



# Article Some Implicativities for Groupoids and BCK-Algebras

## In Ho Hwang<sup>1</sup>, Hee Sik Kim<sup>2,\*</sup> and Joseph Neggers<sup>3</sup>

- <sup>1</sup> Department of Mathematics, Incheon National University, Incheon 22012, Korea; ho818@inu.ac.kr
- <sup>2</sup> Department of Mathematics, Research Institute of Natural Sciences, Hanyang University, Seoul 04763, Korea
- <sup>3</sup> Department of Mathematics, University of Alabama, Tuscaloosa, AL 35487-0350, USA; jneggers@ua.edu
- \* Correspondences: heekim@hanyang.ac.kr; Tel.: +82-10-9276-5630 or +82-2-2220-0897

Received: 26 August 2019; Accepted: 10 October 2019; Published: 15 October 2019



**Abstract:** In this paper, we generalize the notion of an implicativity discussed in *BCK*-algebras, and apply it to some groupoids and *BCK*-algebras. We obtain some relations among those axioms in the theory of groupoids.

**Keywords:** groupoid; *d*-algebra; *BCK*-algebra; (weakly) (*i*-)implicative; condition  $(L_i)$ 

MSC: 06F35; 20N02

## 1. Introduction

As a generalization of *BCK*-algebras, the notion of *d*-algebras was introduced by Neggers and Kim [1]. They discussed some relations between *d*-algebras and *BCK*-algebras as well as several other relations between *d*-algebras and oriented digraphs. Several properties on *d*-algebras, e.g., *d*-ideals, deformations, and companion *d*-algebras, were studied [2–4]. Recently, some notions of the graph theory were applied to the theory of groupoids [5].

The notion of an implicativity has a very important role in the study of *BCK*-algebras. An implicative *BCK*-algebra has some connections with distributive lattices, Boolean algebras, and semi-Brouwerian algebras.

In this paper, we generalize the notion of the implicativity, which is a useful tool for investigation of *BCK*-algebras by using the notion of a word in general algebraic structures, the most simple mathematical structure, i.e., in the theory of a groupoid. Moreover, we generalized the notion of the implicativity by using Bin(X)-product " $\Box$ ", and obtain the notion of a weakly *i*-implicativity, and obtain several properties in *BCK*-algebras and other algebraic structures.

## 2. Preliminaries

A groupoid (X, \*) is said to be a *left-zero-semigroup* if x \* y := x for all  $x, y \in X$ . Similarly, a groupoid (X, \*) is said to be a *right-zero-semigroup* if x \* y := y for all  $x, y \in X$  [6]. A groupoid (X, \*, 0) with constant 0 is said to be a *d*-algebra [1] if it satisfies the following conditions:

(I) x \* x = 0,

(II) 0 \* x = 0,

(III) x \* y = 0 and y \* x = 0 imply x = y for all  $x, y \in X$ .

For brevity, we call *X* a *d*-algebra. In a *d*-algebra *X*, we define a binary relation "  $\leq$  " by  $x \leq y$  if and only if x \* y = 0. A *d*-algebra (*X*, \*, 0) is said to be an *edge* if x \* 0 = x for all  $x \in X$ . Example 1 below is an edge *d*-algebra. For general references on *d*-algebras we refer to [2–4].

A BCK-algebra [7] is a *d*-algebra X satisfying the following additional axioms:

(IV) ((x \* y) \* (x \* z)) \* (z \* y) = 0, (V) (x \* (x \* y)) \* y = 0 for all  $x, y, z \in X$ .

**Theorem 1** ([7]). If (X, \*, 0) is a BCK-algebra, then

$$(x * y) * z = (x * z) * y$$

for all  $x, y, z \in X$ .

