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Abstract:   

In this paper we have devised an alternative methodological approach for quantifying 

utility in terms of expected information content of the decision-maker’s choice set. We 

have proposed an extension to the concept of utility by incorporating extrinsic utility; 

which we have defined as the utility derived from the element of choice afforded to the 

decision-maker by the availability of an object within his or her object set. We have 

subsequently applied this extended utility concept to the case of investor utility derived 

from a structured, financial product – an custom-made investment portfolio incorporating 

an endogenous capital-guarantee through inclusion of cash as a risk-free asset, based on 

the Black-Scholes derivative-pricing formulation.  We have also provided instances of 

potential application of information and coding theory in the realms of financial decision-

making with such structured portfolios, in terms of transmission of product information.  

Key words:  Utility theory, constrained optimization, entropy, Shannon-Fano 

information theory, structured financial products 
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Introduction: 

 In early nineteenth century most economists conceptualized utility as a psychic reality – 

cardinally measurable in terms of utils like distance in kilometers or temperature in 

degrees centigrade. In the later part of nineteenth century Vilfredo Pareto discovered that 

all the important aspects of demand theory could be analyzed ordinally using geometric 

devices, which later came to be known as “indifference curves”. The indifference curve 

approach effectively did away with the notion of a cardinally measurable utility and went 

on to form the methodological cornerstone of modern microeconomic theory.  

 An indifference curve for a two-commodity model is mathematically defined as the 

locus of all such points in E2 where different combinations of the two commodities give 

the same level of satisfaction to the consumer so as the consumer is indifferent to any 

particular combination. Such indifference curves are always convex to the origin because 

of the operation of the law of substitution. This law states that the scarcer a commodity 

becomes, the greater becomes its relative substitution value so that its marginal utility 

rises relative to the marginal utility of the other commodity that has become 

comparatively plentiful. 

 In terms of the indifference curves approach, the problem of utility maximization for an 

individual consumer may be expressed as a constrained non-linear programming problem 

that may be written in its general form for an n-commodity model as follows: 

Maximize U = U (C1, C2 … Cn) 

Subject to Σ CjPj ≤ B 

and Cj ≥ 0, for j = 1, 2 … n (1) 

 If the above problem is formulated with a strict equality constraint i.e. if the consumer is 

allowed to use up the entire budget on the n commodities, then the utility maximizing 

condition of consumer’s equilibrium is derived as the following first-order condition: 
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∂U/∂Cj = (∂U/∂Cj) - λPj = 0 i.e. 

                                           (∂U/∂Cj)/Pj = λ* = constant, for j = 1, 2 … n                      (2) 

 

 This pertains to the classical economic theory that in order to maximize utility, 

individual consumers necessarily must allocate their budget so as to equalize the ratio of 

marginal utility to price for every commodity under consideration, with this ratio being 

found equal to the optimal value of the Lagrangian multiplier λ*. 

 

 However a rather necessary pre-condition for the above indifference curve approach to 

work is (UC1, UC2 … UCn) > 0 i.e. the marginal utilities derived by the consumer from 

each of the n commodities must be positive. Otherwise of course the problem 

degenerates. To prevent this from happening one needs to strictly adhere to the law of 

substitution under all circumstances. This however, at times, could become an untenable 

proposition if measure of utility is strictly restricted to an intrinsic one. This is because, 

for the required condition to hold, each of the n commodities necessarily must always 

have a positive intrinsic utility for the consumer. However, this would invariably lead to 

anomalous reasoning like the intrinsic utility of a woolen jacket being independent of the 

temperature or the intrinsic utility of an umbrella being independent of rainfall.  

 

 Choice among alternative courses of action consist of trade-offs that confound subjective 

probabilities and marginal utilities and are almost always too coarse to allow for a 

meaningful separation of the two. From the viewpoint of a classical statistical decision 

theory like that of Bayesian inference for example, failure to obtain a correct 

representation of the underlying behavioral basis would be considered a major pitfall in 

the aforementioned analytical framework. 

