Some Results on 4-Total Difference Cordial Graphs

R. Ponraj
(Department of Mathematics, Sri Paramakalyani College, Alwarkurichi-627412, Tamilnadu, India)

S.Yesu Doss Philip and R. Kala
(Department of Mathematics, Manonmaniam Sundarnar University, Tirunelveli-627012, Tamilnadu, India) E-mail: ponrajmaths@gmail.com, jesuphilip09@gmail.com, karthipyi91@yahoo.co.in

Abstract

Let G be a graph. Let $f: V(G) \rightarrow\{0,1,2, \cdots, k-1\}$ be a map where $k \in \mathbb{N}$ and $k>1$. For each edge $u v$, assign the label $|f(u)-f(v)| . f$ is called k-total difference cordial labeling of G if $\left|t_{d f}(i)-t_{d f}(j)\right| \leq 1, i, j \in\{0,1,2, \cdots, k-1\}$ where $t_{d f}(x)$ denotes the total number of vertices and the edges labeled with x. A graph with admits a k-total difference cordial labeling is called k-total difference cordial graphs.

Key Words: Difference cordial labeling, Smarandachely difference cordial labeling, star, path, cycle, bistar, crown, comb.
AMS(2010): 05C78.

§1. Introduction

We consider here finite, simple and undirected graphs only. Ponraj etl., has been introduced the concept of k-total difference cordial graph in [4]. In [4,5], 3-total difference cordial labeling path , complete graph,comb ,armed crown, crown, wheel, star etc have been investigate and also we prove that every graph is a subgraph of a connected k-total difference cordial graphs in .In this paper we investigate 4 -total difference of cordial labeling of some graphs like star, path, cycle, bistar, crown, comb, etc.

§2. K-Total Difference Cordial Labeling

Definition 2.1 Let G be a graph. Let $f: V(G) \rightarrow\{0,1,2, \cdots, k-1\}$ be a function where $k \in \mathbb{N}$ and $k>1$. For each edge uv, assign the label $|f(u)-f(v)|$. f is called k-total difference cordial labeling of G if $\left|t_{d f}(i)-t_{d f}(j)\right| \leq 1, i, j \in\{0,1,2, \cdots, k-1\}$ where $t_{d f}(x)$ denotes the total number of vertices and the edges labelled with x. A graph with a k-total difference cordial labeling is called k-total difference cordial graph. Otherwise, if there is a pair $\{i, j\} \subset\{0,1,2, \cdots, k-1\}$ such that $\left|t_{d f}(i)-t_{d f}(j)\right|>1$, such a labeling is called a Smarandachely k-total difference cordial labeling of G.

Remark 2.2([6]) 2-total difference cordial graph is 2-total product cordial graph.

[^0]
§3. Preliminaries

Definition 3.1 The corona of G_{1} with $G_{2}, G_{1} \odot G_{2}$ is the graph obtained by taking one copy of G_{2} and p_{1} copies of G_{2} and joining the $i^{\text {th }}$ vertex of G_{1} with an edge to every vertex in the $i^{\text {th }}$ copy of G_{2}.

Definition 3.2 Armed crown $A C_{n}$ is the graph obtained from the cycle $C_{n}: u_{1} u_{2} \cdots u_{n} u_{1}$ with $V\left(A C_{n}\right)=V\left(C_{n}\right) \bigcup\left\{v_{i}, w_{i}: 1 \leq i \leq n\right\}$ and $E\left(A C_{n}\right)=E\left(C_{n}\right) \bigcup\left\{u_{i} v_{i}, v_{i} w_{i}: 1 \leq i \leq n\right\}$.

Definition 3.3 An edge $x=u v$ of G is said to be subdivided if it is replaced by the edges uw and $w v$ where w is a vertex not in $V(G)$.If every edge of G is subdivided,the resulting graph is called the subdivision graph $S(G)$.

Definition 3.4 Jelly fish graphs $J(m, n)$ obtained from a cycle C_{4} : uxvyu by joining x and y with an edge and appending m pendent edges to u and n pendent edges to v.

Definition 3.5 Triangular snake T_{n} is obtained from the path $P_{n}: u_{1} u_{2} \cdots u_{n}$ with $V\left(T_{n}\right)=$ $V\left(P_{n}\right) \bigcup\left\{v_{i}: 1 \leq i \leq n-1\right\}$ and $E\left(T_{n}\right)=E\left(P_{n}\right)=\bigcup\left\{u_{i} v_{i}, u_{i+1} v_{i}:(1 \leq i \leq n-1)\right\}$.

