# THE EQUATION $S(1.2)+S(2.3)+\cdots+S(n(n+1))=S(n(n+1)(n+2) / 3)$ 

Maohua Le

Abstract. For any positive integer $a$, let $S(a)$ be the Smarandache function of $a$. In this paper we prove that the title equation has only the solution $n=1$.

Key words: Smarandache function, diophantine equation

Let $\mathbf{N}$ be the set of all positive integers. For any positive integer $a$, let $S(a)$ be the Smarandache function of $a$. Recently, Bencze [1] proposed the following problem:

Problem Solve the equation
(1) $S(1 \cdot 2)+S(2 \cdot 3)+\cdots+S(n(n+1))=S\left(\frac{1}{3} n(n+1)(n+2)\right), n \in \mathbf{N}$.

In this paper we completely solve the above-mentioned problem as follows.

Theorem The equation (1) has only the solution $n=1$.
Proof By the definition of the Smarandache function (see [2]), we have $S(1)=1, S(2)=2$ and

$$
\begin{equation*}
S(a) \geqslant 3, a \geqslant 3 . \tag{2}
\end{equation*}
$$

Since $S(1.2)=S(1.2 .3 / 3)=S(2)$, the equation (1) has a solution $n=1$.
Let $n$ be a solution of (1) with $n>1$. Then, by (2), we get

$$
\begin{equation*}
S(1 \cdot 2)+S(2 \cdot 3)+\cdots+S(n(n+1)) \geq 2+3(n-1)=3 n-1 . \tag{3}
\end{equation*}
$$

Therefore, by (1) and (3), we obtain

$$
\begin{equation*}
S\left(\frac{1}{3} n(n+1)(n+2)\right) \geq 3 n-1 . \tag{4}
\end{equation*}
$$

On the other hand, since $(n+2)!=1.2 \cdots n(n+1)(n+2)$, we get

$$
\begin{equation*}
\left.\frac{1}{3} n(n+1)(n+2) \right\rvert\,(n+2)! \tag{5}
\end{equation*}
$$

We see from (5) that

$$
\begin{equation*}
S\left(\frac{1}{3} n(n+1)(n+2)\right) \leq n+2 \tag{6}
\end{equation*}
$$

The combination of (4) and (6) yields

$$
\begin{equation*}
n+2 \geq 3 n-1, \tag{7}
\end{equation*}
$$

whence we get $n \leqslant 3 / 2<2$. Since $n \geqslant 2$, it is impossible. Thus, (1) has no solutions $n$ with $n>1$. The theorem is proved.

## References

[1] M. Bencze, Open questions for the Smarandache function, Smarandache Notions J. 12(2001), 201-203.
[2] F. Smarandache, A function in number theory, Ann. Univ. Timisoara XVIII, 1980.

Department of Mathematics
Zhanjiang Normal College
Zhanjiang, Guangdong
P. R. CHINA