**Example 1.** Let  $X := \{0, a, b, c, d, 1\}$  be a set with the following table:

| * | 0 | а | b | С | d | 1 |
|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| а | a | 0 | 0 | а | 0 | 0 |
| b | b | а | 0 | b | а | 0 |
| С | С | С | b | 0 | 0 | 0 |
| d | d | С | b | а | 0 | 0 |
| 1 | 1 | d | b | а | а | 0 |

Then, (X, \*, 0) is an edge d-algebra which is not a BCK-algebra, since  $(c * b) * d = b * d = a \neq 0 = 0 * b = (c * d) * b$ . For general references on BCK-algebras, we refer to [7–9].

Let  $(X, \leq)$  be a partially ordered set with minimal element 0, and let (X, \*) be its associated groupoid, i.e., \* is a binary operation on *X* defined by

$$x * y := \begin{cases} 0 & \text{if } x \le y, \\ x & \text{otherwise.} \end{cases}$$

Then, (X, \*, 0) is a *BCK*-algebra, and we call it a *standard BCK*-algebra.

A *BCK*-algebra (X, \*, 0) is said to be *implicative* if x = x \* (y \* x); *commutative* if x \* (x \* y) = y \* (y \* x); *positive implicative* if (x \* y) \* (y \* z) = (x \* y) \* z for all  $x, y \in X$  [7]. It is well known that a *BCK*-algebra is implicative if and only if it is both commutative and positive implicative. A group X is said to be *Boolean* if every element of X is its own inverse.

The notion of Smarandache algebras emerged and has been applied to several algebraic structures [10–12]. Two algebras (X, \*) and  $(X, \circ)$  are said to be *Smarandache disjoint* [13,14] if we add some axioms of an algebra (X, \*) to an algebra  $(X, \circ)$ , then the algebra  $(X, \circ)$  becomes a trivial algebra, i.e., |X| = 1; or if we add some axioms of an algebra  $(X, \circ)$  to an algebra (X, \*), then the algebra (X, \*), then the algebra  $(X, \circ)$  becomes a trivial algebra, i.e., |X| = 1. Note that if we add an axiom (A) of an algebra (X, \*) to another algebra  $(X, \circ)$ , then we replace the binary operation " $\circ$ " in (A) by the binary operation "\*".

Let Bin(X) be the collection of all groupoids (X, \*) defined on X. For any elements (X, \*) and  $(X, \bullet)$  in Bin(X), we define a binary operation " $\Box$ " on Bin(X) by

$$(X,*) \square (X,\bullet) = (X,\square), \tag{1}$$

where

$$x \Box y = (x * y) \bullet (y * x)$$
<sup>(2)</sup>

for any  $x, y \in X$ . Using the notion, Kim and Neggers proved the following theorem.

**Theorem 2** ([6]). (Bin(X),  $\Box$ ) is a semigroup, i.e., the operation " $\Box$ " as defined in general is associative. *Furthermore, the left zero semigroup is an identity for this operation.* 

## 3. (Weakly) Implicativity in Groupoids

By using the notion of words, we generalize the notion of an implicativity in groupoids. A groupoid (or a *BCK*-algebra) (X, \*) is said to be *implicative* if

$$x * (y * x) = x$$

for all  $x, y \in X$ .

**Proposition 1.** If (X, \*) is a left-zero semigroup (respectively, a right-zero semigroup), i.e., x \* y = x (respectively, x \* y = y) for all  $x, y \in X$ , then (X, \*) is implicative.

**Proof.** If (X, \*) is a left-zero semigroup, then x \* y = x for all  $x, y \in X$ . It follows that x \* (y \* x) = x \* y = x, which proves that (X, \*) is implicative. Similarly, if (X, \*) is a right-zero semigroup, then it is also implicative.  $\Box$ 

**Proposition 2.** The class of implicative groupoids and the class of groups are Smarandache disjoint.

**Proof.** Assume  $(X, \bullet, e)$  is both a group and an implicative groupoid. Then,  $e = e \bullet (x \bullet e) = x \bullet e = x$  for all  $x \in X$ . This shows that  $X = \{e\}$ .  $\Box$ 

Notice that the class of implicative groupoids is equationally defined and thus that it is a variety, i.e., it is closed under subgroups, epimorphic images, and direct products.

