM-subloop if and only if (S, ◦) is an SRB-subloop and an SLB-

subloop. So by Theorem 4.3.1, T1 and T2 are autotopisms in (S,⊕), hence T1T2 and T2T1 are

autotopisms in (S,⊕).

Theorem 4.3.3 A Smarandache extra loop is universal if all its f, g-principal isotopes are

Smarandache f, g-principal isotopes. But, if a Smarandache extra loop is universal then

(RgL
−1
f LgλR−1

g , LfR
−1
fρ RgL

−1
f , L−1

f LgλR−1
fρ Rg),

(RgR
−1
fρ RgL

−1
f LgλR−1

g , LgλL−1
f , L−1

f Lgλ), (RfρR−1
g , LfL

−1
gλ LfR

−1
g RfρL−1

f , R−1
g Rfρ)

(RgL
−1
f LgλR−1

g , LfR
−1
g RfρL−1

f , L−1
f LgλR−1

g Rfρ), (RgL
−1
f LgλR−1

g , LfR
−1
g RfρL−1

f , R−1
g RfρL−1

f Lgλ),

(RgL
−1
f LgλR−1

g RfρR−1
g , LfL

−1
gλ , L−1

f Lgλ), (RgR
−1
fρ , LfR

−1
g RfρL−1

f LgλL−1
f , R−1

g Rfρ),

(RgL
−1
f LgλR−1

g , LgλR−1
g RfρL−1

gλ , R−1
g RfρL−1

f Lgλ), (RfρL−1
f LgλR−1

fρ , LfR
−1
g RfρL−1

f , L−1
f LgλR−1

g Rfρ),

are autotopisms of an SE-subloop of the SEL such that f and g are S-elements.

Proof

Let (G,⊕) be a SEL with a SE-subloop (S,⊕). If (G, ◦) is an arbitrary f, g-principal isotope

of (G,⊕), then by Lemma 4.1.1, (S, ◦) is a subloop of (G, ◦) if (S, ◦) is a Smarandache

f, g-principal isotope of (S,⊕). Let us choose all (S, ◦) in this manner. So,

x ◦ y = xR−1
g ⊕ yL−1

f ∀ x, y ∈ S.
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In [39] and [62] respectively, it was shown and stated that a loop is an extra loop if and only

if it is a Moufang loop and a CC-loop. But since CC-loops are G-loops(they are isomorphic

to all loop isotopes) then extra loops are universal, hence (S, ◦) is an extra loop thus an

SE-subloop of (G, ◦). By Theorem 4.1.1, for any isotope (H,⊗) of (G,⊕), there exists a

(G, ◦) such that (H,⊗) ∼= (G, ◦). So we can now choose the isomorphic image of (S, ◦)
which will now be an SE-subloop in (H,⊗). So, (H,⊗) is an SEL. This conclusion can also

be drawn straight from Corollary 4.1.1. The proof of the second part is as follows. If a

SEL (G,⊕) is universal then every isotope (H,⊗) is an SEL i.e there exists an SE-subloop

(S,⊗) in (H,⊗). Let (G, ◦) be the f, g-principal isotope of (G,⊕), then by Corollary 4.1.1,

(G, ◦) is an SEL with say an SE-subloop (S, ◦). For an SE-subloop (S, ◦),

[(x ◦ y) ◦ z] ◦ x = x ◦ [y ◦ (z ◦ x)] ∀ x, y, z ∈ S

where

x ◦ y = xR−1
g ⊕ yL−1

f ∀ x, y ∈ S.

Thus,

[(xR−1
g ⊕ yL−1

f )R−1
g ⊕ zL−1

f ]R−1
g ⊕ xL−1

f = xR−1
g ⊕ [yR−1

g ⊕ (zR−1
g ⊕ xL−1

f )L−1
f ]L−1

f .

Replacing yR−1
g by y′, zL−1

f by z′ and taking x = e in (S,⊕) we have

(y′RgL
−1
f LgλR−1

g ⊕ z′)R−1
g Rfρ = (y′ ⊕ z′LfR

−1
g RfρL−1

f )L−1
f Lgλ .

Again, replace z′LfR
−1
g RfρL−1

f by z′′ so that

y′RgL
−1
f LgλR−1

g ⊕ z′′LfR
−1
fρ RgL

−1
f = (y′ ⊕ z′′)L−1

f LgλR−1
fρ Rg ⇒
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(RgL
−1
f LgλR−1

g , LfR
−1
fρ RgL

−1
f , L−1

f LgλR−1
fρ Rg)

is an autotopism of an SE-subloop (S,⊕) of the S-loop (G,⊕) such that f and g are S-

elements.

Again, for an SE-subloop (S, ◦),

(x ◦ y) ◦ (x ◦ z) = x ◦ [(y ◦ x) ◦ z] ∀ x, y, z ∈ S

where

x ◦ y = xR−1
g ⊕ yL−1

f ∀ x, y ∈ S.

Thus,

(xR−1
g ⊕ yL−1

f )R−1
g ⊕ (xR−1

g ⊕ zL−1
f )L−1

f = xR−1
g ⊕ [(yR−1

g ⊕ xL−1
f )R−1

g ⊕ zL−1
f ]L−1

f .

Replacing yR−1
g by y′, zL−1

f by z′ and taking x = e in (S,⊕) we have

y′RgL
−1
f LgλR−1

g ⊕ z′LgλL−1
f = (y′RfρR−1

g ⊕ z′)L−1
f Lgλ .

Again, replace y′RfρR−1
g by y′′ so that

y′′RgR
−1
fρ RgL

−1
f LgλR−1

g ⊕z′LgλL−1
f = (y′′⊕z′)L−1

f Lgλ ⇒ (RgR
−1
fρ RgL

−1
f LgλR−1

g , LgλL−1
f , L−1

f Lgλ)

is an autotopism of an SE-subloop (S,⊕) of the S-loop (G,⊕) such that f and g are S-

elements.

Also, if (S, ◦) is an SE-subloop then,

(y ◦ x) ◦ (z ◦ x) = [y ◦ (x ◦ z)] ◦ x ∀ x, y, z ∈ S
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where

x ◦ y = xR−1
g ⊕ yL−1

f ∀ x, y ∈ S.

Thus,

(yR−1
g ⊕ xL−1

f )R−1
g ⊕ (zR−1

g ⊕ xL−1
f )L−1

f = [(yR−1
g ⊕ (xR−1

g ⊕ zL−1
f )L−1

f ]R−1
g ⊕ xL−1

f .

Replacing yR−1
g by y′, zL−1

f by z′ and taking x = e in (S,⊕) we have

y′RfρR−1
g ⊕ z′LfR

−1
g RfρL−1

f = (y′ ⊕ z′LgλL−1
f )R−1

g Rfρ .

Again, replace z′LgλL−1
f by z′′ so that

y′RfρR−1
g ⊕z′′LfL

−1
gλ LfR

−1
g RfρL−1

f = (y′⊕z′)R−1
g Rfρ ⇒ (RfρR−1

g , LfL
−1
gλ LfR

−1
g RfρL−1

f , R−1
g Rfρ)

is an autotopism of an SE-subloop (S,⊕) of the S-loop (G,⊕) such that f and g are S-

elements.

Lastly, (S,⊕) is an SE-subloop if and only if (S, ◦) is an SM-subloop and an SCC-subloop.

So by Theorem 4.3.2, the six remaining triples are autotopisms in (S,⊕).

4.4 Universality Of Smarandache Inverse Property

Loops

Theorem 4.4.1 A Smarandache left(right) inverse property loop in which all its f, g-

principal isotopes are Smarandache f, g-principal isotopes is universal if and only if it is

a Smarandache left(right) Bol loop in which all its f, g-principal isotopes are Smarandache

f, g-principal isotopes.
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Proof

Let (G,⊕) be a SLIPL with a SLIP-subloop (S,⊕). If (G, ◦) is an arbitrary f, g-principal

isotope of (G,⊕), then by Lemma 4.1.1, (S, ◦) is a subloop of (G, ◦) if (S, ◦) is a Smarandache

f, g-principal isotope of (S,⊕). Let us choose all (S, ◦) in this manner. So,

x ◦ y = xR−1
g ⊕ yL−1

f ∀ x, y ∈ S.