Definition 3.6 Double Triangular snake $D\left(T_{n}\right)$ is obtained from the Path $P_{n}: u_{1} u_{2} \cdots u_{n}$ with $V\left(D\left(T_{n}\right)\right)=V\left(P_{n}\right) \bigcup\left\{v_{i}, w_{i}: 1 \leq i \leq n-1\right\}$ and $E\left(D\left(T_{n}\right)\right)=E\left(P_{n}\right) \bigcup\left\{u_{i} v_{i}, u_{i} w_{i}: 1 \leq i \leq\right.$ $n-1\} \bigcup\left\{v_{i} u_{i+1}, w_{i} u_{i+1}: 1 \leq i \leq n-1\right\}$.

§4. Main Results

Theorem 4.1 Any star $K_{1, n}$ is 4-total difference cordial.
Proof Let $V\left(K_{1, n}\right)=\left\{u, u_{i}: 1 \leq i \leq n\right\}$ and $E\left(K_{1}, n\right)=\left\{u u_{i}: 1 \leq i \leq n\right\}$.
Case 1. $n \equiv 0(\bmod 4)$.
Let $n=4 r, r \in N$. Assign the label 1 to the central vertex. Next assign the label 0 to the vertices $u_{1}, u_{2}, \ldots, u_{2 r}$ and assign the label 3 to the remaining vertices.

Case 2. $n \equiv 1(\bmod 4)$.
Let $n=4 r+1, r \in N$. Assign the label 1 to the central vertex u. We now move to the pendent vertices.Assign the label 0 to the vertices $u_{1}, u_{2}, \cdots, u_{2 r}$ and assign the label 3 to the next remaining vertices $u_{2 r+1}, u_{2 r+2}, \cdots, u_{4 r}$ and $u_{4 r+1}$.
Case 3. $n \equiv 2(\bmod 4)$.
Let $n=4 r+2, r \in N$.In this case assign the label 0 to the vertices $u_{1}, u_{2}, \cdots, u_{2 r}$ and $u_{2 r+1}$. Next assign the label 3 to the vertices $u_{2 r+2}, u_{2 r+3}, \cdots, u_{4 r+2}$. Finally assign 1 to the central vertex u.

Case 4. $n \equiv 3(\bmod 4)$.
As in case (3) assign the label to $u, u_{1}, u_{2}, \cdots, u_{n-1}$. Next assign the label 3 to the vertex
u_{n}.
Table 1 given below establish that this vertex labeling pattern is a 4 -total difference cordial labeling.

Values of n	$t_{d f}(0)$	$t_{d f}(1)$	$t_{d f}(2)$	$t_{d f}(3)$
$n \equiv 0(\bmod 4)$	$2 r$	$2 r+1$	$2 r$	$2 r$
$n \equiv 1(\bmod 4)$	$2 r$	$2 r+1$	$2 r+1$	$2 r+1$
$n \equiv 2(\bmod 4)$	$2 r+1$	$2 r+2$	$2 r+1$	$2 r+1$
$n \equiv 3(\bmod 4)$	$2 r+1$	$2 r+2$	$2 r+2$	$2 r+2$

Table 1
A 4-total difference cordial labeling of $K_{1, n}(n=1,2,3)$ is given in Table 2.

Values of n	u	u_{1}	u_{2}	u_{3}
1	1	3		
2	1	0	3	
3	1	0	3	3

Table 2
This completes the proof.
Theorem 4.2 The path P_{n} is 4-total difference cordial for all values of n.
Proof Let P_{n} be the path $u_{1}, u_{2}, \cdots, u_{n}$.
Case 1. $n \equiv 0(\bmod 4) n>3$.
Let $n=4 r, r \in \mathbb{N}$, Assign the labels $3,1,1$ and 3 respectively to the vertices $u_{1}, u_{2}, u_{3}, u_{4}$. Next assign the labels $3,1,1$ and 3 to the next 4 vertices $u_{5}, u_{6}, u_{7}, u_{8}$ respectively. Proceeding like this until we reach the vertex u_{n}. That is in this process the last 4 vertices $u_{n-3}, u_{n-2}, u_{n-1}$ and u_{n} receive the labels $3,1,1$ and 3 .