A groupoid (*X*, \*) is said to be *weakly implicative* if there exists a word w(x) such that, for all  $x, y \in X$ ,

$$x \ast (y \ast x) = w(x).$$

Note that w(x) is an expression of "*x*", e.g.,  $x * (x * x), x * x, ((x * x) * x) * x, \cdots$ , and a zero element "0", e.g.,  $x * (0 * x), (0 * x) * (x * 0), \cdots$ , if necessary.

**Proposition 3.** Let (X, \*, 0) be a weakly implicative groupoid with w(x) = x \* (0 \* x). If (X, \*, 0) is a BCK-algebra, then it is an implicative BCK-algebra.

**Proof.** Let (X, \*, 0) be a weakly implicative groupoid with w(x) := x \* (0 \* x). Since (X, \*, 0) is a *BCK*-algebra, we obtain x \* (y \* x) = w(x) = x \* (0 \* x) = x \* 0 = x for all  $x, y \in X$ . Hence, (X, \*, 0) is an implicative *BCK*-algebra.  $\Box$ 

**Corollary 1.** Let (X, \*, 0) be an edge d-algebra. If (X, \*, 0) is a weakly implicative with w(x) = x \* (0 \* x), then is an implicative edge d-algebra.

**Proof.** If (X, \*, 0) is an edge *d*-algebra, then 0 \* x = 0 and x \* 0 = x for all  $x \in X$ . By Proposition 3, (X, \*, 0) is an implicative edge *d*-algebra.  $\Box$ 

Let (X, \*) be a groupoid. Define a binary operation "•" on X by

$$x \bullet y := y * x$$

for all  $x, y \in X$ . We call  $(X, \bullet)$  an *oppositie groupoid* of a groupoid (X, \*).

**Theorem 3.** The opposite groupoid of a BCK-algebra is weakly implicative.

**Proof.** Let (X, \*, 0) be a *BCK*-algebra and let w(x) := 0 for all  $x \in X$ . Then,  $x \bullet (y \bullet x) = (x * y) * x = (x * x) * y = 0 * y = 0 = w(x)$ . Hence,  $(X, \bullet)$  is weakly implicative.  $\Box$ 

**Proposition 4.** There is no nontrivial implicative opposite groupoid derived from a BCK-algebra.

**Proof.** Let (X, \*, 0) be a *BCK*-algebra and let  $|X| \ge 2$ . Assume that  $(X, \bullet)$  is implicative. Then,  $x = x \bullet (y \bullet x) = (x * y) * x = (x * x) * y = 0 * y = 0$  for all  $x \in X$ , i.e.,  $X = \{0\}$ , a contradiction.  $\Box$ 

**Theorem 4.** The class of weakly implicative groupoids and the class of groups are Smarandache disjoint.

**Proof.** Assume  $(X, \cdot, e)$  is both a group and a weakly groupoid. Then, there exists a word w(x) such that  $x \cdot (y \cdot x) = w(x)$  for all  $x, y \in X$ . It follows that  $e \cdot (x \cdot e) = w(e)$  for all  $x \in X$ . Since  $x = e \cdot (x \cdot e)$ , we obtain x = w(e), a constant. Hence,  $X = \{w(e)\}$ , i.e., |X| = 1, a contradiction.  $\Box$ 

## 4. Levels of Implicativities

Let (X, \*) be a groupoid and let  $x, y \in X$ . We define binary operations " $\Box_i$ " on X by  $x \Box_1 y := (x * y) * (y * x) = x \Box y$  and  $x \Box_{i+1} y := (x \Box_i y) * (y \Box_i x)$  for all  $x, y \in X$ , where  $i = 1, 2, 3, \cdots$ . Let w(x) be a word of x. We define the following levels of implicativities as follows:

Level 0: (i) x \* (y \* x) = w(x) (weakly 0-implicative); (ii) x \* (y \* x) = x (implicative). Level 1: (i)  $x * (y \Box_1 x) = w(x)$  (weakly 1-implicative); (ii)  $x * (y \Box_1 x) = x$  (1-implicative). Level i: (i)  $x * (y \Box_i x) = w(x)$  (weakly i-implicative); (ii)  $x * (y \Box_i x) = x$  (i-implicative).