(G,⊕) is a universal SLIPL if and only if every isotope (H,⊗) is a SLIPL. (H,⊗) is a SLIPL

if and only if it has at least a SLIP-subloop (S,⊗). By Theorem 4.1.1, for any isotope

(H,⊗) of (G,⊕), there exists a (G, ◦) such that (H,⊗) ∼= (G, ◦). So we can now choose the

isomorphic image of (S, ◦) to be (S,⊗) which is already a SLIP-subloop in (H,⊗). So, (S, ◦)
is also a SLIP-subloop in (G, ◦). As shown in [72], (S,⊕) and its f, g-isotope(Smarandache

f, g-isotope) (S, ◦) are SLIP-subloops if and only if (S,⊕) is a left Bol subloop(i.e a SLB-

subloop). So, (G,⊕) is SLBL.

Conversely, if (G,⊕) is SLBL, then there exists a SLB-subloop (S,⊕) in (G,⊕). If (G, ◦)
is an arbitrary f, g-principal isotope of (G,⊕), then by Lemma 4.1.1, (S, ◦) is a subloop of

(G, ◦) if (S, ◦) is a Smarandache f, g-principal isotope of (S,⊕). Let us choose all (S, ◦) in

this manner. So,

x ◦ y = xR−1
g ⊕ yL−1

f ∀ x, y ∈ S.

By Theorem 4.1.1, for any isotope (H,⊗) of (G,⊕), there exists a (G, ◦) such that (H,⊗) ∼=
(G, ◦). So we can now choose the isomorphic image of (S, ◦) to be (S,⊗) which is a SLB-

subloop in (H,⊗) using the same reasoning in Theorem 4.3.1. So, (S, ◦) is a SLB-subloop in

(G, ◦). Left Bol loops have the left inverse property(LIP), hence, (S,⊕) and (S, ◦) are SLIP-

subloops in (G,⊕) and (G, ◦) respectively. Thence, (G,⊕) and (G, ◦) are SLBLs. Therefore,

(G,⊕) is a universal SLIPL.

The proof for a Smarandache right inverse property loop is similar and is as follows. Let
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(G,⊕) be a SRIPL with a SRIP-subloop (S,⊕). If (G, ◦) is an arbitrary f, g-principal isotope

of (G,⊕), then by Lemma 4.1.1, (S, ◦) is a subloop of (G, ◦) if (S, ◦) is a Smarandache f, g-

principal isotope of (S,⊕). Let us choose all (S, ◦) in this manner. So,

x ◦ y = xR−1
g ⊕ yL−1

f ∀ x, y ∈ S.

(G,⊕) is a universal SRIPL if and only if every isotope (H,⊗) is a SRIPL. (H,⊗) is a

SRIPL if and only if it has at least a SRIP-subloop (S,⊗). By Theorem 4.1.1, for any

isotope (H,⊗) of (G,⊕), there exists a (G, ◦) such that (H,⊗) ∼= (G, ◦). So we can now

choose the isomorphic image of (S, ◦) to be (S,⊗) which is already a SRIP-subloop in

(H,⊗). So, (S, ◦) is also a SRIP-subloop in (G, ◦). As shown in [72], (S,⊕) and its f, g-

isotope(Smarandache f, g-isotope) (S, ◦) are SRIP-subloops if and only if (S,⊕) is a right

Bol subloop(i.e a SRB-subloop). So, (G,⊕) is SRBL.

Conversely, if (G,⊕) is SRBL, then there exists a SRB-subloop (S,⊕) in (G,⊕). If (G, ◦)
is an arbitrary f, g-principal isotope of (G,⊕), then by Lemma 4.1.1, (S, ◦) is a subloop of

(G, ◦) if (S, ◦) is a Smarandache f, g-principal isotope of (S,⊕). Let us choose all (S, ◦) in

this manner. So,

x ◦ y = xR−1
g ⊕ yL−1

f ∀ x, y ∈ S.

By Theorem 4.1.1, for any isotope (H,⊗) of (G,⊕), there exists a (G, ◦) such that (H,⊗) ∼=
(G, ◦). So we can now choose the isomorphic image of (S, ◦) to be (S,⊗) which is a SRB-

subloop in (H,⊗) using the same reasoning in Theorem 4.3.1. So, (S, ◦) is a SRB-subloop

in (G, ◦). Right Bol loops have the right inverse property(RIP), hence, (S,⊕) and (S, ◦)
are SRIP-subloops in (G,⊕) and (G, ◦) respectively. Thence, (G,⊕) and (G, ◦) are SRBLs.

Therefore, (G,⊕) is a universal SRIPL.

Theorem 4.4.2 A Smarandache inverse property loop in which all its f, g-principal iso-

topes are Smarandache f, g-principal isotopes is universal if and only if it is a Smarandache
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Moufang loop in which all its f, g-principal isotopes are Smarandache f, g-principal isotopes.

Proof

Let (G,⊕) be a SIPL with a SIP-subloop (S,⊕). If (G, ◦) is an arbitrary f, g-principal isotope

of (G,⊕), then by Lemma 4.1.1, (S, ◦) is a subloop of (G, ◦) if (S, ◦) is a Smarandache f, g-

principal isotope of (S,⊕). Let us choose all (S, ◦) in this manner. So,

x ◦ y = xR−1
g ⊕ yL−1

f ∀ x, y ∈ S.

(G,⊕) is a universal SIPL if and only if every isotope (H,⊗) is a SIPL. (H,⊗) is a SIPL if

and only if it has at least a SIP-subloop (S,⊗). By Theorem 4.1.1, for any isotope (H,⊗) of

(G,⊕), there exists a (G, ◦) such that (H,⊗) ∼= (G, ◦). So we can now choose the isomorphic

image of (S, ◦) to be (S,⊗) which is already a SIP-subloop in (H,⊗). So, (S, ◦) is also a SIP-

subloop in (G, ◦). As shown in [72], (S,⊕) and its f, g-isotope(Smarandache f, g-isotope)

(S, ◦) are SIP-subloops if and only if (S,⊕) is a Moufang subloop(i.e a SM-subloop). So,

(G,⊕) is SML.

Conversely, if (G,⊕) is SML, then there exists a SM-subloop (S,⊕) in (G,⊕). If (G, ◦)
is an arbitrary f, g-principal isotope of (G,⊕), then by Lemma 4.1.1, (S, ◦) is a subloop of

(G, ◦) if (S, ◦) is a Smarandache f, g-principal isotope of (S,⊕). Let us choose all (S, ◦) in

this manner. So,

x ◦ y = xR−1
g ⊕ yL−1

f ∀ x, y ∈ S.

By Theorem 4.1.1, for any isotope (H,⊗) of (G,⊕), there exists a (G, ◦) such that (H,⊗) ∼=
(G, ◦). So we can now choose the isomorphic image of (S, ◦) to be (S,⊗) which is a SM-

subloop in (H,⊗) using the same reasoning in Theorem 4.3.1. So, (S, ◦) is a SM-subloop

in (G, ◦). Moufang loops have the inverse property(IP), hence, (S,⊕) and (S, ◦) are SIP-

subloops in (G,⊕) and (G, ◦) respectively. Thence, (G,⊕) and (G, ◦) are SMLs. Therefore,

(G,⊕) is a universal SIPL.
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Corollary 4.4.1 If a Smarandache left(right) inverse property loop is universal then

(RgR
−1
fρ , LgλR−1

g RfρL−1
f , R−1

g Rfρ)

(
(RfρL−1

f LgλR−1
g , LfL

−1
gλ , L−1

f Lgλ)

)

is an autotopism of an SLIP(SRIP)-subloop of the SLIPL(SRIPL) such that f and g are

S-elements.

Proof

This follows by Theorem 4.4.1 and Theorem 4.4.1.

Corollary 4.4.2 If a Smarandache inverse property loop is universal then

(RgL
−1
f LgλR−1

g , LfR
−1
g RfρL−1

f , L−1
f LgλR−1

g Rfρ), (RgL
−1
f LgλR−1

g , LfR
−1
g RfρL−1

f , R−1
g RfρL−1

f Lgλ),

(RgL
−1
f LgλR−1

g RfρR−1
g , LfL

−1
gλ , L−1

f Lgλ), (RgR
−1
fρ , LfR

−1
g RfρL−1

f LgλL−1
f , R−1

g Rfρ),

(RgL
−1
f LgλR−1

g , LgλR−1
g RfρL−1

gλ , R−1
g RfρL−1

f Lgλ), (RfρL−1
f LgλR−1

fρ , LfR
−1
g RfρL−1

f , L−1
f LgλR−1

g Rfρ)

are autotopisms of an SIP-subloop of the SIPL such that f and g are S-elements.