 

 Choices among alternative courses of action are largely determined by the relative 

degrees of belief an individual attaches to the prevailing uncertainties. Following Vroom 

(Vroom; 1964), the motivational strength Sn of choice cn among N alternative available 

choices from the choice set C = {c1, c2 …cN} may be ranked with respect to the 

multiplicative product of the relative reward r (cn) that the individual attaches to the 
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consequences resulting from the choice cn, the likelihood that the choice set under 

consideration will yield a positive intrinsic utility and the respective probabilities p{r 

(cn)} associated with r (cn) such that: 

 

                 Smax = Max 
n [r (cn) x p (Ur(C) > 0) x p{r (cn)}], n = 1, 2 … N                       (3) 

                                      

 Assuming for the time-being that the individual is calibrated with perfect certainty with 

respect to the intrinsic utility resulting from a choice set such that we have the condition 

p (Ur(C)  > 0) = {0, 1}, the above model can be reduced as follows: 

 

                   Smax = Max k [r (ck) x p{r (ck)}], k = 1, 2 … K such that K < N                  (4) 

                                      

 

 Therefore, choice A, which entails a large reward with a low probability of the reward 

being actualized could theoretically yield the same motivational strength as choice B, 

which entails a smaller reward with a higher probability of the reward being actualized.  

 

 However, we recognize the fact that the information conveyed to the decision-maker by 

the outcomes would be quite different for A and B though their values may have the same 

mathematical expectation. Therefore, whereas intrinsic utility could explain the ranking 

with respect to expected value of the outcomes, there really has to be another dimension 

to utility whereby the expected information is considered – that of extrinsic utility. So, 

though there is a very low probability of having an unusually cold day in summer, the 

information conveyed to the likely buyer of a woolen jacket by occurrence of such an 

aberration in the weather pattern would be quite substantial, thereby validating a 

extended substitution law based on an expected information measure of utility.  The 

specific objective of this paper is to formulate a mathematically sound theoretical edifice 

for the formal induction of extrinsic utility into the folds of statistical decision theory. 
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A few essential working definitions 

 Object: Something with respect to which an individual may perform a specific goal-

oriented behavior 

 Object set: The set O of a number of different objects available to an individual at any 

particular point in space and time with respect to achieving a goal where n {O} = K 

Choice: A path towards the sought goal emanating from a particular course of action - for 

a single available object within the individual’s object set, there are two available choices 

- either the individual takes that object or he or she does not take that object. Therefore, 

generalizing for an object set with K alternative objects, there can be 2K alternative 

courses of action for the individual 

Choice set: The set C of all available choices where C = P O, n {C} = 2K 

Outcome: The relative reward resulting from making a particular choice 

 Decision-making is nothing but goal-oriented behavior. According to the celebrated 

theory of reasoned action (Fishbain; 1979), the immediate determinant of human 

behavior is the intention to perform (or not to perform) the behavior. For example, the 

simplest way to determine whether an individual will invest in Acme Inc. equity shares is 

to ask whether he or she intends to do so. This does not necessarily mean that there will 

always be a perfect relationship between intension and behavior. However, there is no 

denying the fact that people usually tend to act in accordance with their intensions.  

 

 However, though intention may be shaped by a positive intrinsic utility expected to be 

derived from the outcome of a decision, the ability of the individual to actually act 

according to his or her intention also needs to be considered. For example, if an investor 

truly intends to buy a call option on the equity stock of Acme Inc. even then his or her 

intention cannot get translated into behavior if there is no exchange-traded call option 

available on that equity stock.  Thus we may view the additional element of choice as a 

measure of extrinsic utility. Utility is not only to be measured by the intrinsic want-

satisfying capacity of a commodity for an intending individual but also by the 

availability of the particular commodity at that point in space and time to enable that 

individual to act according to his or her intension.  Going back to our woolen jacket 

example, though the intrinsic utility of such a garment in summer is practically zero, the 
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extrinsic utility afforded by its mere availability can nevertheless suffice to uphold the 

law of substitution. 