**Theorem 5.** Let  $(X, \cdot, e)$  be a group with  $|X| \ge 2$ . Then, X is weakly 1-implicative if and only if X is a Boolean group.

**Proof.** Let  $(X, \cdot, e)$  be a weakly 1-implicative groupoid. Then,  $x \cdot (y \Box_1 x) = w(x)$  for all  $x, y \in X$ . It follows that  $x \cdot ((y \cdot x) \cdot (x \cdot y)) = w(x)$ . If we let x := e, then  $e \cdot ((y \cdot e) \cdot (e \cdot y)) = w(e)$ , and hence  $y^2 = w(e)$  for all  $y \in X$ . If we let y := e, then  $w(e) = e^2 = e$ . Hence  $y^2 = w(e) = e$  for all  $y \in X$ . Hence,  $(X, \cdot, e)$  is a Boolean group.

Assume  $(X, \cdot, e)$  is a Boolean group. Then,  $x^2 = e$  for all  $x \in X$ . It follows that, for any  $x, y \in X$ ,

$$\begin{array}{rcl} x \cdot (y \Box_1 x) &=& x \cdot ((y \cdot x) \cdot (x \cdot y)) \\ &=& xyx^2y \\ &=& x \\ &=& w(x). \end{array}$$

Hence,  $(X, \cdot, e)$  is a weakly 1-implicative groupoid.  $\Box$ 

**Theorem 6.** Let  $(X, \cdot, e)$  be a group. If  $(X, \cdot, e)$  is a weakly *i*-implicative groupoid, then it is *i*-implicative.

**Proof.** Given  $x \in X$ , we have  $e\Box_1 x = (e \cdot x) \cdot (x \cdot e) = x^2$ ,  $x\Box_1 e = (x \cdot e) \cdot (e \cdot x) = x^2$ ,  $e\Box_2 x = (e\Box_1 x) \cdot (x\Box_1 e) = x^2 \cdot x^2 = x^4$ , and  $x\Box_2 e = x^4$ . Similarly, we obtain  $e\Box_i x = x^{2^i} = x\Box_i e$ . Since X is a group and w(x) is a word on x, we have w(e) = e. This shows that  $e = w(e) = e \cdot (y\Box_i e) = e \cdot y^{2^i} = y^2$  for all  $y \in X$ . Hence,  $w(x) = x \cdot (e\Box_i x) = x \cdot x^{2^i} = x \cdot e^i = x$  for all  $x \in X$ , proving that  $(X, \cdot, e)$  is *i*-implicative.  $\Box$ 

**Proposition 5.** Let  $(X, \cdot, e)$  be a group. If  $x^{2^i} = e$  for any  $x \in X$ , then X is *i*-implicative.

**Proof.** Given  $x, y \in X$ , we have  $x \cdot (y \Box_i x) = x \cdot x^{2^i} y^{2^i} = x$ . Hence, *X* is *i*-implicative.  $\Box$ 

**Theorem 7.** Let (X, \*, 0) be a BCK-algebra. If it is weakly *i*-implicative, then it is *i*-implicative.

**Proof.** Suppose that (X, \*, 0) is weakly *i*-implicative. Then, there exists a mapping  $H : X \times X \to X$  such that, for any  $x, y \in X$ ,  $x * (y \square_i x) = H(x)$ . Since (X, \*, 0) is a *BCK*-algebra, we obtain  $0 \square_1 x = (0 * x) * (x * 0) = 0, 0 \square_2 x = (0 \square_1 x) * (x \square_1 0) = 0$ . In this fashion, we obtain  $0 \square_i x = 0$ . Thus,  $H(x) = x * (0 \square_i x) = x * 0 = x$ , which proves that  $x * (y \square_i x) = H(x) = x * (0 \square_i x) = x$ . Hence, (X, \*, 0) is *i*-implicative.  $\square$ 

**Theorem 8.** Let (X, \*) be both a weakly 0-implicative groupoid and an 1-implicative groupoid. If  $(X, \Box) := (X, *) \Box (X, *)$ , then  $(X, \Box)$  is weakly 0-implicative.