Case 2. $n \equiv 1(\bmod 4) n>3$.
Let $n=4 r+1, r \in \mathbb{N}$. As in Case 1, assign the label to the vertices $u_{1}, u_{2}, \cdots, u_{n-1}$. Next assign the label 3 to the vertex u_{n}.

Case 3. $n \equiv 2(\bmod 4), n>3$.
Let $n=4 r+2, r \in \mathbb{N}$. Assign the label to the vertices $u_{1}, u_{2}, \cdots, u_{n-1}$ as in Case 2. Next assign the label 1 to the vertices u_{n}.

Case 4. $n \equiv 3(\bmod 4), n>3$.
Let $n=4 r+3, r \in \mathbb{N}$. Assign the label to the vertices $u_{1}, u_{2}, \cdots, u_{n-1}$ as in Case 3. Next assign the label 1 to the vertex u_{n}. This vertex labels is a 4 -total difference cordial labels follows from Table 3 for $n>3$.

Values of n	$t_{d f}(0)$	$t_{d f}(1)$	$t_{d f}(2)$	$t_{d f}(3)$
$n \equiv 0(\bmod 4)$	$2 r-1$	$2 r$	$2 r$	$2 r$
$n \equiv 1(\bmod 4)$	$2 r$	$2 r$	$2 r$	$2 r+1$
$n \equiv 2(\bmod 4)$	$2 r$	$2 r+1$	$2 r+1$	$2 r+1$
$n \equiv 3(\bmod 4)$	$2 r+1$	$2 r+2$	$2 r+1$	$2 r+1$

Table 3
A 4-total difference cordial labeling of $P_{n}(n=1,2,3)$ is given in Table 4.

Values of n	u_{1}	u_{2}	u_{3}
1	0		
2	0	2	
3	0	2	3

Table 4
This completes the proof.

Theorem 4.3 The cycle C_{n} is 4-total difference cordial if $n \equiv 0,1,3(\bmod 4)$
Proof Let C_{n} be the cycle $u_{1} u_{2} \cdots u_{n} u_{1}$. Assign the label to the vertices $u_{1}, u_{2}, \cdots, u_{n}$ as in Theorem 4.2. Table 5 given below shows that this labeling of C_{n} is a 4 -total difference cordial.

Values of n	$t_{d f}(0)$	$t_{d f}(1)$	$t_{d f}(2)$	$t_{d f}(3)$
$n \equiv 0(\bmod 4)$	$2 r$	$2 r$	$2 r$	$2 r$
$n \equiv 1(\bmod 4)$	$2 r$	$2 r$	$2 r$	$2 r+1$
$n \equiv 3(\bmod 4)$	$2 r+1$	$2 r+2$	$2 r+1$	$2 r+1$

Table 5
This completes the proof.

Theorem 4.4 The bistar $B_{n, n}$ is 4-total different cordial for all n.
Proof Let $V\left(B_{n, n}\right)=\left\{u, v, u_{i}, v_{i}: 1 \leq i \leq n\right\}$ and $E\left(B_{n, n}\right)=\left\{u u_{i}, v v_{i}, u v:(1 \leq i \leq n)\right\}$. Clearly $B_{n, n}$ has $2 n+2$ vertices and $2 n+1$ edges. Assign the label 1 to the central vertices u and v. Assign the label 3 to the vertices $u_{1}, u_{2}, \cdots, u_{n}$ and v_{1}. We now assign the label 1 to the vertices $v_{2}, v_{3}, \cdots, v_{n}$. Clearly $t_{d f}(0)=n, t_{d f}(1)=t_{d f}(2)=t_{d f}(3)=n+1$. Therefore f is a 4 -total difference cordial labeling.

Theorem 4.5 The crown $C_{n} \odot K_{1}$ is 4-total difference cordial labeling for all values of n.
Proof Let C_{n} be the cycle $u_{1} u_{2} \cdots u_{n} u_{1}$.Let $V\left(C_{n} \odot K_{1}\right) V\left(C_{n}\right) \bigcup\left\{v_{i}: 1 \leq i \leq n\right\}$ and $E\left(C_{n} \odot K_{1}\right)=E\left(C_{n}\right) \bigcup\left\{u_{i} v_{i}: 1 \leq i \leq n\right\}$. Assign the label 1 to the cycle vertices $u_{1}, u_{2}, \cdots, u_{n}$. Next we move to the pendent vertices v_{i}. Assign the label 3 to all pendent vertices $v_{1}, v_{2}, \cdots, v_{n}$.

