Asia Pacific Journal of Research

A peer reviewed international Journal
IMPACT FACTOR : 6.58
Print-1SSN-2320-5504
Online-E-ISSN - 2347-4793

SMARANDACHE-R-MODULES AND ALGORITHMS

Dr.N. Kannappa ${ }^{1}$ and P. Hirudayaraj ${ }^{2}$
${ }^{1}$ P. G \& Research Department of Mathematics, TBML College
Porayar - 609307,Tamil Nadu, India
E-mail: sivaguru91@yahoo.com
${ }^{2}$ Department of Mathematics, RVS College of Arts and Science
Karaikal - 609609, Puducherry, India
E-mail: hiruthayaraj99@gmail.com

Abstract

In this paper we introduced Smarandache-2-algebraic structure of R-modules namely Smarandache- R-modules. A Smarandache-2-algebraic structure on a set N means a weak algebraic structure A_{0} on N such that there exists a proper subset M of N, which is embedded with a stronger algebraic structure A_{1}, stronger algebraic structure means satisfying more axioms, by proper subset one understands a subset different from the empty set, form the unit element if any, from the whole set. We define Smarandache-R-modules and obtain some of its algorithms through on CS-Algebras, on BF-Algebras, and on BRK-Algebras. We refer to Raul Padilla[10].

Keywords : R-modules, Smarandache-R-modules, CS-Algebras, BF-Algebras, and BRK-Algebras

INTRODUCTION

In order that new notions are introduced in algebra to better study the congruence in number theory by Florentin Smarandache [1]. By <proper subset> of a set A we consider a set P included in A, and different from A, different form the empty set, and from the unit element in A-if any they rank the algebraic structures using an order relationship:

They say that the algebraic structures $S_{1} \ll S_{2}$ if: both are defined on the same set; all S_{1} laws are also S_{2} laws; all axioms of an S_{1} law are accomplished by the corresponding S_{2} law; S_{2} law accomplish strictly more axioms that S_{1} laws, or S_{2} has more laws than S_{1}.

For example: Semi group << Monoid << group << ring<< field, or Semi group<< commutative semi group, ring<< unitary, ring etc. They define a General special structure to be a structure SM on a set A, different form a structure SN, such that a proper subset of A is on structure, where $\mathrm{SM} \ll \mathrm{SN} \ll$.

PRELIMINARIES:

DEFINITION:1.1

A left R- modules A is a system with two binary operations, addition and multiplication, such that
(i) the elements of A form a group ($\mathbf{A},+$) under addition,
(ii) the elements of A form a multiplicative semi-group,
(iii) $x(y+z)=x y+x z$, for all $x, y, z \in A$

In particular, if A contains a multiplicative semi-group S whose elements generate ($\mathrm{A},+$) and satisfy
(iv) $\quad(x+y) s=x s+y s$, for all $x, y \in A$ and $s \in S$, then we say that A is a distributively generated R-modules.

DEFINITION :1.2
A $R-$ Modules $(B,+,$.$) is said to be Smarandache- R$-modules whose proper subset A is a S - algebra with respect to same induced operation of B.

DEFINITION : 1.3 (Alternative definition for S-R-modules)
If there exists a non-empty set A which is a R-modules such that it superset B of A is a S-algebra with respect to the same induced operation, then B is called Smarandache- R-modules It can also written as S-R-modules.

ALGORITHMS

BE algebras: Ahn.S.S and So.K.S has introduced BE algebras and satisfies the following conditions for all x, y and z in A

1) $x * x=1$
2) $x * 1=1$
3) $1 * x=x$
4) $x *(y * z)=y *(x * z)$.

According to Raul Padilla (4,Thm.1.60d) R is a module, Now by definition, R is a Smarandache-R-modules

ALGORITHMS:I

Step 1: Consider a R-module R
Step 2: Let x, y and z in A
Step 3: Choose $x * y \leq y N * x N$
Step 4: Choose $x \leq y$ implies $y N \leq x N$
Step 5: Verify $\mathrm{x} *(y * z)=(x * y) *(x * z)$
Step 6: If step 5 is true then R is a Smarandache-R-module

ALGORITHM:II

Step1: Consider a R-module R
Step 2: Let x, y and z in A
Step 3: Choose $(y * x) * y \leq x * y$.
Step 4: Choose $x *(x * y)=x * y$.
tep 5: Verify $\mathrm{x} *\left(y^{*} z\right)=(x * y) *(x * z)$,
Step 6: If step 5 is true then by definition, we write R is a Smarandache-R-module

BRK ALGEBRA

BRK algebras: Imai and Iseki has introduced BRK algebras and satisfies the following conditions

```
1) \((x * y) *(x * z) \leq(z * y)\)
2) \(x *(x * y) \leq y\)
3) \(x \leq x\)
4) \(x \leq y\) and \(y \leq x\) imply \(x=y\)
5) \(x \leq 0\) implies \(x=0\), where \(x \leq y\) is defined by \(x * y=0\), for all \(x, y, z \in X\).
```

According to Raul Padilla (4,Thm.1.60d) R is a module, now by definition, R is a Smarandache-R-modules.