**Proof.** Since  $(X, \Box) = (X, *)\Box(X, *)$ , we have  $x\Box(y\Box x) = (x * (y\Box x)) * ((y\Box x) * x)$  for any  $x, y \in X$ . It follows from (X, \*) is 1-implicative that  $x = x * (y\Box_1 x) = x * (y\Box x)$  for all  $x, y \in X$ . Let  $z := y\Box x$ . Since (X, \*) is weakly 0-implicative, we have x \* (z \* x) = w(x) for some word w(x). It follows that

$$x \Box (y \Box x) = (x * (y \Box x)) * ((y \Box x) * x)$$
  
=  $x * ((y \Box x) * x)$   
=  $x * (z * x)$   
=  $w(x)$ ,

which proves that  $(X, \Box)$  is weakly 0-implicative.  $\Box$ 

**Corollary 2.** Let (X, \*) be both an implicative groupoid and a 1-implicative groupoid. If  $(X, \Box) := (X, *) \Box (X, *)$ , then  $(X, \Box)$  is implicative.

**Proof.** Let w(x) := x in Theorem 8.  $\Box$ 

Let (X, \*) be a groupoid and let  $(X, \Box) := (X, *)\Box(X, *)$ . If we assume that  $x\Box y := x * y$  for any  $x, y \in X$ , then  $x\Box_1 y = x\Box y = x * y$  and hence  $x\Box_2 y = (x\Box_1 y) * (y\Box_1 x) = (x * y) * (y * x) = x\Box_1 y = x\Box y = x * y$ . In this fashion, we obtain  $x\Box_i y = x * y$  for all  $i = 1, 2, \cdots$ .

**Theorem 9.** Every implicative BCK-algebra (X, \*, 0) is an *i*-implicative BCK-algebra where  $i = 1, 2, \cdots$ .

**Proof.** Let (X, \*, 0) be an implicative *BCK*-algebra. Then, x \* (y \* x) = x for any  $x, y \in X$ . It follows from Theorem 1 that

$$y \Box x = (y * x) * (x * y)$$
  
=  $(y * (x * y)) * x$   
=  $y * x$ ,

i.e.,  $y \Box x = y * x$ . This shows that  $x * (y \Box_i x) = x * (y \Box x) = x * (y * x) = x$  for any  $i = 1, 2, \cdots$ . Hence, (X, \*, 0) is an *i*-implicative *BCK*-algebra.  $\Box$ 

## 5. Weakly Implicative Groupoids with $P(L_i)$

A groupoid (X, \*, 0) is said to have a *condition* ( $L_i$ ) if it satisfies the following condition, for any  $x, y \in X$ ,

$$x\Box_{i+1}y = x\Box_i y, (L_i);$$

and a groupoid (X, \*, 0) is said to have a *condition*  $(L_0)$  if it satisfies the following condition, for any  $x, y \in X$ ,

$$x\Box_1 y = x\Box_0 y, (L_0),$$

i.e., (x \* y) \* (y \* x) = x \* y. Assume that a groupoid (X, \*) has the condition  $(L_i)$ . Then,  $x \square_{i+2}y = (x \square_{i+1}y) * (y \square_{i+1}x) = (x \square_i y) * (y \square_i x) = x \square_{i+1}y$  for any  $x, y \in X$ . Similarly,  $x \square_{i+3}y = x \square_{i+2}y = x \square_{i+1}y$ . In this fashion, we have  $x \square_{i+k}y = x \square_{i+k-1}y$  for any  $k = 1, 2, \cdots$ . Hence, (X, \*) satisfies the condition  $(L_{i+k})$ .