Clearly $t_{d f}(0)=t_{d f}(1)=t_{d f}(2)=t_{d f}(3)=n$. Hence f is a 4 -total difference cordial labeling.
Corollary 4.1 All combs are 4-total difference cordial labeling.
Proof Clearly the vertex labeling in theoeam 4.5 is also a 4 -total difference cordial labeling of $P_{n} \odot K_{1}$.

Theorem 4.6 The armed crown $A C_{n}$ is 4-total difference cordial for all n.
Proof Clearly $A C_{n}$ has 3 vertices and $3 n$ edges. Let the vertex set and edge set as in Definition 3.2. Assign the label 1 to the all the cycle vertices $u_{1}, u_{2}, \cdots, u_{n}$. Next we assign the label 3 to the vertices $v_{1}, v_{2}, \cdots, v_{n}$.

Case 1. n is even.
In this case assign the label 3 to the pendent vertices $w_{1} w_{2} \cdots w_{\frac{n}{2}}$ and 1 to the remaining pendent vertices $w_{\frac{n}{2}+1}, w_{\frac{n}{2}+2}, \cdots, w_{n}$.
Case 2. n is odd.
Assign the label 3 to the vertices $w_{1}, w_{2}, \cdots, w_{\frac{n+1}{2}}$ and 1 to the vertices $w_{\frac{n+3}{2}}, w_{\frac{n+5}{2}}, \cdots, w_{n}$. The table 6 given below establish that this vertex labeling pattern is a 4 -total difference cordial labeling.

Values of n	$t_{d f}(0)$	$t_{d f}(1)$	$t_{d f}(2)$	$t_{d f}(3)$
n is even	$\frac{3 n}{2}$	$\frac{3 n}{2}$	$\frac{3 n}{2}$	$\frac{3 n}{2}$
n is odd	$\frac{3 n+1}{2}$	$\frac{3 n-1}{2}$	$\frac{3 n-1}{2}$	$\frac{3 n+1}{2}$

Table 6
This completes the proof.

Theorem 4.7 The double triangular snake $D T_{n}$ is 4-total difference cordial for all n.
Proof Let the vertex set and edge set as in Definition 3.6.
Case 1. $n \equiv 0(\bmod 3)$.
Assign the labels 3,2,3 to the path vertices u_{1}, u_{2}, u_{3}. Next assign the labels $3,2,3$ to the next 3 vertices u_{4}, u_{5}, u_{6} respectively. Proceeding like this until we reach the vertices u_{n}. That is in the process the last three vertices u_{n-2}, u_{n-1}, u_{n} receive the label $3,2,3$. Next assign the label 0 to the vertices $v_{1}, v_{2}, \cdots, v_{n}$ and assign the label 2 to the vertices $w_{1}, w_{2}, \cdots, w_{n}$.

Case 2. $n \equiv 1(\bmod 3)$.
In this case assign the labels to the vertices $u_{i},(1 \leq i \leq n-1), v_{i}, w_{i},(1 \leq i \leq n-1)$ as in Case 1. Next assign the labels $3,0,2$ respectively to the vetices u_{n}, v_{n-1}, w_{n}.

Case 3. $n \equiv 2(\bmod 3)$.
As in Case 2 assign the labels to the vertices $u_{1}, u_{2}, \cdots, u_{n-1}, v_{1}, v_{2}, \cdots v_{n-2}$ and $w_{1}, w_{2}, \cdots w_{n-2}$.

Finally assign the label 2,0 and 2 to the vertices u_{n}, v_{n-1} and w_{n-1}. Table 7 given below establish that this labeling scheme is a 4-total difference cordial labeling of $D T_{n}$.

Nature of n	$t_{d f}(0)$	$t_{d f}(1)$	$t_{d f}(2)$	$t_{d f}(3)$
$n \equiv 0(\bmod 3)$	$2 n-2$	$2 n-2$	$2 n-1$	$2 n-2$
$n \equiv 1(\bmod 3)$	$2 n-2$	$2 n-2$	$2 n-2$	$2 n-1$
$n \equiv 2(\bmod 3)$	$2 n-2$	$2 n-2$	$2 n-1$	$2 n-2$

Table 7
This completes the proof.
Example 4.1 A 4-total difference cordial labeling of $D\left(T_{6}\right)$ is shown in Figure 1.