Proof

This follows from Theorem 4.4.2 and Theorem 4.3.2.
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Chapter 5

SMARANDACHE ISOTOPY OF

SMARANDACHE QUASIGROUPS

AND LOOPS

Recall that if (L, ·) and (G, ◦) are S-groupoids with S-subsemigroups L′ and G′ respectively

such that (G′)A = L′, where A ∈ {U, V, W}, then the isotopism

(U, V, W ) : (L, ·) → (G, ◦)

is called a Smarandache isotopism(S-isotopism). Consequently, if W = I the triple (U, V, I)

is called a Smarandache principal isotopism. But if in addition G is a S-quasigroup with

S-subgroup H ′ such that for some f, g ∈ H, U = Rg and V = Lf , and

(Rg, Lf , I) : (G, ·) → (G, ◦)

is an isotopism, then the triple is called a Smarandache f, g-principal isotopism while f

and g are called Smarandache elements(S-elements).
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Thus, if U = V = W , then U is called a Smarandache isomorphism, hence we write

(L, ·) % (G, ◦). An S-loop (L, ·) is called a G-Smarandache loop(GS-loop) if and only if

(L, ·) % (G, ◦) for all loop isotopes(or particularly all S-loop isotopes) (G, ◦) of (L, ·).

5.1 Smarandache Isotopy And Isomorphy Classes

Theorem 5.1.1 Let G =
{(

Gω, ◦ω

)}
ω∈Ω

be a set of distinct S-groupoids with a correspond-

ing set of S-subsemigroups H =
{(

Hω, ◦ω

)}
ω∈Ω

. Define a relation ∼ on G such that for all
(
Gωi

, ◦ωi

)
,
(
Gωj

, ◦ωj

) ∈ G, where ωi, ωj ∈ Ω,

(
Gωi

, ◦ωi

)
∼

(
Gωj

, ◦ωj

) ⇐⇒ (
Gωi

, ◦ωi

)
and

(
Gωj

, ◦ωj

)
are S-isotopic.

Then ∼ is an equivalence relation on G.

Proof

Let
(
Gωi

, ◦ωi

)
,
(
Gωj

, ◦ωj

)
,

(
Gωk

, ◦ωk

) ∈ G, where ωi, ωj, ωk ∈ Ω.

Reflexivity If I : Gωi
→ Gωi

is the identity mapping, then

xI ◦ωi
yI = (x ◦ωi

y)I ∀ x, y ∈ Gωi
=⇒ the triple (I, I, I) :

(
Gωi

, ◦ωi

) → (
Gωi

, ◦ωi

)

is an S-isotopism since
(
Hωi

)
I = Hωi

∀ ωi ∈ Ω.

In fact, it can be simply deduced that every S-groupoid is S-isomorphic to itself.

Symmetry Let
(
Gωi

, ◦ωi

)
∼

(
Gωj

, ◦ωj

)
.
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Then there exist bijections

U, V, W :
(
Gωi

, ◦ωi

) −→ (
Gωj

, ◦ωj

)
such that

(
Hωi

)
A = Hωj

∀ A ∈ {U, V,W}

so that the triple

α = (U, V, W ) :
(
Gωi

, ◦ωi

) −→ (
Gωj

, ◦ωj

)

is an isotopism. Since each of U, V, W is bijective, then their inverses

U−1, V −1,W−1 :
(
Gωj

, ◦ωj

) −→ (
Gωi

, ◦ωi

)

are bijective. In fact,
(
Hωj

)
A−1 = Hωi

∀ A ∈ {U, V, W}

since A is bijective so that the triple

α−1 = (U−1, V −1,W−1) :
(
Gωj

, ◦ωj

) −→ (
Gωi

, ◦ωi

)

is an isotopism. Thus,
(
Gωj

, ◦ωj

)
∼

(
Gωi

, ◦ωi

)
.

Transitivity Let
(
Gωi

, ◦ωi

)
∼

(
Gωj

, ◦ωj

)
and

(
Gωj

, ◦ωj

)
∼

(
Gωk

, ◦ωk

)
.

Then there exist bijections

U1, V1,W1 :
(
Gωi

, ◦ωi

) −→ (
Gωj

, ◦ωj

)
and U2, V2,W2 :

(
Gωj

, ◦ωj

) −→ (
Gωk

, ◦ωk

)

such that
(
Hωi

)
A = Hωj

∀ A ∈ {U1, V1, W1}
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and
(
Hωj

)
B = Hωk

∀ B ∈ {U2, V2,W2} so that the triples

α1 = (U1, V1,W1) :
(
Gωi

, ◦ωi

) −→ (
Gωj

, ◦ωj

)
and

α2 = (U2, V2, W2) :
(
Gωj

, ◦ωj

) −→ (
Gωk

, ◦ωk

)

are isotopisms. Since each of Ui, Vi,Wi, i = 1, 2, is bijective, then

U3 = U1U2, V3 = V1V2,W3 = W1W2 :
(
Gωi

, ◦ωi

) −→ (
Gωk

, ◦ωk

)

are bijections such that

(
Hωi

)
A3 =

(
Hωi

)
A1A2 =

(
Hωj

)
A2 = Hωk

so that the triple

α3 = α1α2 = (U3, V3,W3) :
(
Gωi

, ◦ωi

) −→ (
Gωk

, ◦ωk

)

is an isotopism. Thus,
(
Gωi

, ◦ωi

)
∼

(
Gωk

, ◦ωk

)
.

Remark 5.1.1 As a follow up to Theorem 5.1.1, the elements of the set G/ ∼ will be

referred to as Smarandache isotopy classes(S-isotopy classes). Similarly, if ∼ meant ”S-

isomorphism” in Theorem 5.1.1, then the elements of G/ ∼ will be referred to as Smaran-

dache isomorphy classes(S-isomorphy classes). Just like isotopy has an advantage over iso-

morphy in the classification of loops, so also S-isotopy will have advantage over S-isomorphy

in the classification of S-loops.

Corollary 5.1.1 Let Ln, SLn and NSLn be the sets of; all finite loops of order n; all finite

S-loops of order n and all finite non S-loops of order n respectively.
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1. If An
i and Bn

i represent the isomorphy class of Ln and the S-isomorphy class of SLn

respectively, then

(a) |SLn|+ |NSLn| = |Ln|;

(i) |SL5|+ |NSL5| = 56,

(ii) |SL6|+ |NSL6| = 9, 408 and

(iii) |SL7|+ |NSL7| = 16, 942, 080.

(b) |NSLn| =
∑

i=1 |An
i | −

∑
i=1 |Bn

i |;

(i) |NSL5| =
∑6

i=1 |A5
i | −

∑
i=1 |B5

i |,

(ii) |NSL6| =
∑109

i=1 |A6
i | −

∑
i=1 |B6

i | and

(iii) |NSL7| =
∑23,746

i=1 |A7
i | −

∑
i=1 |B7

i |.

2. If An
i and Bn

i represent the isotopy class of Ln and the S-isotopy class of SLn respec-

tively, then

|NSLn| =
∑
i=1

|An
i | −

∑
i=1

|Bn
i |;

(i) |NSL5| =
∑2

i=1 |A5
i | −

∑
i=1 |B5

i |,

(ii) |NSL6| =
∑22

i=1 |A6
i | −

∑
i=1 |B6

i | and

(iii) |NSL7| =
∑564

i=1 |A7
i | −

∑
i=1 |B7

i |.

Proof

An S-loop is an S-groupoid. Thus by Theorem 5.1.1, we have S-isomorphy classes and

S-isotopy classes. Recall that

|Ln| = |SLn|+ |NSLn| − |SLn

⋂
NSLn|

but

SLn

⋂
NSLn = ∅ so |Ln| = |SLn|+ |NSLn|.
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As stated and shown in [72], [37], [24] and [66], the facts in Table 5.1 are true where n is the

order of a finite loop. Hence the claims follow.

n 5 6 7
|Ln| 56 9, 408 16, 942, 080

{An
i }k

i=1 k = 6 k = 109 k = 23, 746
{An

i }m
i=1 m = 2 m = 22 m = 564

Table 5.1: Enumeration of Isomorphy and Isotopy classes of finite loops of small order

Question 5.1.1 How many S-loops are in the family Ln? That is, what is |SLn| or |NSLn|.