**Proposition 6.** If a groupoid (X, \*) is a weakly *i*-implicative groupoid with  $(L_i)$ , then it is a weakly (i + k)-implicative groupoid.

**Proof.** Let (X, \*) be a weakly *i*-implicative groupoid with  $(L_i)$ . Then,  $x * (y \Box_i x) = w(x)$  and  $y \Box_{i+k} x = y \Box_i x$  for any  $x, y \in X$ , where  $k = 1, 2, \cdots$ . It follows that  $x * (y \Box_{i+k} x) = x * (y \Box_i x) = w(x)$  for any  $k = 1, 2, \cdots$ . This proves that (X, \*) is a weakly (i + k)-implicative groupoid.  $\Box$ 

**Theorem 10.** Any standard BCK-algebra has the condition  $(L_0)$ .

**Proof.** Let (X, \*, 0) be a standard *BCK*-algebra. Given  $x, y \in X$ , we have 3 cases: (i) x \* y = 0; (ii) y \* x = 0; (iii)  $x * y \neq 0$ ,  $y * x \neq 0$ . Case (i). If x \* y = 0, then  $x \Box y = (x * y) * (y * x) = 0 * (y * x) = 0 = x * y$ . Case (ii). If y \* x = 0, then  $x \Box y = (x * y) * (y * x) = (x * y) * 0 = x * y$ . Case (iii). If  $x * y \neq 0$ ,  $y * x \neq 0$ , then x \* y = x and y \* x = y. It follows that  $x \Box y = (x * y) * (y * x) = x * y$ . Hence,  $x \Box_1 y = x \Box_0 y = x * y$ .  $\Box$ 

Note that nonstandard *BCK*-algebras need not have the condition  $(L_0)$ . Consider the following example.

**Example 2.** Let  $X := \{0, 1, 2, 3\}$  be a set with the following table:

| * | 0 | 1 | 2 | 3 |
|---|---|---|---|---|
| 0 | 0 | 1 | 2 | 3 |
| 1 | 1 | 0 | 3 | 2 |
| 2 | 2 | 3 | 0 | 1 |
| 3 | 3 | 2 | 1 | 0 |

*Then,* (X, \*, 0) *is a BCK-algebra* ([7], *p.* 245). *Since* 2 \* 3 = 1 *and* (2 \* 3) \* (3 \* 2) = 1 \* 3 = 0, we have  $2\Box 3 \neq 2 * 3$ , *i.e.,* (X, \*, 0) *does not satisfy the condition*  $(L_0)$ .

A groupoid (X, \*) is said to have a *condition*  $(\alpha)$  if  $X \times X = A \cup B \cup C$ , where

$$A = \{(x, y) | y * x = 0\},\$$
  

$$B = \{(x, y) | x * y = 0\},\$$
  

$$C = \{(x, y) | x * y = x, y * x = y\}$$

**Theorem 11.** Let (X, \*, 0) be a groupoid with a condition  $(\alpha)$ . If (X, \*, 0) satisfies the following conditions: (i) 0 \* x = x; (ii) x \* 0 = x; (iii) x \* x = 0; (iv) y \* x = 0 implies  $x * y \in \{0, x\}$ , then (x \* (x \* y)) \* y = 0 for all  $x, y \in X$ .

**Proof.** Case (i). If  $(x, y) \in A$ , then y \* x = 0. By (iv), we have  $x * y \in \{0, x\}$ . If x \* y = 0, then (x \* (x \* y)) \* y = (x \* 0) \* y = x \* y = 0. If x \* y = x, then (x \* (x \* y)) \* y = (x \* x) \* y = 0 \* y = 0. Case (ii). If  $(x, y) \in B$ , then x \* y = 0 and hence (x \* (x \* y)) \* y = (x \* 0) \* y = x \* y = 0. Case (iii). If  $(x, y) \in C$ , then x \* y = x and y \* x = y. It follows that (x \* (x \* y)) \* y = (x \* x) \* y = 0 \* y = 0.  $\Box$ 

