

SMARANDACHE-R-MODULES AND ALGORITHMS

Dr.N. Kannappa¹ and P. Hirudayaraj²

 ¹P.G & Research Department of Mathematics, TBML College Porayar - 609307,Tamil Nadu, India E-mail: sivaguru91@yahoo.com
 ²Department of Mathematics, RVS College of Arts and Science Karaikal - 609609, Puducherry, India E-mail: hiruthayaraj99@gmail.com

ABSTRACT

In this paper we introduced Smarandache-2-algebraic structure of R-modules namely Smarandache- R-modules. A Smarandache-2-algebraic structure on a set N means a weak algebraic structure A_0 on N such that there exists a proper subset M of N, which is embedded with a stronger algebraic structure A_1 , stronger algebraic structure means satisfying more axioms, by proper subset one understands a subset different from the empty set, form the unit element if any, from the whole set. We define Smarandache-R-modules and obtain some of its algorithms through on CS-Algebras, on BF-Algebras, and on BRK-Algebras. We refer to Raul Padilla[10].

Keywords: R-modules, Smarandache-R-modules, CS-Algebras, BF-Algebras, and BRK-Algebras

INTRODUCTION

In order that new notions are introduced in algebra to better study the congruence in number theory by Florentin Smarandache [1]. By \langle proper subset \rangle of a set A we consider a set P included in A, and different from A, different form the empty set, and from the unit element in A-if any they rank the algebraic structures using an order relationship:

They say that the algebraic structures $S_1 \ll S_2$ if: both are defined on the same set; all S_1 laws are also S_2 laws; all axioms of an S_1 law are accomplished by the corresponding S_2 law; S_2 law accomplish strictly more axioms that S_1 laws, or S_2 has more laws than S_1 .

For example: Semi group << Monoid << group << ring<< field, or Semi group<< commutative semi group, ring<< unitary, ring etc. They define a General special structure to be a structure SM on a set A, different form a structure SN, such that a proper subset of A is on structure, where SM<< SN <<.

PRELIMINARIES:

DEFINITION:1.1

A left R- modules A is a system with two binary operations, addition and multiplication, such that

- (i) the elements of A form a group (A,+) under addition,
- (ii) the elements of A form a multiplicative semi-group,
- (iii) x(y+z) = xy + xz, for all $x, y, z \in A$
 - In particular, if A contains a multiplicative semi-group S whose elements generate (A,+) and satisfy

(iv) (x+y)s = xs + ys, for all $x, y \in A$ and $s \in S$, then we say that A is a distributively generated R-modules.

DEFINITION :1.2

A R – Modules (B,+,) is said to be Smarandache- R-modules whose proper subset A is a S - algebra with respect to same induced operation of B.

DEFINITION :1.3 (Alternative definition for S-R-modules)

If there exists a non-empty set A which is a R-modules such that it superset B of A is a S-algebra with respect to the same induced operation, then B is called Smarandache- R-modules It can also written as S-R-modules.

ALGORITHMS

BE algebras: Ahn.S.S and So.K.S has introduced BE algebras and satisfies the following conditions for all x, y and z in A

1) x * x = 12) x * 1 = 13) 1 * x = x4) x * (y * z) = y * (x * z).

According to Raul Padilla (4,Thm.1.60d) R is a module, Now by definition, R is a Smarandache-R-modules

ALGORITHMS:I

Step 1: Consider a R-module R Step 2: Let x, y and z in A Step 3: Choose $x * y \le y N * xN$ Step 4: Choose $x \le y$ implies $yN \le xN$ Step 5: Verify x * (y * z) = (x * y) * (x * z)Step 6: If step 5 is true then R is a Smarandache-R-module

ALGORITHM:II

Step 1: Consider a R-module R Step 2: Let x, y and z in A Step 3: Choose $(y * x) * y \le x * y$. Step 4: Choose x * (x * y) = x * y. tep 5: Verify x * (y * z) = (x * y) * (x * z),

Step 6: If step 5 is true then by definition, we write R is a Smarandache-R-module

BRK ALGEBRA

BRK algebras: Imai and Iseki has introduced BRK algebras and satisfies the following conditions

1) $(x * y) * (x * z) \le (z * y)$ 2) $x * (x * y) \le y$ 3) $x \le x$ 4) $x \le y$ and $y \le x$ imply x = y5) $x \le 0$ implies x = 0, where $x \le y$ is defined by x * y = 0, for all $x, y, z \in X$. According to Raul Padilla (4,Thm.1.60d) R is a module, now by definition, R is a Smarandache-R-modules.