Figure 1

Theorem 4.8 The jelly fish $J(n, n)$ is 4-total difference cordial for all n.
Proof Let C_{4} be a cycle uxvyu. Let $V(J(n, n))=V\left(C_{4}\right) \bigcup\left\{u_{i}, v_{i}: 1 \leq i \leq n\right\}$ and $E(J(n, n))$ $=E\left(C_{4}\right) \cup\left\{x y, x u_{i}, y v_{i}: 1 \leq i \leq n\right\}$. Assign the label 1 to the all cycle vertices $\mathrm{u}, \mathrm{x}, \mathrm{y}, \mathrm{v}$. Next we move to the pendent vertices. Assign the label 3 to the $u_{1}, u_{2}, \cdots, u_{n}$ and v_{1}, v_{2}. Assign the label 1 to the $v_{3}, v_{4}, \cdots, v_{n}$. Since $t_{d f}(0)=n+3, t_{d f}(1)=t_{d f}(2)=t_{d f}(3)=n+2, f$ is a 4-total difference cordial labeling.

Theorem 4.9 The subdivision of the bistar $B_{n, n}, S\left(B_{n, n}\right)$ is 4-total different cordial for all n.
Proof Let $V\left(S\left(B_{n, n}\right)\right)=\left\{u, w, v, u_{i}, v_{i}, x_{i}, y_{i}: 1 \leq i \leq n\right\}$ and $E\left(S\left(B_{n, n}\right)\right)=\left\{u u_{i}, u_{i} x_{i}, u w\right.$, $\left.w v, v v_{i}, v_{i} y_{i}: 1 \leq i \leq n\right\}$. Assign the label 1 to the vertices u, w and v.Next assign the label 3 to the vertices $u_{1}, u_{2}, \cdots, u_{i}$,
$x_{1}, x_{2}, \cdots, x_{i}$ and v_{1}. We now assign the label 2 to the vertices $y_{1}, y_{2}, \cdots, y_{n}$ and v_{2}. Finally assign the label 1 to the vertices $v_{3}, v_{4}, \cdots, v_{n}$. Since $t_{d f}(0)=t_{d f}(1)=t_{d f}(3)=2 n+1, t_{d f}(2)=$ $2 n+2$. The labeling f is a 4 -total difference cordial labeling.

Theorem $4.10 \quad P_{n} \odot 2 K_{1}$ is 4-total difference cordial for all n.

Proof Let P_{n} be the path $u_{1}, u_{2}, \cdots, u_{n}$. Let v_{i}, w_{i} be the pendent vertices adjacent to u_{i} $(1 \leq i \leq n)$. Assign the label 1 to the path vertices $u_{1}, u_{2}, \cdots, u_{n}$.

Case 1. n is even.
Assign the label 3 to all the vertices $v_{1}, v_{2}, \cdots, v_{n}$ and $w_{1}, w_{2}, \cdots, w_{\frac{n}{2}}$. We now assign the label 1 to the vertices $w_{\frac{n}{2}+1}, w_{\frac{n}{2}+2}, \cdots, w_{n}$.

Case 2. n is odd.
As in Case 1 assign the label to the vertices $u_{i}, v_{i}, w_{i}(1 \leq i \leq n)$. Next assign the label 3 to the vertices u_{n} and assign the label 1 to the vertex w_{n}.

Table 8 given below establish that this vertex labeling pattern is a 4 -total difference cordial labeling.

Values of n	$t_{d f}(0)$	$t_{d f}(1)$	$t_{d f}(2)$	$t_{d f}(3)$
n is even	$\frac{3 n}{2}-1$	$\frac{3 n}{2}$	$\frac{3 n}{2}$	$\frac{3 n}{2}$
n is odd	$\frac{3 n-1}{2}$	$\frac{3 n+1}{2}$	$\frac{3 n-1}{2}$	$\frac{3 n-1}{2}$