 

Utility and thermodynamics 

 In our present paper we have attempted to extend the classical utility theory applying the 

entropy measure of information (Shannon, 1948), which by itself bears a direct 

constructional analogy to the Boltzmann equation in thermodynamics. There is some 

uniformity in views among economists as well as physicists that a functional 

correspondence exists between the formalisms of economic theory and classical 

thermodynamics. The laws of thermodynamics can be intuitively interpreted in an 

economic context and the correspondences do show that thermodynamic entropy and 

economic utility are related concepts sharing the same formal framework. Utility is said 

to arise from that component of thermodynamic entropy whose change is due to 

irreversible transformations. This is the standard Carnot entropy given by dS = δQ/T 

where S is the entropy measure, Q is the thermal energy of state transformation 

(irreversible) and T is the absolute temperature. In this paper however we will keep to the 

information theoretic definition of entropy rather than the purely thermodynamic one. 

 

Underlying premises of our extrinsic utility model 

 

1. Utility derived from making a choice can be distinctly categorized into two forms: 

 

(a) Intrinsic utility (Ur(C)) – the intrinsic, non-quantifiable capacity of the 

potential outcome from a particular choice set to satisfy a particular 

human want under given circumstances; in terms of expected utility theory 

Ur (C) = Σ r (cj) p{r (cj)}, where j = 1, 2 … K and 

 

(b) Extrinsic utility (UX) – the additional possible choices afforded by the 

mere availability of a specific object within the object set of the individual 
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2. An choice set with n (C) = 1 (i.e. when K = 0) with respect to a particular 

individual corresponds to lowest (zero) extrinsic utility; so UX cannot be negative 

 

3. The law of diminishing marginal utility tends to hold in case of UX when an 

individual repeatedly keeps making the same choice to the exclusion of other 

available choices within his or her choice set 

 

 Expressing the frequency of alternative choices in terms of the probability of getting an 

outcome rj by making a choice cj, the generalized extrinsic utility function can be framed 

as a modified version of Shannon’s entropy function as follows: 

 

                                UX = - K Σj p {r (cj)} log2 p {r (cj)}, j = 1, 2 … 2K                                       (5) 

 

 The multiplier -K = -n (O) is a scale factor somewhat analogous to the Boltzmann 

constant in classical thermodynamics with a reversed sign. Therefore general extrinsic 

utility maximization reduces to the following non-linear programming problem: 

 

                                           Maximize UX = - K Σj p {r (cj)} log2 p {r (cj)} 

           Subject to Σ p {r (cj)} = 1, 

                                                        p {r (cj)} ≥ 0; and 

                                                        j = 1, 2 … 2K                                                             (6) 

 

 Putting the objective function into the usual Lagrangian multiplier form, we get 

 

                                  Z = - K Σ p {r (cj)} log2 p {r (cj)} + λ (Σ p {r (cj)} – 1)                (7) 

 

 Now, as per the first-order condition for maximization, we have 

 

                                    ∂Z/∂ p {r (cj)} = - K (log2 p {r (cj)} + 1) + λ = 0 i.e. 

 

                                     log2 p {r (cj)} = λ/K – 1                                                              (8) 
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 Therefore; for a pre-defined K; p {r (cj)} is independent of j, i.e. all the probabilities are 

necessarily equalized to the constant value p {r (cj)}*= 2-K at the point of maximum UX. 

 

  It is also intuitively obvious that when p {r (cj)}= 2-K for j = 1, 2, … 2K, the individual 

has the maximum element of choice in terms of the available objects within his or her 

object set. For a choice set with a single available choice, the extrinsic utility function 

will be simply given as UX = – p{r (c)} log2 p{r (c)} – (1 – p{r (c)}) log2 (1 – p{r (c)}). 

Then the slope of the marginal extrinsic utility curve will as usual be given by d2UX/dp{r 

(c)} 2 < 0, and this can additionally serve as an alternative basis for intuitively deriving 

the generalized, downward-sloping demand curve and is thus a valuable theoretical spin-

off!  

