ON RECURRENT STATIONARY SEQUENCES

Florentin Smarandache University of New Mexico 200 College Road Gallup, NM 87301, USA

Abstract.

In this paper one studies in what conditions a recurrent sequence becomes stationary.

Keywords: stationary sequence, convergent sequence, recurrent sequence, recurrent set, fix point

1991 MSC: 40A05, 11B37

Introduction.

Define a sequence $\{a_n\}$ by $a_1 = a$ and $a_{n+1} = f(a_n)$,

where f is a real-valued function of real variable. For what

values of a and for what functions f will this sequence be constant after a certain rank ?

In this note, the author answers for this question

referring to F. Lazebnik and Y. Pilipenko's E 3036 proposed problem.

An interesting property of functions admitting fixed points is obtained.

Construction of a recurrent set. Because $\{a_n\}$ is constant after a certain rank,

it results that $\{a_n\}$ converges. Hence (\exists) $e \in R : e =$

= f (e), that is the equation f(x) - x = 0 admits real solutions. Or f admits fixed points ((\exists) $x \in R$: f(x) = x).

Let e_1, \ldots, e_m be all real solutions of this

equation.

One constructs the recurrent set E, so:

(1) $e_1, \ldots, e_m \in E;$

(2) If $b \in E$, then all real solutions of the equation f(x) = b belong to E;

(3) No other elements belong to E, except the elements obtained from rules (1) or (2) applied a finite number of times.

We prove that the set E, and the set A of values of a for which $\{a_n\}$ becomes constant after a certain rank, are indistinct.

"E ⊆ A"

(1) If a = e_i, 1 \leq i \leq m, then (\forall) n \in N* a_n = e_i = = constant.

(2) If for a = b, the sequence $a_1 = b$, $a_2 = f(b)$, ... becomes constant after a certain rank; let x_0 be a real solution of the equation f(x) - b = 0, the new formed sequence: $a_1 = x_0$, $a_2 = f(x_0) = b$, $a_3 = f(b)$, ... is indistinct after a certain rank with the first one, hence it becomes constant too, having the same limit.

(3) Beginning from a certain rank, all these

sequences converge towards the same limit e (that is:

"A ⊇ E"

Let "a" be a value such that: $\{a_n\}$ becomes constant (after a certain rank) equal to e. Of course $e \in \{e_1, \ldots, e_m\}$, because e_1, \ldots, e_m are the only values towards with these sequences can tend.

If $a \in \{e_1, \ldots, e_m\}$, then $a \in E$.

Let $a \notin \{e_1, \ldots, e_m\}$. Then (\exists) $n_0 \in N$: $a = n_0+1$

= f(a) = e, hence we obtain "a" applying the rules (1) n_0

or (2) a finite number of times. So, because $e \in \{e_1, \dots, e_m\}$ and the equation f(x) = e admits real solutions we find a_n_0 among the real solutions of this equation; knowing a_n_0 we find a because the equation $f(a_0) = n_0 - 1$ a_n_0 admits real solutions (because $a_n_0 \in E$), and our

method goes on until we find $a_1 = a$. Hence $a \in E$.

Remark.

For $f(x) = x^2 - 2$ we obtain the E 3036 Problem [1]. Here, the set E becomes equal to:

$$\{ \underline{+} 1, 0, \underline{+}2 \} \cup \{ \underline{+}\sqrt{(2\underline{+}\sqrt{(2\underline{+}\sqrt{(\ldots\sqrt{2})\dots})})}, n \in \mathbb{N}^* \} \cup$$
 n times

Hence, for all $a \in E$ the sequence $a_1 = a$, $a_{n+1} = a_n^2 - 2$ becomes constant after a certain rank, and it converges (of course) towards -1 or 2:

 $(\exists)n_0 \in N^*$: $(\forall) n \ge n_0 a_n = -1$

or

 $(\exists)n_0 \in \mathbb{N}^*$: $(\forall) n \ge n_0 \quad a_n = 2$.

References:

[1] F. Lazebnik, Y. Pilipenko, "Problem E 3036", Am. Math. Monthly, Vol. 91, No. 2, 140, 1984.

[2] F. Smarandache, "Collected Papers", Vol. I, Tempus, Bucharest, 27-29, 1996.