ALGORITHMS III

Step1: Consider a R-module R
Step 2: Let x, y in A
Step 3: Let $x * x=0$
Step 4: Choose $\mathrm{x} * \mathrm{y}=0$
Step 5: Choose $y * x=0$
Step 6: Verify that $0 * x=0 * y$.
Step 7: If step 6 is true then we write R is a Smarandache-R-module.

ALGORITHM:IV

Step1: Consider a R-module R
Step 2: Let a, b and c in A
Step 3: Choose a $* \mathrm{~b}$
Step 4: Choose a * c
Step 5: Verify $a * b=a * c$ then $0 * b=0 * c$
Step 6: If step 5 is true then R is a Smarandache-R-module

BF-ALGEBRA

According to Andrzej Walendziak has introduced on BF algebras for the following conditions
a) $0 *(x * y)=y * x$.
b) $0 *(0 * x)=x$
c) if $0 * x=0 * y$, then $x=y$
d)) if $x * y=0$. then $y * x=0$
for any $\mathrm{x}, y \in A$;
According to Raul Padilla (4,Thm.1.60d) R is a module, now by definition, R is a Smarandache-R-modules
Given R be a Smarandache-R-module, if there exists a proper subset A of R in which satisfies the following statements
(a) A is a BF-algebra;
(b) $x=[x *(0 * y)] * y$ for all $x, y \in A$;
(c) $x=y *[(0 * x) *(0 * y)]$ for all $x, y \in A$.

According to Raul Padilla (4,Thm.1.60d) R is a module, now by definition, R is a Smarandache-R-modules

ALGORITHM:V

Step1: Consider a R-module R
Step 2: Let x, y in A
Step 3: Choose $\mathrm{x} * y=0$
Step 4: Choose $y * x=0$
Step 5: Check $\mathrm{x}=0 *(0 * x)=x * 0$
Step 6: Verify that $\mathrm{x}=\mathrm{y}$
Step 7: If step 6 is true then we write R is a Smarandache-R-module

ALGORITHM:VI

Step1: Consider a R-module R
Step 2: Let x, y in A
Step 3: Choose $\mathrm{x} * y=0$
Step 4: Choose $y * x=0$
Step 5: Check $x=y^{*}(0 * x) *(0 * y)$
Step 6: Verify that $\mathrm{x}=\mathrm{y}$
Step 7: If step 6 is true then we write R is a Smarandache- R -module
Given R be a smarandache-R-module, if there exists a proper subset A of R in which BG-algebra satisfies the following statements
(a) A is a BG-algebra;
(b) For $x, y \in A, x * y=0$ implies $x=y$;
(c) The right cancellation law holds in A. i.e., If $x^{*} y=z^{*} y$, then $x=z$ for any $x, y, z \in A$;
(d) The left cancellation law holds in A. i.e., if $y^{*} x=y^{*} z$, then $x=z$ for any $x . y, z \in A$.

According to Raul Padilla (4,Thm.1.60d) R is a module, now by definition, R is a Smarandache- R - Modules

ALGORITHM:VII

Step1: Consider a R-module R
Step 2: Let x, y in A
Step 3: Choose $\mathrm{x} * \mathrm{y}=0$
Step 4: Choose $y * x=0$
Step 5: Check $x=(x * y) *(0 * y)=0 *(0 * y)$
Step 6: Verify that $\mathrm{x}=\mathrm{y}$
Step 7: If step 6 is true then we write R is a Smarandache-R-module

References:

1. Florentin Smarandache, "Special Algebric Stuctures", University of New Mexico.MSC:06A99, 1991.
2. Hu Q. P. and Li .X, "On BCH-algebras," Mathematics Seminar Notes, vol. 11, pp. 313-320, 1983.
3. Imai Y. and Is'eki. K. "On axiom systems of propositional calculi. XIV," Proceedings of the Japan Academy, vol. 42, pp. 19-22, 1966.[
4. Ahn S. S. and So K. S, "On [4]generalized upper sets in BEalgebras," Bulletin of the Korean Mathematical Society, vol. 46, no. 2, pp. 281-287, 2009.
5. Jun Y. B., Roh E. H., and Kim H. S, "On BH-algebras," Scientiae Mathematicae, vol. 1, no. 3, pp. 347-354, 1998.
6. Cho, J. R. Kim, H. S.: "On B-algebras and quasigroups, Quasigroups Related Systems"
7. 7 (2001), 16.
8. Huang, Y.: "Irreducible ideals in BCI-algebras", Demonstratio Math. 37 (2004), 18.
9. Walendziak, A.: "A note on normal subalgebras in B-algebras", Sci. Math. Jpn. 62 (2005), 49 -53.
10. Walendziak, A.:" Some axiomaizations of B-algebras", Math. Slovaca 56 (2006),301 306.
11. Raul Padilla, "Smarandache Algebraic Structures", Universidade do Minho,Portugal, 1999.