Table 8
This completes the proof.
Theorem $4.11 S\left(P_{n} \odot K_{1}\right)$ is 4-total difference cordial for all n.
Proof Let P_{n} be the path $u_{1}, u_{2}, \cdots u_{n}$. Let $V\left(P_{n} \odot K_{1}\right)=V\left(P_{n}\right) \cup\left\{v_{i}: 1 \leq i \leq n\right\}$ and $E\left(P_{n} \odot K_{1}\right)=\left\{u_{i}: 1 \leq i \leq n\right\}$. Let x_{i} be the vertex which subdivide the edge $u_{i} u_{i+1},\{1 \leq i \leq n-1\}$ and y_{i} be the vertex which subdivide $u_{i} v_{i}:\{1 \leq i \leq n\}$. Assign the label 3 to the all path vertices $u_{1}, u_{2}, \cdots, u_{n}$ and $x_{1}, x_{2}, \cdots, x_{n}$ and v_{2}. Next we assign the label 1 to the vertices $y_{1}, y_{2}, \ldots y_{n}$ and v_{1}. Finally we assign the label 2 to the remaining vertices $v_{3}, v_{4}, \cdots v_{n}$. Clearly $t_{d f}(0)=t_{d f}(1)=t_{d f}(2)=2 n-1, t_{d f}(3)=2 n$. Therefore, f is a 4 -total difference cordial labeling of $S\left(P_{n} \odot K_{1}\right)$.

Theorem $4.12 S\left(C_{n} \odot K_{1}\right)$ is 4-total difference cordial for all values of n.
Proof Let $C_{n}: u_{1} u_{2} \cdots u_{n} u_{1}$ be the cycle. Let $V\left(C_{n} \odot K_{1}\right)=V\left(C_{n}\right) \bigcup\left\{v_{i}:(1 \leq i \leq n)\right\}$ and $E\left(C_{n} \odot K_{1}\right)=E\left(C_{n}\right) \bigcup\left\{u_{i} v_{i}: 1 \leq i \leq n\right\}$. Let x_{i}, y_{i} be the vertices which subdivide the edges $u_{i} u_{i+1}(1 \leq i \leq n-1)$, $u_{i} v_{i}(1 \leq i \leq n)$ respectively. First we assign the label 3 to the cycle vertices $u_{1}, u_{2}, \cdots u_{n}$ and $x_{1}, x_{2}, \cdots x_{n}$. Next we assign the label 1 to the $y_{1}, y_{2}, \cdots y_{n}$. Finally assign the label 2 to the all pendent vertices $v_{1}, v_{2}, \cdots v_{n}$. Clearly $t_{d f}(0)=t_{d f}(1)=$ $t_{d f}(2)=t_{d f}(3)=2 n$. Therefore f is a 4-total difference cordial labeling of $S\left(C_{n} \odot K_{1}\right)$.

Theorem $4.13 S\left(A C_{n}\right)$ is 4-total difference cordial for all n.
Proof Let the vertex set and edge set of $A C_{n}$ as in definition 3.2.let $x_{i}:(1 \leq i \leq$ $n-1), y_{i}:(1 \leq i \leq n-1)$ and $z_{i}:(1 \leq i \leq n-1)$ be the vertex which subdivide the edges $u_{i} u_{i+1}:(1 \leq i \leq n-1), u_{i} v_{i}:(1 \leq i \leq n-1)$ and $v_{i} w_{i}:(1 \leq i \leq n-1)$ respectively. Assign the label 3 to the vertices $u_{1}, u_{2}, \cdots, u_{n}$ and $x_{1}, x_{2}, \cdots, x_{n}$ and $w_{1}, w_{2}, \cdots, w_{n}$. Next assign
the label 1 to the vertices $y_{1}, y_{2}, \cdots, y_{n}$. Then assign the label 2 to the vertices $v_{1}, v_{2}, \cdots, v_{n}$ and $z_{1}, z_{2}, \cdots z_{n}$. obviously $t_{d f}(0)=t_{d f}(1)=t_{d f}(2)=t_{d f}(3)=3 n$. Therefore f is a 4 -total difference cordial labeling of $S\left(A C_{n}\right)$.

Example 4.2 A 4-total difference cordial labeling of $S\left(A C_{n}\right)$ is shown in Figure 2.

Figure 2

Theorem $4.14 S\left(T_{n}\right)$ is 4-total difference cordial.
Proof Let the vertex set and edge set of T_{n} as in Definition 3.7. Let x_{i}, y_{i} and z_{i} be the vertices which subdivide the edges $u_{i} u_{i+1}, u_{i}, v_{i}$ and $u_{i+1} v_{i},(1 \leq i \leq n)$.