Theorem 5.1.2 Let (G, ·) be a finite S-groupoid of order n with a finite S-subsemigroup

(H, ·) of order m. Also, let

ISOT (G, ·), SISOT (G, ·) and NSISOT (G, ·)

be the sets of all isotopisms, S-isotopisms and non S-isotopisms of (G, ·). Then,

ISOT (G, ·) is a group and SISOT (G, ·) ≤ ISOT (G, ·).

Furthermore:

1. |ISOT (G, ·)| = (n!)3;

2. |SISOT (G, ·)| = (m!)3;

3. |NSISOT (G, ·)| = (n!)3 − (m!)3.

Proof

1. This has been shown to be true in [Theorem 4.1.1, [29]].
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2. An S-isotopism is an isotopism. So, SISOT (G, ·) ⊂ ISOT (G, ·). Thus, we need to

just verify the axioms of a group to show that SISOT (G, ·) ≤ ISOT (G, ·). These

can be done using the proofs of reflexivity, symmetry and transitivity in Theorem 5.1.1

as guides. For all triples

α ∈ SISOT (G, ·) such that α = (U, V, W ) : (G, ·) −→ (G, ◦),

where (G, ·) and (G, ◦) are S-groupoids with S-subgroups (H, ·) and (K, ◦) respectively,

we can set

U ′ := U |H , V ′ := V |H and W ′ := W |H since A(H) = K ∀ A ∈ {U, V, W},

so that SISOT (H, ·) = {(U ′, V ′,W ′)}. This is possible because of the following

arguments.

Let

X =
{

f ′ := f |H
∣∣∣ f : G −→ G, f : H −→ K is bijective and f(H) = K

}
.

Let

SY M(H, K) = {bijections from H unto K}.

By definition, it is easy to see that X ⊆ SY M(H, K). Now, for all U ∈ SY M(H,K),

define U : Hc −→ Kc so that U : G −→ G is a bijection since |H| = |K| implies

|Hc| = |Kc|. Thus, SY M(H, K) ⊆ X so that SY M(H, K) = X.

Given that |H| = m, then it follows from (1) that

|ISOT (H, ·)| = (m!)3 so that |SISOT (G, ·)| = (m!)3 since SY M(H,K) = X.
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3.

NSISOT (G, ·) =
(SISOT (G, ·))c

.

So, the identity isotopism

(I, I, I) 6∈ NSISOT (G, ·), hence NSISOT (G, ·) � ISOT (G, ·).

Furthermore,

|NSISOT (G, ·)| = (n!)3 − (m!)3.

Corollary 5.1.2 Let (G, ·) be a finite S-groupoid of order n with an S-subsemigroup (H, ·).
If ISOT (G, ·) is the group of all isotopisms of (G, ·) and Sn is the symmetric group of degree

n, then

ISOT (G, ·) % Sn × Sn × Sn.

Proof

As concluded in [Corollary 1, [29]], ISOT (G, ·) ∼= Sn × Sn × Sn. Let PISOT (G, ·) be the

set of all principal isotopisms on (G, ·). PISOT (G, ·) is an S-subgroup in ISOT (G, ·) while

Sn × Sn × {I} is an S-subgroup in Sn × Sn × Sn. If

Υ : ISOT (G, ·) −→ Sn × Sn × Sn is defined as

Υ
(
(A,B, I)

)
=< A,B, I > ∀ (A,B, I) ∈ ISOT (G, ·),

then

Υ
(
PISOT (G, ·)

)
= Sn × Sn × {I}. ∴ ISOT (G, ·) % Sn × Sn × Sn.
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5.2 Smarandache f, g-Isotopes Of Smarandache Loops

Theorem 5.2.1 Let (G, ·) and (H, ∗) be S-groupoids. If (G, ·) and (H, ∗) are S-isotopic,

then (H, ∗) is S-isomorphic to some Smarandache principal isotope (G, ◦) of (G, ·).

Proof

Since (G, ·) and (H, ∗) are S-isotopic S-groupoids with S-subsemigroups (G1, ·) and (H1, ∗),
then there exist bijections U, V, W : (G, ·) → (H, ∗) such that the triple

α = (U, V, W ) : (G, ·) → (H, ∗) is an isotopism and
(
G1

)
A = H1 ∀ A ∈ {U, V, W}.

To prove the claim of this theorem, it suffices to produce a closed binary operation ’◦’ on G,

bijections X, Y : G → G, and bijection Z : G → H so that

• the triple β = (X, Y, I) : (G, ·) → (G, ◦) is a Smarandache principal isotopism and

• Z : (G, ◦) → (H, ∗) is an S-isomorphism or the triple γ = (Z, Z, Z) : (G, ◦) → (H, ∗)
is an S-isotopism.

Thus, we need (G, ◦) so that the commutative diagram below is true:

(G, ·) β−−−−−−−−−−→
principal isotopism

(G, ◦) γ−−−−−−−→
isomorphism

(H, ∗) α←−−−−−
isotopism

(G, ·)

because following the proof of transitivity in Theorem 5.1.1, α = βγ which implies

(U, V,W ) = (XZ, Y Z, Z) and so we can make the choices; Z = W , Y = V W−1, and

X = UW−1 and consequently,

x · y = xUW−1 ◦ V W−1 ⇐⇒ x ◦ y = xWU−1 · yWV −1 ∀ x, y ∈ G.

Hence, (G, ◦) is a groupoid principal isotope of (G, ·) and (H, ∗) is an isomorph of (G, ◦). It

remains to show that these two relationships are Smarandache.
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Note that
(
(H1)Z

−1, ◦) = (G1, ◦) is a non-trivial subsemigroup in (G, ◦). Thus, (G, ◦)
is an S-groupoid. So (G, ◦) % (H, ∗). (G, ·) and (G, ◦) are Smarandache principal isotopes

because

(G1)UW−1 = (H1)W
−1 = (H1)Z

−1 = G1 and (G1)V W−1 = (H1)W
−1 = (H1)Z

−1 = G1.

Corollary 5.2.1 Let (G, ·) be an S-groupoid with an arbitrary groupoid isotope (H, ∗). Any

such groupoid (H, ∗) is an S-groupoid if and only if all the principal isotopes of (G, ·) are

S-groupoids.

Proof

By classical result in principal isotopy [[72], III.1.4 Theorem], if (G, ·) and (H, ∗) are isotopic

groupoids, then (H, ∗) is isomorphic to some principal isotope (G, ◦) of (G, ·). Assuming

(H, ∗) is an S-groupoid then since (H, ∗) ∼= (G, ◦), (G, ◦) is an S-groupoid. Conversely, let

us assume all the principal isotopes of (G, ·) are S-groupoids. Since (H, ∗) ∼= (G, ◦), then

(H, ∗) is an S-groupoid.

Theorem 5.2.2 Let (G, ·) be an S-quasigroup. If (H, ∗) is an S-loop which is S-isotopic to

(G, ·), then there exist S-elements f and g so that (H, ∗) is S-isomorphic to a Smarandache

f, g principal isotope (G, ◦) of (G, ·).

Proof

An S-quasigroup and an S-loop are S-groupoids. So by Theorem 5.2.1, (H, ∗) is S-isomorphic

to a Smarandache principal isotope (G, ◦) of (G, ·). Let α = (U, V, I) be the Smarandache

principal isotopism of (G, ·) onto (G, ◦). Since (H, ∗) is a S-loop and (G, ◦) % (H, ∗) implies

that (G, ◦) ∼= (H, ∗), then (G, ◦) is necessarily an S-loop and consequently, (G, ◦) has a two-

sided identity element say e and an S-subgroup (G2, ◦). Let α = (U, V, I) be the Smarandache
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principal isotopism of (G, ·) onto (G, ◦). Then,

xU ◦ yV = x · y ∀ x, y ∈ G ⇐⇒ x ◦ y = xU−1 · yV −1 ∀ x, y ∈ G.

So,

y = e◦y = eU−1·yV −1 = yV −1LeU−1 ∀ y ∈ G and x = x◦e = xU−1·eV −1 = xU−1ReV −1 ∀ x ∈ G.

Assign f = eU−1, g = eV −1 ∈ G2. This assignments are well defined and hence V = Lf and

U = Rg. So that α = (Rg, Lf , I) is a Smarandache f, g principal isotopism of (G, ◦) onto

(G, ·). This completes the proof.

Corollary 5.2.2 Let (G, ·) be an S-quasigroup(S-loop) with an arbitrary groupoid isotope

(H, ∗). Any such groupoid (H, ∗) is an S-quasigroup(S-loop) if and only if all the principal

isotopes of (G, ·) are S-quasigroups(S-loops).