 

 Therefore, though the mathematical expectation of a reward resulting from two mutually 

exclusive choices may be the same thereby giving them equal rank in terms of the 

intrinsic utility of the expected reward, the expected information content of the outcome 

from the two choices will be quite different given different probabilities of getting the 

relative rewards. The following vector will then give a composite measure of total 

expected utility from the object set: 

 

  U = [Ur, UX] = [Σr (cj) p{r (cj)}, - K Σj p {r (cj)} log2 p {r (cj)}], j = 1, 2 … 2K                (9) 

 

 Now, having established the essential premise of formulating an extrinsic utility 

measure, we can proceed to let go of the assumption that an individual is calibrated with 

perfect certainty about the intrinsic utility resulting from the given choice set so that we 

now look at the full Vroom model rather than the reduced version. If we remove the 

restraining condition that p (Ur (C) > 0) = {0, 1} and instead we have the more general case 

of 0 ≤ p (Ur(C) > 0) ≤ 1, then we introduce another probabilistic dimension to our choice 

set whereby the individual is no longer certain about the nature of the impact the 

outcomes emanating from a specific choice will have on his intrinsic utility.  This can be 

intuitively interpreted in terms of the likely opportunity cost of making a choice from 
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within a given choice set to the exclusion of all other possible choice sets. For the 

particular choice set C, if the likely opportunity cost is less than the potential reward 

obtainable, then Ur (c) > 0, if opportunity cost is equal to the potential reward obtainable, 

then Ur(C)  = 0, else if the opportunity cost is greater than the potential reward obtainable 

then Ur (C) < 0.  

 Writing Ur(C) = Σj r (cj) p{r (cj)}, j = 1, 2 … N, the total expected utility vector now 

becomes: 

 
[Ur(C), UX] = [Σj r (cj) p{r (cj)}, - K Σ p {r (cj)| Ur(C) > 0} log2 p {r (cj)| Ur(C) > 0}], j = 1, 2 … N             (10) 

 

Here p {r (cj)| Ur(C) > 0} may be estimated by the standard Bayes criterion as under: 

 

     p {r (cj)| Ur(c) >0} = [p {(Ur(C) ≥0|r (cj)} p {(r (cj)}][Σj p {(Ur(C) >0|r (cj)} p {(r (cj)}]-1          (11) 

 

 

A practical application in the realms of Behavioral Finance - Evaluating an 

investor’s extrinsic utility from capital-guaranteed, structured financial products 

 

 Let a structured financial product be made up of a basket of n different assets such that 

the investor has the right to claim the return on the best-performing asset out of that 

basket after a stipulated holding period. Then, if one of the n assets in the basket is the 

risk-free asset then the investor gets assured of a minimum return equal to the risk-free 

rate i on his invested capital at the termination of the stipulated holding period.  This 

effectively means that his or her investment becomes endogenously capital-guaranteed as 

the terminal wealth, even at its worst, cannot be lower in value to the initial wealth plus 

the return earned on the risk-free asset minus a finite cost of portfolio insurance.  

 

 Therefore, with respect to each risky asset, we can have a binary response from the 

investor in terms of his or her funds-allocation decision whereby the investor either takes 

funds out of an asset or puts funds into an asset. Since the overall portfolio has to be self-

financing in order to pertain to a Black-Scholes kind of pricing model, funds added to 
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one asset will also mean same amount of funds removed from one or more of the other 

assets in that basket. If the basket consists of a single risky asset s (and of course cash as 

the risk-free asset) then, if ηs is the amount of re-allocation effected each time with 

respect to the risky asset s, the two alternative, mutually exclusive choices open to the 

investor with respect to the risky asset s are as follows:  

 

(1) C (ηs ≥ 0) (funds left in asset s), with associated outcome r (ηs ≥ 0); and  

 

(2) C (ηs < 0) (funds removed from asset s), with associated outcome r (ηs < 0) 

 

 Therefore what the different assets are giving to the investor apart from their intrinsic 

utility in the form of higher expected terminal reward is some extrinsic utility in the form 

of available re-allocation options. Then the expected present value of the final return is 

given as follows: 

 

                        E (r) = Max [w, Max j {e-it E (rj) t}], j = 1, 2 … 2n-1                                            (12) 

 

In the above equation i is the rate of return on the risk-free asset and t is the length of the 

investment horizon in continuous time and w is the initial wealth invested i.e. ignoring 

insurance cost, if the risk-free asset outperforms all other assets E (r) = weit/eit = w.  