Case 1. $n \equiv 0(\bmod 4))$.
Assign the label 3 to the vertices $u_{1}, u_{2}, \cdots u_{n}$ and $x_{1}, x_{2}, \cdots x_{n-1}$. Assign the label 1 to the vertices $y_{1}, y_{2} \cdots y_{n-1}$. Next assign the label $2,3,1$ and 3 to the vertices $z_{1}, z_{2}, z_{3}, z_{4}$ then assign the label $2,3,1$ and 3 to the next 4 vertices $z_{5}, z_{6}, z_{7}, z_{8}$ respectively. Proceeding like this until we reach the vertices z_{n-1}. That is in the process the last four vertices are $z_{n-4}, z_{n-3}, z_{n-2}, z_{n-1}$ receive the label $2,3,1,3$. Next assign the label $0,2,3,2$ to the vertices $0,2,3,2$ to the vertices $v_{1}, v_{2}, v_{3}, v_{4}$ then assign the label $0,2,3,2$ to the next 4 vertices $v_{5}, v_{6}, v_{7}, v_{8}$ respectively. Proceeding like this until we reach the vertices v_{n-1}. That is in the process the last 4 vertices $v_{n-4}, v_{n-3}, v_{n-2}, v_{n-1}$ receive the label $0,2,3,2$.

Case 2. $n \equiv 1(\bmod 4)$.
As in Case 1 assign the labels to the vertices $u_{i},(1 \leq i \leq n-1), v_{i}, x_{i}, y_{i}, z_{i},(1 \leq i \leq n-2)$. Next assign the labels $3,0,3,1$ and 2 respect to the vertices $u_{n}, v_{n-1}, x_{n-1}, y_{n-1}$ and z_{n-1}.

Case 3. $n \equiv 2(\bmod 4)$.
In this case, assign the labels to the vertices $u_{i},(1 \leq i \leq n-1), v_{i}, x_{i}, y_{i}, z_{i},(1 \leq i \leq n-2)$ as in Case 2. Finally assign the labels $3,2,3,1$ and 3 to the vertices $u_{n}, v_{n-1}, x_{n-1}, y_{n-1}$ and
z_{n-1} respectively.
Case 4. $n \equiv 3(\bmod 4)$.
As in Case 3, assign the label to $u_{i},(1 \leq i \leq n-1), v_{i}, x_{i}, y_{i}, z_{i},(1 \leq i \leq n-2)$. Next assign the labels $3,3,3,1$ and 1 to the vertices $u_{n}, v_{n-1}, x_{n-1}, y_{n-1}$ and z_{n-1} respectively. Table 9 given below establish that this vertex labeling pattern is a 4 -total difference cordial labeling.

Nature of n	$t_{d f}(0)$	$t_{d f}(1)$	$t_{d f}(2)$	$t_{d f}(3)$
$n \equiv 0(\bmod 4)$	$\frac{11 n-8}{4}$	$\frac{11 n-8}{4}$	$\frac{11 n-12}{4}$	$\frac{11 n-12}{4}$
$n \equiv 1(\bmod 4)$	$\frac{11 n-9}{4}$	$\frac{11 n-9}{4}$	$\frac{11 n-5}{4}$	$\frac{11 n-9}{4}$
$n \equiv 2(\bmod 4)$	$\frac{11 n-10}{4}$	$\frac{11 n-10}{4}$	$\frac{11 n-10}{4}$	$\frac{11 n-10}{4}$
$n \equiv 3(\bmod 4)$	$\frac{11 n-9}{4}$	$\frac{11 n-9}{4}$	$\frac{11 n-9}{4}$	$\frac{11 n-13}{4}$

Table 9
This completes the proof.

References

[1] I.Cahit, Cordial graphs: A weaker version of graceful and harmonious graphs, Ars Combinatoria, 23(1987), 201-207.
[2] J.A.Gallian, A Dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 19 (2017) \#Ds6.
[3] F.Harary, Graph theory, Addision wesley, New Delhi (1969).
[4] R.Ponraj, S.Yesu Doss Philip and R.Kala, k-total difference cordial graphs, Journal of Algorithms and Combutation, 51(2019), 121-128.
[5] R.Ponraj, S.Yesu Doss Philip and R.Kala, 3-total difference cordial graphs, Global Engineering Science and research, 6(2019), 46-51.
[6] M.Sundaram, R.Ponraj and S.Somasundaram, Total product cordial labeling of graphs, Bulletin of Pure and Applied Sciences (Section E - Maths and Statistics), 25E(2005), 199203.

[^0]: ${ }^{1}$ Received July 13, 2019, Accepted March 16, 2020.