Proof

This follows immediately from Corollary 5.2.1 since an S-quasigroup and an S-loop are S-

groupoids.

Corollary 5.2.3 If (G, ·) and (H, ∗) are S-loops which are S-isotopic, then there exist S-

elements f and g so that (H, ∗) is S-isomorphic to a Smarandache f, g principal isotope

(G, ◦) of (G, ·).

Proof

An S-loop is an S-quasigroup. So the claim follows from Theorem 5.2.2.
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5.3 G-Smarandache Loops

Lemma 5.3.1 Let (G, ·) and (H, ∗) be S-isotopic S-loops. If (G, ·) is a group, then (G, ·)
and (H, ∗) are S-isomorphic groups.

Proof

By Corollary 5.2.3, there exist S-elements f and g in (G, ·) so that (H, ∗) % (G, ◦) such

that (G, ◦) is a Smarandache f, g principal isotope of (G, ·). Let us set the mapping

ψ := Rf ·g = Rfg : G → G. This mapping is bijective. Now, let us consider when

ψ := Rfg : (G, ·) → (G, ◦). Since (G, ·) is associative and x ◦ y = xR−1
g · yL−1

f ∀ x, y ∈ G,

the following arguments are true.

xψ ◦ yψ = xψR−1
g · yψL−1

f = xRfgR
−1
g · yRfgL

−1
f =

x · fg · g−1 · f−1 · y · fg = x · y · fg = (x · y)Rfg = (x · y)ψ ∀ x, y ∈ G.

So, (G, ·) ∼= (G, ◦). Thus, (G, ◦) is a group. If (G1, ·) and (G1, ◦) are the S-subgroups in

(G, ·) and (G, ◦), then
(
(G1, ·)

)
Rfg = (G1, ◦). Hence, (G, ·) % (G, ◦).

∴ (G, ·) % (H, ∗) and (H, ∗) is a group.

Corollary 5.3.1 Every group which is an S-loop is a GS-loop.

Proof

This follows immediately from Lemma 5.3.1 and the fact that a group is a G-loop.

Corollary 5.3.2 An S-loop is S-isomorphic to all its S-loop S-isotopes if and only if it is

S-isomorphic to all its Smarandache f, g principal isotopes.
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Proof

Let (G, ·) be an S-loop with arbitrary S-isotope (H, ∗). Let us assume that (G, ·) % (H, ∗).
From Corollary 5.2.3, for any arbitrary S-isotope (H, ∗) of (G, ·), there exists a Smarandache

f, g principal isotope (G, ◦) of (G, ·) such that (H, ∗) % (G, ◦). So, (G, ·) % (G, ◦).
Conversely, let (G, ·) % (G, ◦), using the fact in Corollary 5.2.3 again, for any arbitrary

S-isotope (H, ∗) of (G, ·), there exists a Smarandache f, g principal isotope (G, ◦) of (G, ·)
such that (G, ◦) % (H, ∗). Therefore, (G, ·) % (H, ∗).

Corollary 5.3.3 A S-loop is a GS-loop if and only if it is S-isomorphic to all its Smaran-

dache f, g principal isotopes.

Proof

This follows by the definition of a GS-loop and Corollary 5.3.2.
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Chapter 6

SMARANDACHE BRYANT

SCHNEIDER GROUP OF

SMARANDACHE LOOPS

6.1 Smarandache Special Maps

Definition 6.1.1 Let (G, ·) be a Smarandache loop with S-subgroup (H, ·). A mapping θ ∈
SSY M(G, ·) is a Smarandache special map(S-special map) for G if and only if there exist

f, g ∈ H such that

(θR−1
g , θL−1

f , θ) ∈ AUT (G, ·).

Definition 6.1.2 Let the set

SBS(G, ·) = {θ ∈ SSY M(G, ·) : there exist f, g ∈ H 3 (θR−1
g , θL−1

f , θ) ∈ AUT (G, ·)}

i.e the set of all S-special maps in a S-loop, then SBS(G, ·) is called the Smarandache

Bryant-Schneider group(SBS group) of the S-loop (G, ·) with S-subgroup H if SBS(G, ·) ≤
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SY M(G, ·).

Definition 6.1.3 Let (G, ·) be a Smarandache loop with an S-subgroup H.

Ω(G, ·) =

{
(θR−1

g , θL−1
f , θ) ∈ AUT (G, ·) for some f, g ∈ H : hθ ∈ H ∀ h ∈ H

}
.

6.2 The Smarandache Bryant Schneider Group

Theorem 6.2.1 Let (G, ·) be a Smarandache loop. SBS(G, ·) ≤ BS(G, ·).

Proof

Let (G, ·) be an S-loop with S-subgroup H. Comparing the definition of the Bryant-Schneider

group of a loop and Definition 6.1.2, it can easily be observed that SBS(G, ·) ⊂ BS(G, ·).
The case SBS(G, ·) ⊆ BS(G, ·) is possible when G = H where H is the S-subgroup of G

but this will be a contradiction since G is an S-loop.

Identity If I is the identity mapping on G, then hI = h ∈ H ∀ h ∈ H and there exists e ∈ H

where e is the identity element in G such that (IR−1
e , IL−1

e , I) = (I, I, I) ∈ AUT (G, ·).
So, I ∈ SBS(G, ·). Thus SBS(G, ·) is non-empty.

Closure and Inverse Let α, β ∈ SBS(G, ·). Then there exist f1, g1, f2, g2 ∈ H such that

A = (αR−1
g1

, αL−1
f1

, α), B = (βR−1
g2

, βL−1
f2

, β) ∈ AUT (G, ·).

AB−1 = (αR−1
g1

, αL−1
f1

, α)(Rg2β
−1, Lf2β

−1, β−1)

= (αR−1
g1

Rg2β
−1, αL−1

f1
Lf2β

−1, αβ−1) ∈ AUT (G, ·).

Let δ = βR−1
g1

Rg2β
−1 and γ = βL−1

f1
Lf2β

−1. Then,

(αβ−1δ, αβ−1γ, αβ−1) ∈ AUT (G, ·) ⇔ (xαβ−1δ) · (yαβ−1γ) = (x · y)αβ−1 ∀ x, y ∈ G.
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Putting y = e and replacing x by xβα−1, we have (xδ) · (eαβ−1γ) = x for all x ∈ G.

Similarly, putting x = e and replacing y by yβα−1, we have (eαβ−1δ) · (yγ) = y for all

y ∈ G. Thence, xδR(eαβ−1γ) = x and yγL(eαβ−1δ) = y which implies that

δ = R−1
(eαβ−1γ) and γ = L−1

(eαβ−1δ).

Thus, since g = eαβ−1γ, f = eαβ−1δ ∈ H then

AB−1 = (αβ−1R−1
g , αβ−1L−1

f , αβ−1) ∈ AUT (G, ·) ⇔ αβ−1 ∈ SBS(G, ·).

∴ SBS(G, ·) ≤ BS(G, ·).

Corollary 6.2.1 Let (G, ·) be a Smarandache loop. Then, SBS(G, ·) ≤ SSY M(G, ·) ≤
SY M(G, ·). Hence, SBS(G, ·) is the Smarandache Bryant-Schneider group(SBS group) of

the S-loop (G, ·).

Proof

Although the fact that SBS(G, ·) ≤ SY M(G, ·) follows from Theorem 6.2.1 and the fact in

[Theorem 1, [77]] that BS(G, ·) ≤ SY M(G, ·). Nevertheless, it can also be traced from the

facts that

SBS(G, ·) ≤ SSY M(G, ·) and SSY M(G, ·) ≤ SY M(G, ·).

It is easy to see that

SSY M(G, ·) ⊂ SY M(G, ·) and that SBS(G, ·) ⊂ SSY M(G, ·)

while the trivial cases

SSY M(G, ·) ⊆ SY M(G, ·) and SBS(G, ·) ⊆ SSY M(G, ·)
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will contradict the fact that G is an S-loop because these two are possible if the S-subgroup

H is G. Reasoning through the axioms of a group, it is easy to show that SSY M(G, ·) ≤
SY M(G, ·). By using the same steps in Theorem 6.2.1, it will be seen that SBS(G, ·) ≤
SSY M(G, ·).