 

 Now what is the probability of each of the (n – 1) risky assets performing worse than the 

risk-free asset? Even if we assume that there are some cross-correlations present among 

the (n – 1) risky assets, given the statistical nature of the risk-return trade-off the joint 

probability of these assets performing worse than the risk-free asset will be very low over 

moderately long investment horizons.  And this probability will keep going down with 

every additional risky asset added to the basket. Thus each additional asset will empower 

the investor with additional choices with regards to re-allocating his or her funds among 

the different assets according to their observed performances.  

 Intuitively we can make out that the extrinsic utility to the investor is indeed maximized 

when there is an equal positive probability of actualizing each outcome rj resulting from 
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ηj given that the intrinsic utility Ur(C) is greater than zero. By a purely economic 

rationale, each additional asset introduced into the basket will be so introduced if and 

only if it significantly raises the expected monetary value of the potential terminal 

reward. As already demonstrated, the extrinsic utility maximizing criterion will be given 

as under: 

 

                                  p (rj | Ur(C) > 0)* = 2-(n-1) for j = 1, 2 …2n-1                                                  (13) 

 

 The composite utility vector from the multi-asset structured product will be as follows: 

 

[Ur(C), UX] = [E ( r ), - (n – 1)Σ p {rj | Ur(C) > 0} log2 p {rj | Ur(C) > 0}], j = 1, 2 … 2n-1        (14) 

 

Choice set with a structured product having two risky assets (and cash): 

 

0 0 

1 0 

0 1 

1 1 

 

 That is, the investor can remove all funds from the two risky assets and convert it to cash 

(the risk-free asset), or the investor can take funds out of asset 2 and put it in asset 1, or 

the investor can take funds out of asset 1 and put it in asset 2, or the investor can convert 

some cash into funds and put it in both the risky assets. Thus there are 4 alternative 

choices for the investor when it comes to re-balancing his portfolio. 

 

Choice set with a structured product having three risky assets (and cash): 

 

0 0 0 

0 0 1 

0 1 0 
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0 1 1 

1 0 0 

1 0 1 

1 1 0 

1 1 1 

 That is, the investor can remove all funds from the three risky assets and convert it into 

cash (the risk-free asset), or the investor can take funds out of asset 1 and asset 2 and put 

it in asset 3, or the investor can take funds out from asset 1 and asset 3 and put it in asset 

2, or the investor can take funds out from asset 2 and asset 3 and put it in asset 1, or the 

investor can take funds out from asset 1 and put it in asset 2 and asset 3, or the investor 

can take funds out of asset 2 and put it in asset 1 and asset 3, or the investor can take 

funds out of asset 3 and put it in asset 1 and asset 2, or the investor can convert some cash 

into funds and put it in all three of the assets. Thus there are 8 alternative choices for the 

investor when it comes to re-balancing his portfolio. 

 Of course, according to the Black-Scholes hedging principle, the re-balancing needs to 

be done each time by setting the optimal proportion of funds to be invested in each asset 

equal to the partial derivatives of the option valuation formula w.r.t. each of these assets. 

However, the total number of alternative choices available to the investor increases with 

every new risky asset that is added to the basket thereby contributing to the extrinsic 

utility in terms of the expected information content of the total portfolio. 

 

Coding of product information about multi-asset, structured financial portfolios 

 

 Extending the entropy measure of extrinsic utility, we may conceptualize the interaction 

between the buyer and the vendor as a two-way communication flow whereby the vendor 

informs the buyer about the expected utility derivable from the product on offer and the 

buyer informs the seller about his or her individual expected utility criteria. An economic 

transaction goes through if the two sets of information are compatible. Of course, the 

greater expected information content of the vendor’s communication, the higher is the 

extrinsic utility of the buyer. Intuitively, the expected information content of the vendor’s 
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communication will increase with increase in the variety of the product on offer, as that 

will increase the likelihood of matching the buyer’s expected utility criteria.  