**Theorem 12.** Let (X, \*, 0) be a groupoid with a condition  $(\alpha)$ . If (X, \*, 0) satisfies the following conditions: (*i*) x \* 0 = x; (*ii*) 0 \* (x \* y) = y \* x for all  $x, y \in X$ , then (X, \*, 0) satisfies the condition  $(L_0)$ . **Proof.** Given  $x, y \in X$ , if  $(x, y) \in A$ , then y \* x = 0 and hence  $x \Box y = (x * y) * (y * x) = (x * y) * 0 = x * y$ . If  $(x, y) \in B$ , then x \* y = 0 and hence  $x \Box y = (x * y) * (y * x) = 0 * (y * x) = x * y$ . If  $(x, y) \in C$ , then x \* y = x, y \* x = y and hence  $x \Box y = (x * y) * (y * x) = x * y$ , proving the theorem.  $\Box$ 

**Theorem 13.** Let *K* be a field and let  $A, B, C \in K, |K| \ge 3$ . Define a binary operation "\*" on *K* by x \* y := A + Bx + Cy for all  $x, y \in K$ . If (K, \*) is an implicative groupoid, then x \* y is one of the following:

(i) x \* y = x, (ii) x \* y = y, (iii) x \* y = A - y.

**Proof.** Since (K, \*) is an implicative groupoid, we have

x = x \* (y \* x)= A + Bx + C(A + Bx + Cy)=  $A(1+C) + (B+C^2)x + BCy$ 

for any  $x, y \in K$ . It follows that  $A(1 + C) = 0, B + C^2 = 1$ , and BC = 0. Case 1. Assume B = 0. Since  $B + C^2 = 1$ , we obtain  $C^2 = 1$ , i.e.,  $C = \pm 1$ . If C = 1, then A = 0, since A(1 + C) = 0. Hence, x \* y = y. If C = -1, then A is arbitrary, since A(1 + C) = 0. Hence, x \* y = A - y. Case 2. Assume C = 0. Since  $A(1 + C) = 0, B + C^2 = 1$ , we obtain A = 0, B = 1, i.e., x \* y = x.  $\Box$ 

**Theorem 14.** Let *K* be a field and let  $A, B, C \in K, |K| \ge 3$ . Define a binary operation "\*" on *K* by x \* y := A + Bx + Cy for all  $x, y \in K$ . If (K, \*) satisfies the condition  $(L_0)$ , then x \* y is one of the following:

(i) x \* y = A, (ii) x \* y = x, (iii)  $x * y = \frac{1}{2}(x + y)$ , (iv)  $x * y = A - \frac{1}{2}(x - y)$ .

**Proof.** Since x \* y = A + Bx + Cy and y \* x = A + By + Cx, we have

$$(x * y) * (y * x) = (A + Bx + Cy) * (A + By + Cx)$$
  
=  $A + B(A + Bx + Cy) + C(A + By + Cx)$   
=  $A(1 + B + C) + (B^2 + C^2)x + 2BCy$   
=  $x * y$   
=  $A + Bx + Cy$ 

for any  $x, y \in K$ . It follows that  $A(1 + B + C) = A, B^2 + C^2 = B$  and 2BC = C. This shows that C = 0 or  $B = \frac{1}{2}$ . Case 1. C = 0. Since  $B^2 + C^2 = B$ , we obtain that either B = 0 or B = 1. If B = 0, then x \* y = A. If B = 1, then A = A(1 + B + C) = 2A, i.e., A = 0. Hence, x \* y = x. Case 2.  $B = \frac{1}{2}$ . Since  $B^2 + C^2 = B$ , we obtain  $C = \pm \frac{1}{2}$ . If  $C = \frac{1}{2}$ , then A = A(1 + B + C) = 2A, i.e., A = 0. Hence, x \* y = x. Case 2. Hence,  $x * y = \frac{1}{2}(x + y)$ . If  $C = -\frac{1}{2}$ , then A = A(1 + B + C) = A, and hence A is arbitrary. Hence,  $x * y = A - \frac{1}{2}(x - y)$ .  $\Box$ 

