# ON RECURRENT STATIONARY SEQUENCES 

Florentin Smarandache University of New Mexico 200 College Road Gallup, NM 87301, USA


#### Abstract

. In this paper one studies in what conditions a recurrent sequence becomes stationary.

Keywords: stationary sequence, convergent sequence, recurrent sequence, recurrent set, fix point


1991 MSC: 40A05, 11B37

## Introduction.

Define a sequence $\left\{a_{n}\right\}$ by $a_{1}=a$ and $a_{n+1}=f\left(a_{n}\right)$,
where $f$ is a real-valued function of real variable. For what
values of a and for what functions $f$ will this sequence be constant after a certain rank ?

In this note, the author answers for this question
referring to F. Lazebnik and Y. Pilipenko's E 3036 proposed problem.

An interesting property of functions admitting fixed points is obtained.

Construction of a recurrent set.
Because $\left\{a_{n}\right\}$ is constant after a certain rank,
it results that $\left\{a_{n}\right\}$ converges. Hence ( $\exists$ ) $e \in R: e=$
$=f(e)$, that is the equation $f(x)-x=0$ admits real solutions. Or $f$ admits fixed points (( $)^{\prime} \mathrm{x} \in \mathrm{R}$ : $\left.\mathrm{f}(\mathrm{x})=\mathrm{x}\right)$.

Let $e_{1}, \ldots, e_{m}$ be all real solutions of this
equation.
One constructs the recurrent set E , so:
(1) $e_{1}, \ldots, e_{m} \in E$;
(2) If beE, then all real solutions of the equation $\mathrm{f}(\mathrm{x})=\mathrm{b}$ belong to E ;
(3) No other elements belong to E, except the elements obtained from rules (1) or (2) applied a finite number of times.

We prove that the set $E$, and the set $A$ of values of a for which $\left\{a_{n}\right\}$ becomes constant after a certain rank, are indistinct.
$" E \subseteq A "$
(1) If $a=e_{i}, 1 \leq i \leq m$ then $(\forall) n \in N^{*} a_{n}=e_{i}=$ $=$ constant.
(2) If for $a=b$, the sequence $a_{1}=b, a_{2}=f(b)$, ... becomes constant after a certain rank; let $x_{0}$ be a real solution of the equation $f(x)-b=0$, the new formed sequence: $a_{1}^{\prime}=x_{0}, a_{2}^{\prime}=f\left(x_{0}\right)=b, a_{3}^{\prime}=f(b), \ldots$ is indistinct after a certain rank with the first one, hence it becomes constant too, having the same limit.
(3) Beginning from a certain rank, all these
sequences converge towards the same limit e (that is:
they have the same value "e" from a certain rank), thus they are indistinct, equal to e.
"A $\supseteq \mathrm{E}$ "

Let "a" be a value such that: $\left\{a_{n}\right\}$ becomes constant (after a certain rank) equal to e. Of course
$e \in\left\{e_{1}, \ldots, e_{m}\right\}$, because $e_{1}, \ldots, e_{m}$ are the only values towards with these sequences can tend.

If $a \in\left\{e_{1}, \ldots, e_{m}\right\}$, then $a \in E$.
Let $a \notin\left\{\mathrm{e}_{1}, \ldots, \mathrm{e}_{\mathrm{m}}\right\}$. Then ( $\exists$ ) $\mathrm{n}_{0} \in \mathrm{~N}: \mathrm{a}_{\mathrm{n}_{0}+1}=$
$\left.=\underset{n_{0}}{f(a)}\right)=e$, hence we obtain "a" applying the rules
or (2) a finite number of times. So, because $e \in\left\{e_{1}\right.$, $\left.\ldots, e_{m}\right\}$ and the equation $f(x)=e$ admits real solutions we find $a_{n_{0}}$ among the real solutions of this equation; knowing $a_{n_{0}}$ we find $a_{n_{0}-1}$ because the equation $f\left(\mathrm{a}_{\mathrm{n}_{0}-1}\right)=$ $a_{n_{0}}$ admits real solutions (because $a_{n_{0}} \in E$ ), and our method goes on until we find $a_{1}=a$. Hence $a \in E$.

## Remark.

For $f(x)=x^{2}-2$ we obtain the E 3036 Problem
[1]. Here, the set E becomes equal to:

$$
\begin{aligned}
\{ \pm 1,0, \pm 2\} \cup & \left.\underset{-}{\{ \pm} \underset{-}{\{ \pm}(2 \pm \sqrt{ }(2 \pm \sqrt{ }(\ldots \sqrt{ } 2) \ldots)), n \in N^{\star}\right\} \cup \\
& n \text { times } \\
& \\
& \begin{array}{l}
\{ \pm \sqrt{ }(2 \pm \sqrt{ }(2 \ldots \pm \sqrt{ }(2 \pm \sqrt{ } 3) \ldots)), n \in N\} . \\
\\
\\
\\
n \text { times }
\end{array}
\end{aligned}
$$

Hence, for all $a \in E$ the sequence $a_{1}=a, a_{n+1}=a_{n}^{2}-2$ becomes constant after a certain rank, and it converges (of course) towards -1 or 2:
$(\exists) \mathrm{n}_{0} \in \mathrm{~N}^{*}:(\forall) \mathrm{n} \geq \mathrm{n}_{0} \quad \mathrm{a}_{\mathrm{n}}=-1$
or
( $\exists) \mathrm{n}_{0} \in \mathrm{~N}^{*}:(\forall) \mathrm{n} \geq \mathrm{n}_{0} \quad \mathrm{a}_{\mathrm{n}}=2$ 。

## References:

[1] F. Lazebnik, Y. Pilipenko, "Problem E 3036", Am. Math. Monthly, Vol. 91, No. 2, 140, 1984.
[2] F. Smarandache, "Collected Papers", Vol. I, Tempus, Bucharest, 27-29, 1996.