6.3 The SBS Group Of A Smarandache f, g-Principal

Isotope

Theorem 6.3.1 Let (G, ·) be a S-loop with a Smarandache f, g-principal isotope (G, ◦).
Then, (G, ◦) is an S-loop.

Proof

Let (G, ·) be an S-loop, then there exist an S-subgroup (H, ·) of G. If (G, ◦) is a Smarandache

f, g-principal isotope of (G, ·), then

x · y = xRg ◦ yLf ∀ x, y ∈ G which implies x ◦ y = xR−1
g · yL−1

f ∀ x, y ∈ G

where f, g ∈ H. So

h1 ◦ h2 = h1R
−1
g · h2L

−1
f ∀ h1, h2 ∈ H for some f, g ∈ H.

Let us now consider the set H under the operation ”◦”. That is the pair (H, ◦).

Groupoid Since f, g ∈ H, then by the definition

h1 ◦ h2 = h1R
−1
g · h2L

−1
f , h1 ◦ h2 ∈ H ∀ h1, h2 ∈ H

since (H, ·) is a groupoid. Thus, (H, ◦) is a groupoid.
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Quasigroup With the definition

h1 ◦ h2 = h1R
−1
g · h2L

−1
f ∀ h1, h2 ∈ H,

it is clear that (H, ◦) is a quasigroup since (H, ·) is a quasigroup.

Loop It can easily be seen that f · g is an identity element in (H, ◦). So, (H, ◦) is a loop.

Group Since (H, ·) is associative, it is easy to show that (H, ◦) is associative.

Hence, (H, ◦) is an S-subgroup in (G, ◦) since the latter is a loop(a quasigroup with identity

element f · g). Therefore, (G, ◦) is an S-loop.

Theorem 6.3.2 Let (G, ·) be a Smarandache loop with an S-subgroup (H, ·). A mapping

θ ∈ SY M(G, ·) is a S-special map if and only if θ is an S-isomorphism of (G, ·) onto some

Smarandache f, g-principal isotopes (G, ◦) where f, g ∈ H.

Proof

By Definition 6.1.1, a mapping θ ∈ SSY M(G) is a S-special map implies there exist f, g ∈ H

such that (θR−1
g , θL−1

f , θ) ∈ AUT (G, ·). It can be observed that

(θR−1
g , θL−1

f , θ) = (θ, θ, θ)(R−1
g , L−1

f , I) ∈ AUT (G, ·).

But since

(R−1
g , L−1

f , I) : (G, ◦) −→ (G, ·) then for (θR−1
g , θL−1

f , θ) ∈ AUT (G, ·)

we must have

(θ, θ, θ) : (G, ·) −→ (G, ◦) which means (G, ·) ∼=θ

(G, ◦),
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hence

(G, ·) %θ

(G, ◦) because (H, ·)θ = (H, ◦). (Rg, Lf , I) : (G, ·) −→ (G, ◦)

is an f, g-principal isotopism so (G, ◦) is a Smarandache f, g-principal isotope of (G, ·) by

Theorem 6.3.1.

Conversely, if θ is an S-isomorphism of (G, ·) onto some Smarandache f, g-principal iso-

topes (G, ◦) where f, g ∈ H such that (H, ·) is a S-subgroup of (G, ·) means

(θ, θ, θ) : (G, ·) −→ (G, ◦), (Rg, Lf , I) : (G, ·) −→ (G, ◦)

which implies

(R−1
g , L−1

f , I) : (G, ◦) −→ (G, ·) and (H, ·)θ = (H, ◦).

Thus, (θR−1
g , θL−1

f , θ) ∈ AUT (G, ·). Therefore, θ is a S-special map because f, g ∈ H.

Corollary 6.3.1 Let (G, ·) be a Smarandache loop with a an S-subgroup (H, ·). A mapping

θ ∈ SBS(G, ·) if and only if θ is an S-isomorphism of (G, ·) onto some Smarandache f, g-

principal isotopes (G, ◦) such that f, g ∈ H where (H, ·) is an S-subgroup of (G, ·).

Proof

This follows from Definition 6.1.2 and Theorem 6.3.2.

Theorem 6.3.3 Let (G, ·) and (G, ◦) be S-loops. (G, ◦) is a Smarandache f, g-principal

isotope of (G, ·) if and only if (G, ·) is a Smarandache g, f -principal isotope of (G, ◦).

Proof

Let (G, ·) and (G, ◦) be S-loops such that if (H, ·) is an S-subgroup in (G, ·), then (H, ◦)
is an S-subgroup of (G, ◦). The left and right translation maps relative to an element x in

(G, ◦) shall be denoted by Lx and Rx respectively.
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If (G, ◦) is a Smarandache f, g-principal isotope of (G, ·) then,

x · y = xRg ◦ yLf ∀ x, y ∈ G for some f, g ∈ H.

Thus,

xRy = xRgRyLf
and yLx = yLfLxRg , x, y ∈ G

and we have

Ry = RgRyLf
and Lx = LfLxRg , x, y ∈ G.

So,

Ry = R−1
g RyL−1

f
and Lx = L−1

f LxR−1
g

, x, y ∈ G.

Putting y = f and x = g respectively, we now get

Rf = R−1
g RfL−1

f
= R−1

g and Lg = L−1
f LgR−1

g
= L−1

f .

That is,

Rf = R−1
g and Lg = L−1

f for some f, g ∈ H.

Recall that

x · y = xRg ◦ yLf ∀ x, y ∈ G ⇔ x ◦ y = xR−1
g · yL−1

f ∀ x, y ∈ G.

So using the last two translation equations,

x ◦ y = xRf · yLg ∀ x, y ∈ G ⇔ the triple (Rf ,Lg, I) : (G, ◦) −→ (G, ·)

is a Smarandache g, f -principal isotopism. Therefore, (G, ·) is a Smarandache g, f -principal

isotope of (G, ◦).
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The proof of the converse is achieved by doing the reverse of the procedure described

above.

Theorem 6.3.4 If (G, ·) is an S-loop with a Smarandache f, g-principal isotope (G, ◦), then

SBS(G, ·) = SBS(G, ◦).

Proof

Let (G, ◦) be the Smarandache f, g-principal isotope of the S-loop (G, ·) with S-subgroup

(H, ·). By Theorem 6.3.1, (G, ◦) is an S-loop with S-subgroup (H, ◦). The left and right

translation maps relative to an element x in (G, ◦) shall be denoted by Lx andRx respectively.

Let α ∈ SBS(G, ·), then there exist f1, g1 ∈ H so that

(αR−1
g1

, αL−1
f1

, α) ∈ AUT (G, ·).

Recall that the triple

(Rg1 , Lf1 , I) : (G, ·) −→ (G, ◦)

is a Smarandache f, g-principal isotopism, so

x · y = xRg ◦ yLf ∀ x, y ∈ G

and this implies

Rx = RgRxLf
and Lx = LfLxRg ∀ x ∈ G which also implies that

RxLf
= R−1

g Rx and LxRg = L−1
f Lx ∀ x ∈ G which finally gives

Rx = R−1
g RxL−1

f
and Lx = L−1

f LxR−1
g
∀ x ∈ G.
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Set

f2 = fαR−1
g1

Rg and g2 = gαL−1
f1

Lf .

Then

Rg2 = R−1
g RgαL−1

f1
Lf L−1

f
= R−1

g RgαL−1
f1

(6.1)

and Lf2 = L−1
f LfαR−1

g1
RgR−1

g
= L−1

f LfαR−1
g1
∀ x ∈ G. (6.2)

Since, (αR−1
g1

, αL−1
f1

, α) ∈ AUT (G, ·), then

(xαR−1
g1

) · (yαL−1
f1

) = (x · y)α ∀ x, y ∈ G. (6.3)

Putting y = g and x = f separately in the last equation,

xαR−1
g1

R(gαL−1
f1

) = xRgα and yαL−1
f1

L(fαR−1
g1

) = yLfα ∀ x, y ∈ G.

Thus by applying (6.1) and (6.2), we now have

αR−1
g1

= RgαR−1

(gαL−1
f1

)
= RgαR−1

g2
R−1

g and αL−1
f1

= LfαL−1

(fαR−1
g1

)
= LfαL−1

f2
L−1

f . (6.4)

We shall now compute (x ◦ y)α by (6.3) and (6.4) and then see the outcome.