ALGORITHMS III

Step 1: Consider a R-module R Step 2: Let x, y in A Step 3: Let x * x = 0Step 4: Choose x * y = 0Step 5: Choose y * x = 0Step 6: Verify that 0 * x = 0 * y. Step 7: If step 6 is true then we write R is a Smarandache-R-module.

ALGORITHM:IV

Step1: Consider a R-module R Step 2: Let a, b and c in A Step 3: Choose a * b Step 4: Choose a * c Step 5: Verify a * b = a * c then 0 * b = 0 * c Step 6: If step 5 is true then R is a Smarandache-R-module

BF-ALGEBRA

According to Andrzej Walendziak has introduced on BF algebras for the following conditions

a) 0 * (x * y) = y * x.
b) 0 * (0 * x) = x
c) if 0 * x = 0 * y, then x = y
d)) if x * y = 0. then y * x = 0
for any x, y ∈ A;

According to Raul Padilla (4,Thm.1.60d) R is a module, now by definition, R is a Smarandache-R-modules Given R be a Smarandache-R-module, if there exists a proper subset A of R in which satisfies the following statements

(a) A *is a BF*\-*algebra;*(b) x = [x * (0 * y)] * y for all x, y ∈ A;
(c) x = y * [(0 * x) * (0 * y)] for all x, y ∈ A.

According to Raul Padilla (4,Thm.1.60d) R is a module, now by definition, R is a Smarandache-R-modules

ALGORITHM:V

Step 1: Consider a R-module R Step 2: Let x, y in A Step 3: Choose x * y = 0Step 4: Choose y * x = 0Step 5: Check x = 0 * (0 * x) = x * 0Step 6: Verify that x = yStep 7: If step 6 is true then we write R is a Smarandache-R-module

ISSN (Print): 2320-5504 ISSN (Online): 2347-4793

ALGORITHM:VI

Step 1: Consider a R-module R Step 2: Let x, y in A Step 3: Choose x * y = 0Step 4: Choose y * x = 0Step 5: Check $x = y^* (0 * x) * (0 * y)$ Step 6: Verify that x = yStep 7: If step 6 is true then we write R is a Smarandache-R-module

Given R be a smarandache-R-module, if there exists a proper subset A of R in which *BG-algebra* satisfies the following statements

(a) A is a BG-algebra;

(b) For $x, y \in A$, x * y = 0 implies x = y;

- (c) The right cancellation law holds in A. i.e., If $x^*y = z^*y$, then x = z for any $x, y, z \in A$;
- (d) The left cancellation law holds in A. i.e., if $y^*x = y^*z$, then x = z for any $x.y.z \in A$.

According to Raul Padilla (4,Thm.1.60d) R is a module, now by definition, R is a Smarandache-R - Modules

ALGORITHM:VII

Step 1: Consider a R-module R Step 2: Let x, y in A Step 3: Choose x * y = 0Step 4: Choose y * x = 0Step 5: Check x = (x * y) * (0 * y) = 0 * (0 * y)Step 6: Verify that x = yStep 7: If step 6 is true then we write R is a Smarandache-R-module

References:

- 1. Florentin Smarandache, "Special Algebric Stuctures", University of New Mexico.MSC:06A99, 1991.
- 2. Hu Q. P. and Li .X, "On BCH-algebras," Mathematics Seminar Notes, vol. 11, pp. 313–320, 1983.
- Imai Y. and Is'eki. K. "On axiom systems of propositional calculi. XIV," Proceedings of the Japan Academy, vol. 42, pp. 19–22, 1966.[
- 4. Ahn S. S. and So K. S, "On [4]generalized upper sets in BEalgebras," *Bulletin of the Korean Mathematical Society*, vol. 46, no. 2, pp. 281–287, 2009.
- 5. Jun Y. B., Roh E. H., and Kim H. S, "On BH-algebras," Scientiae Mathematicae, vol. 1, no. 3, pp. 347–354, 1998.
- 6. Cho, J. R. Kim, H. S.: "On B-algebras and quasigroups, Quasigroups Related Systems"
- 7. 7 (2001), 1 6.
- 8. Huang, Y.: "Irreducible ideals in BCI-algebras", Demonstratio Math. 37 (2004), 1 8.
- 9. Walendziak, A.: "A note on normal subalgebras in B-algebras", Sci. Math. Jpn. 62 (2005), 49-53.
- 10. Walendziak, A.:" Some axiomaizations of B-algebras", Math. Slovaca 56 (2006), 301 306.
- 11. Raul Padilla, "Smarandache Algebraic Structures", Universidade do Minho, Portugal, 1999.