## 6. Conclusions

In this paper, we generalized the notion of an implicativity discussed mainly in *BCK*-algebras by using the notion of a word, and obtained several properties in groupoids and *BCK*-algebras. By using the notion of Bin(X)-product  $\Box$ , we generalized the notion of the implicativity in different directions, and obtained the notion of a weakly (*i*-)implicativity. We applied these notions to *BCK*-algebras and several groupoids, and investigated some relations among them. The notion of a weakly

(*i*-)implicativity can be applied to positive implicative *BCK*-algebras, e.g.,  $x * y = (x \Box_i y) * y$ , and seek to find some relations with commutative *BCK*-algebras.

## 7. Future Research

Using the notions of the word and the Bin(X)-product, we will generalize the notions of the commutativity and the positive implicativity in *BCK*-algebras and groupoids, i.e., (weakly) *i*-commutative and (weakly) *i*-positive implicative *BCK*-algebras and groupoids. We will investigate some relations between (weakly) *i*-implicative *BCK*-algebras and (weakly) *i*-commutative and (weakly) *i*-positive implicative *BCK*-algebras, and investigate their relationships.

Author Contributions: Funding acquisition, I.H.H.; Investigation, H.S.K.; Resources, J.N.

**Acknowledgments:** The authors are deeply grateful to the referee for the valuable suggestions. This work was supported by Incheon National University Research Grant 2019–2020.

Conflicts of Interest: The authors declare no conflicts of interest.

## References

- 1. Neggers, J.; Kim, H.S. On *d*-algebras. *Math. Slovaca* 1999, 49, 19–26.
- 2. Allen, P.J.; Kim, H.S.; Neggers, J. On companion d-algebras. Math. Slovaca 2007, 57, 93–106. [CrossRef]
- Allen, P.J.; Kim, H.S.; Neggers, J. Deformations of *d* / *BCK*-algebras. *Bull. Korean Math. Soc.* 2011, 48, 315–324. [CrossRef]
- 4. Neggers, J.; Jun, Y.B.; Kim, H.S. On d-ideals in d-algebras. Math. Slovaca 1999, 49, 243–251.
- 5. Kim, H.S.; Neggers, J.; Ahn, S.S. A method to identify simple graphs by special binary systems. *Symmetry* **2018**, *10*, 297. [CrossRef]
- 6. Kim, H.S.; Neggers, J. The semigroups of binary systems and some perspectives. *Bull. Korean Math. Soc.* 2008, 45, 651–661. [CrossRef]
- 7. Meng, J.; Jun, Y.B. BCK-Algebras; Kyungmoon Sa: Seoul, Korea, 1994.
- 8. Huang, Y. BCI-Algebras; Science Press: Beijing, China, 2006.
- 9. Iorgulescu, A. Algebras of Logic as BCK-Algebras; Editura ASE: Bucharest, Romania, 2008.
- 10. Kandasamy, W.B.V. *Bialgebraic Structures and Smarandache Bialgebraic Structures*; American Research Press: Rehoboth, DE, USA, 2003.
- 11. Kandasamy, W.B.V.; Smarandache, F. *N-Algebraic Structures and S-N-Algebraic Structures*; HEXIS: Phoenix, AZ, USA, 2005.
- 12. Kandasamy, W.B.V.; Smarandache, F. Interval Groupoids; Infrlearnquest: Ann Arbor, MI, USA, 2010.
- 13. Allen, P. J.; Kim, H. S.; Neggers, J. Smarandache disjoint in BCK/d-algebras. Sci. Math. Jpn. 2005, 61, 447–449.
- 14. Kim, H.S.; Neggers, J.; Ahn, S. S. On pre-commutative algebras. Math. J. 2019, 7, 336. [CrossRef]



© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).