(x ◦ y)α = (xR−1
g · yL−1

f )α = xR−1
g αR−1

g1
· yL−1

f αL−1
f1

=

xR−1
g RgαR−1

g2
R−1

g · yL−1
f LfαL−1

f2
L−1

f =

xαR−1
g2

R−1
g · yαL−1

f2
L−1

f = xαR−1
g2
◦ yαL−1

f2
∀ x, y ∈ G.

Thus,

(x ◦ y)α = xαR−1
g2
◦ yαL−1

f2
∀ x, y ∈ G ⇔ (αR−1

g2
, αL−1

f2
, α) ∈ AUT (G, ◦) ⇔ α ∈ SBS(G, ◦).
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Whence, SBS(G, ·) ⊆ SBS(G, ◦).

Since (G, ◦) is the Smarandache f, g-principal isotope of the S-loop (G, ·), then by The-

orem 6.3.3, (G, ·) is the Smarandache g, f -principal isotope of (G, ◦). So following the steps

above, it can similarly be shown that SBS(G, ◦) ⊆ SBS(G, ·). Therefore, the conclusion

that SBS(G, ·) = SBS(G, ◦) follows.

6.4 Cardinality Formulas

Theorem 6.4.1 Let (G, ·) be a finite Smarandache loop with n distinct S-subgroups. If the

SBS group of (G, ·) relative to an S-subgroup (Hi, ·) is denoted by SBSi(G, ·), then

|BS(G, ·)| = 1

n

n∑
i=1

|SBSi(G, ·)| [BS(G, ·) : SBSi(G, ·)].

Proof

Let the n distinct S-subgroups of G be denoted by Hi, i = 1, 2, · · ·n. Note here that

Hi 6= Hj ∀ i, j = 1, 2, · · ·n. By Theorem 6.2.1, SBSi(G, ·) ≤ BS(G, ·) ∀ i = 1, 2, · · ·n.

Hence, by the Lagrange’s theorem of classical group theory,

|BS(G, ·)| = |SBSi(G, ·)| [BS(G, ·) : SBSi(G, ·)] ∀ i = 1, 2, · · ·n.

Thus, adding the equation above for all i = 1, 2, · · ·n, we get

n|BS(G, ·)| =
n∑

i=1

|SBSi(G, ·)| [BS(G, ·) : SBSi(G, ·)] ∀ i = 1, 2, · · ·n, thence,

|BS(G, ·)| = 1

n

n∑
i=1

|SBSi(G, ·)| [BS(G, ·) : SBSi(G, ·)].

Theorem 6.4.2 Let (G, ·) be a Smarandache loop. Then, Ω(G, ·) ≤ AUT (G, ·).
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Proof

Let (G, ·) be an S-loop with S-subgroup H. By Definition 6.1.3, it can easily be observed

that Ω(G, ·) ⊆ AUT (G, ·).

Identity If I is the identity mapping on G, then hI = h ∈ H ∀ h ∈ H and there exists

e ∈ H where e is the identity element in G such that

(IR−1
e , IL−1

e , I) = (I, I, I) ∈ AUT (G, ·).

So, (I, I, I) ∈ Ω(G, ·). Thus Ω(G, ·) is non-empty.

Closure and Inverse Let A,B ∈ Ω(G, ·). Then there exist α, β ∈ SSY M(G, ·) and some

f1, g1, f2, g2 ∈ H such that

A = (αR−1
g1

, αL−1
f1

, α), B = (βR−1
g2

, βL−1
f2

, β) ∈ AUT (G, ·).

AB−1 = (αR−1
g1

, αL−1
f1

, α)(Rg2β
−1, Lf2β

−1, β−1)

= (αR−1
g1

Rg2β
−1, αL−1

f1
Lf2β

−1, αβ−1) ∈ AUT (G, ·).

Using the same techniques for the proof of closure and inverse in Theorem 6.2.1 here

and by letting

δ = βR−1
g1

Rg2β
−1 and γ = βL−1

f1
Lf2β

−1,

it can be shown that,

AB−1 = (αβ−1R−1
g , αβ−1L−1

f , αβ−1) ∈ AUT (G, ·) where g = eαβ−1γ, f = eαβ−1δ ∈ H

such that αβ−1 ∈ SSY M(G, ·) ⇔ AB−1 ∈ Ω(G, ·).

∴ Ω(G, ·) ≤ AUT (G, ·).
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Theorem 6.4.3 Let (G, ·) be a Smarandache loop with an S-subgroup H such that f, g ∈ H

and α ∈ SBS(G, ·). If the mapping

Φ : Ω(G, ·) −→ SBS(G, ·) is defined as Φ : (αR−1
g , αL−1

f , α) 7→ α,

then Φ is an homomorphism.

Proof

Let A,B ∈ Ω(G, ·). Then there exist α, β ∈ SSY M(G, ·) and some f1, g1, f2, g2 ∈ H such

that

A = (αR−1
g1

, αL−1
f1

, α), B = (βR−1
g2

, βL−1
f2

, β) ∈ AUT (G, ·).

Φ(AB) = Φ[(αR−1
g1

, αL−1
f1

, α)(βR−1
g2

, βL−1
f2

, β)] =

Φ(αR−1
g1

βR−1
g2

, αL−1
f1

βL−1
f2

, αβ).

It will be good if this can be written as;

Φ(AB) = Φ(αβδ, αβγ, αβ) such that hαβ ∈ H ∀ h ∈ H

and δ = R−1
g , γ = L−1

f for some g, f ∈ H.

This is done as follows: If

(αR−1
g1

βR−1
g2

, αL−1
f1

βL−1
f2

, αβ) = (αβδ, αβγ, αβ) ∈ AUT (G, ·) then,

xαβδ · yαβγ = (x · y)αβ ∀ x, y ∈ G.
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Put y = e and replace x by xβ−1α−1 then

xδ · eαβγ = x ⇔ δ = R−1
eαβγ.

Similarly, put x = e and replace y by yβ−1α−1. Then,

eαβδ · yγ = y ⇔ γ = L−1
eαβδ.

So,

Φ(AB) = (αβR−1
eαβγ, αβL−1

eαβδ, αβ) = αβ = Φ(αR−1
g1

, αL−1
f1

, α)Φ(βR−1
g2

, βL−1
f2

, β) = Φ(A)Φ(B).

∴ Φ is an homomorphism.

Theorem 6.4.4 Let (G, ·) be a Smarandache loop with an S-subgroup H such that f, g ∈ H

and α ∈ SSY M(G, ·). If the mapping

Φ : Ω(G, ·) −→ SBS(G, ·) is defined as Φ : (αR−1
g , αL−1

f , α) 7→ α

then,

A = (αR−1
g , αL−1

f , α) ∈ ker Φ if and only if α

is the identity map on G, g · f is the identity element of (G, ·) and g ∈ Nµ(G, ·) the middle

nucleus of (G, ·).

Proof

Necessity ker Φ = {A ∈ Ω(G, ·) : Φ(A) = I}. So, if

A = (αR−1
g1

, αL−1
f1

, α) ∈ ker Φ, then Φ(A) = α = I.
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Thus, A = (R−1
g1

, L−1
f1

, I) ∈ AUT (G, ·) ⇔

x · y = xR−1
g · yL−1

f ∀ x, y ∈ G. (6.5)

Replace x by xRg and y by yLf in (6.5) to get

x · y = xg · fy ∀ x, y ∈ G. (6.6)

Putting x = y = e in (6.6), we get g · f = e. Replace y by yL−1
f in (6.6) to get

x · yL−1
f = xg · y ∀ x, y ∈ G. (6.7)

Put x = e in (6.7), then we have yL−1
f = g · y ∀ y ∈ G and so (6.7) now becomes

x · (gy) = xg · y ∀ x, y ∈ G ⇔ g ∈ Nµ(G, ·).

Sufficiency Let α be the identity map on G, g · f the identity element of (G, ·) and g ∈
Nµ(G, ·). Thus, fg · f = f · gf = fe = f . Thus, f · g = e. Then also, y = fg · y =

f · gy ∀ y ∈ G which results into yL−1
f = gy ∀ y ∈ G. Thus, it can be seen that

xαR−1
g · yαL−1

f = xR−1
g · yL−1

f = xR−1
g α · yL−1

f α =

xR−1
g · yL−1

f = xR−1
g · gy = (xR−1

g · g)y = xR−1
g Rg · y = x · y = (x · y)α ∀ x, y ∈ G.

Thus,

Φ(A) = Φ(αR−1
g , αL−1

f , α) = Φ(R−1
g , L−1

f , I) = I ⇒ A ∈ ker Φ.

Theorem 6.4.5 Let (G, ·) be a Smarandache loop with an S-subgroup H such that f, g ∈ H
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and α ∈ SSY M(G, ·). If the mapping

Φ : Ω(G, ·) −→ SBS(G, ·) is defined as Φ : (αR−1
g , αL−1

f , α) 7→ α

then,

|Nµ(G, ·)| = | ker Φ| and |Ω(G, ·)| = |SBS(G, ·)||Nµ(G, ·)|.

Proof

Let the identity map on G be I. Using Theorem 6.4.4, if

gθ = (R−1
g , L−1

g−1 , I) ∀ g ∈ Nµ(G, ·) then, θ : Nµ(G, ·) −→ ker Φ.

θ is easily seen to be a bijection, hence |Nµ(G, ·)| = | ker Φ|.
Since Φ is an homomorphism by Theorem 6.4.3, then by the first isomorphism theorem

in classical group theory,

Ω(G, ·)/ ker Φ ∼= ImΦ.

Φ is clearly onto, so ImΦ = SBS(G, ·), so that Ω(G, ·)/ ker Φ ∼= SBS(G, ·). Thus,

|Ω(G, ·)/ ker Φ| = |SBS(G, ·)|. By Lagrange’s theorem,

|Ω(G, ·)| = | ker Φ||Ω(G, ·)/ ker Φ|,

so,

|Ω(G, ·)| = | ker Φ||SBS(G, ·)|, ∴ |Ω(G, ·)| = |Nµ(G, ·)||SBS(G, ·)|.

Theorem 6.4.6 Let (G, ·) be a Smarandache loop with an S-subgroup H. If

Θ(G, ·) =
{

(f, g) ∈ H ×H : (G, ◦) % (G, ·)
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for (G, ◦) the Smarandache principal f, g-isotope of (G, ·)
}

then,

|Ω(G, ·)| = |Θ(G, ·)||SAUM(G, ·)|.

Proof

Let A,B ∈ Ω(G, ·). Then there exist α, β ∈ SSY M(G, ·) and some f1, g1, f2, g2 ∈ H such

that

A = (αR−1
g1

, αL−1
f1

, α), B = (βR−1
g2

, βL−1
f2

, β) ∈ AUT (G, ·).

Define a relation ∼ on Ω(G, ·) such that

A ∼ B ⇐⇒ f1 = f2 and g1 = g2.

It is very easy to show that ∼ is an equivalence relation on Ω(G, ·). It can easily be seen

that the equivalence class [A] of A ∈ Ω(G, ·) is the inverse image of the mapping

Ψ : Ω(G, ·) −→ Θ(G, ·) defined as Ψ : (αR−1
g1

, αL−1
f1

, α) 7→ (f, g).

If A,B ∈ Ω(G, ·) then Ψ(A) = Ψ(B) if and only if (f1, g1) = (f2, g2) so, f1 = f2 and g1 = g2.

Thus, since Ω(G, ·) ≤ AUT (G, ·) by Theorem 6.4.2, then

AB−1 = (αR−1
g1

, αL−1
f1

, α)(βR−1
g2

, βL−1
f2

, β)−1 = (αR−1
g1

Rg2β
−1, αL−1

f1
Lf2β

−1, αβ−1) =

(αβ−1, αβ−1, αβ−1) ∈ AUT (G, ·) ⇔ αβ−1 ∈ SAUM(G, ·).

So,

A ∼ B ⇐⇒ αβ−1 ∈ SAUM(G, ·) and (f1, g1) = (f2, g2).
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∴ |[A]| = |SAUM(G, ·)|. But each

A = (αR−1
g , αL−1

f , α) ∈ Ω(G, ·)

is determined by some f, g ∈ H. So since the set
{

[A] : A ∈ Ω(G, ·)
}

of all equivalence

classes partitions Ω(G, ·) by the fundamental theorem of equivalence relation,

|Ω(G, ·)| =
∑

f,g∈H

|[A]| =
∑

f,g∈H

|SAUM(G, ·)| = |Θ(G, ·)||SAUM(G, ·)|.

∴ |Ω(G, ·)| = |Θ(G, ·)||SAUM(G, ·)|.

Theorem 6.4.7 Let (G, ·) be a finite Smarandache loop with a finite S-subgroup H. (G, ·)
is S-isomorphic to all its S-loop S-isotopes if and only if

|(H, ·)|2|SAUM(G, ·)| = |SBS(G, ·)||Nµ(G, ·)|.

Proof

As shown in [Corollary 5.2, [44]], an S-loop is S-isomorphic to all its S-loop S-isotopes if and

only if it is S-isomorphic to all its Smarandache f, g principal isotopes. This will happen if

and only if H ×H = Θ(G, ·) where Θ(G, ·) is as defined in Theorem 6.4.6.

Since Θ(G, ·) ⊆ H × H then it is easy to see that for a finite Smarandache loop with

a finite S-subgroup H, H × H = Θ(G, ·) if and only if |H|2 = |Θ(G, ·)|. So the proof is

complete by Theorem 6.4.5 and Theorem 6.4.6.

Corollary 6.4.1 Let (G, ·) be a finite Smarandache loop with a finite S-subgroup H. (G, ·)
is a GS-loop if and only if

|(H, ·)|2|SAUM(G, ·)| = |SBS(G, ·)||Nµ(G, ·)|.
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Proof

This follows by the definition of a GS-loop and Theorem 6.4.7.

Lemma 6.4.1 Let (G, ·) be a finite GS-loop with a finite S-subgroup H and a middle nucleus

Nµ(G, ·) .

|(H, ·)| = |Nµ(G, ·)| ⇐⇒ |(H, ·)| = |SBS(G, ·)|
|SAUM(G, ·)| .

Proof

From Corollary 6.4.1,

|(H, ·)|2|SAUM(G, ·)| = |SBS(G, ·)||Nµ(G, ·)|.

Necessity If |(H, ·)| = |Nµ(G, ·)|, then

|(H, ·)||SAUM(G, ·)| = |SBS(G, ·)| =⇒ |(H, ·)| = |SBS(G, ·)|
|SAUM(G, ·)| .

Sufficiency If |(H, ·)| = |SBS(G,·)|
|SAUM(G,·)| then, |(H, ·)||SAUM(G, ·)| = |SBS(G, ·)|. Hence, mul-

tiplying both sides by |(H, ·)|,

|(H, ·)|2|SAUM(G, ·)| = |SBS(G, ·)||(H, ·)|.

So that

|SBS(G, ·)||Nµ(G, ·)| = |SBS(G, ·)||(H, ·)| =⇒ |(H, ·)| = |Nµ(G, ·)|.

Corollary 6.4.2 Let (G, ·) be a finite GS-loop with a finite S-subgroup H. If |Nµ(G, ·)| 	 1,
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then,

|(H, ·)| = |SBS(G, ·)|
|SAUM(G, ·)| . Hence, |(G, ·)| = n|SBS(G, ·)|

|SAUM(G, ·)| for some n 	 1.

Proof

By hypothesis, {e} 6= H 6= G. In a loop, Nµ(G, ·) is a subgroup, hence if |Nµ(G, ·)| 	 1,

then, we can take

(H, ·) = Nµ(G, ·) so that |(H, ·)| = |Nµ(G, ·)|.

Thus by Lemma 6.4.1,

|(H, ·)| = |SBS(G, ·)|
|SAUM(G, ·)| .

As shown in [Section 1.3, [37]], a loop L obeys the Lagrange’s theorem relative to a

subloop H if and only if H(hx) = Hx for all x ∈ L and for all h ∈ H. This condition is

obeyed by Nµ(G, ·), hence

|(H, ·)|
∣∣∣|(G, ·)| =⇒ |SBS(G, ·)|

|SAUM(G, ·)|

∣∣∣∣∣|(G, ·)| =⇒

there exists n ∈ N such that

|(G, ·)| = n|SBS(G, ·)|
|SAUM(G, ·)| .

But if n = 1, then |(G, ·)| = |(H, ·)| =⇒ (G, ·) = (H, ·) hence (G, ·) is a group which is a

contradiction to the fact that (G, ·) is an S-loop.

∴ |(G, ·)| = n|SBS(G, ·)|
|SAUM(G, ·)| for some natural numbers n 	 1.
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[42] T. G. Jáıyéo. lá (2006), Parastrophic invariance of Smarandache quasigroups, Scientia

Magna Journal, 2, 3, 48–53.
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