 

 The product information from vendor to potential buyer may be transferred through 

some medium e.g. the vendor’s website on the Internet, a targeted e-mail or a telephonic 

promotion scheme.  But such transmission of information is subject to noise and 

distractions brought about by environmental as well as psycho-cognitive factors.  While a 

distraction is prima facie predictable, (e.g. the pop-up windows that keep on opening 

when some commercial websites are accessed), noise involves unpredictable 

perturbations (e.g. conflicting product information received from any competing sources).  

 

 Transmission of information calls for some kind of coding. Coding may be defined as a 

mapping of words from a source alphabet A to a code alphabet B. A discrete, finite 

memory-less channel with finite inputs and output alphabets is defined by a set of 

transition probabilities pi (j), i = 1, 2 … a and j = 1,2 … b with Σj pi (j) = 1 and pi (j) ≥ 0. 

Here pi (j) is the probability that for an input letter i output letter j will be received.  

 

 A code word of length n is defined as a sequence of n input letters which are actually n 

integers chosen from 1,2 … a. A block code of length n having M words is a mapping of 

the message integers from 1 to M into a set of code words each having a fixed length n.  

Thus for a structured product with N component assets, a block code of length n having 

N words would be used to map message integers from 1 to N, corresponding to each of 

the N assets, into a set of a fixed-length code words. Then there would be a total number 

of C = 2N possible combinations such that log2 C = N binary-state devises (flip-flops) 

would be needed.   

 

 A decoding system for a block code is the inverse mapping of all output words of length 

n into the original message integers from 1 to M. Assuming all message integers are used 

with same probability 1/M, the probability of error Pe for a code and decoding system 

ensemble is defined as the probability of an integer being transmitted and received as a 
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word which is mapped into another integer i.e. Pe is the probability of wrongly decoding 

a message.  

 

 Therefore, in terms of our structured product set up, Pe might be construed as the 

probability of misclassifying the best performing asset. Say within a structured product 

consisting of three risky assets  - a blue-chip equity portfolio, a market-neutral hedge 

fund and a commodity future (and cash as the risk-free asset), while the original 

transmitted information indicates the hedge fund to be the best performer, due to 

erroneous decoding of the encoded message, the equity portfolio is interpreted as the best 

performer. Such erroneous decoding could result in investment funds being allocated to 

the wrong asset at the wrong time.  

 

 The relevance of Shannon-Fano coding to product information transmission 

 

 By the well-known Kraft’s inequality we have K = Σn 2 –li ≤ 1, where li stands for some 

definite code word lengths with a radix of 2 for binary encoding. For block codes, li = l 

for i = 1, 2 … n. As per Shannon’s coding theorem, it is possible to encode all 

sequences of n message integers into sequences of binary digits in such a way that the 

average number of binary digits per message symbol is approximately equally to the 

entropy of the source, the approximation increasing in accuracy with increase in n. For 

efficient binary codes, K = 1 i.e. log2 K = 0 as it corresponds to the maximal entropy 

condition. Therefore the inequality occurs if and only if pi ≠ 2 –li. Though the Shannon-

Fano coding scheme is not strictly the most efficient, it has the advantage of directly 

deriving the code word length li from the corresponding probability pi. With source 

symbols s1, s2 … sn and their corresponding probabilities p1, p2 … pn, where for each pi 

there is an integer li, then given that we have bounds that span an unit length, we have the 

following relationship: 

 

                                           log2 (pi
-1) ≤ li < log2 (pi

-1) + 1                                            (15) 

 

Removing the logs, taking reciprocals and summing each term we therefore get, 
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Σn pi ≥ Σn 2li ≥ pi/2, that is, 

 

                                                         1 ≥ Σn 2li ≥ ½                                                         (16) 

 

 Inequality (16) gets us back to the Kraft’s inequality. This shows that there is an 

instantaneously decodable code having the Shannon-Fano lengths li. By multiplying 

inequality (15) by pi and summing we get: 

 

Σn (pi log2 pi
-1) ≤ Σn pili < Σn (pi log2 pi

-1) + 1, that is, 

 

                                                 H2 (S) ≤ L ≤ H2 (S) + 1                                                  (17) 

 

 That is, in terms of the average Shannon-Fano code length L, we have conditional 

entropy as an effective lower bound while it is also the non-integral component of the 

upper bound of L. This underlines the relevance of a Shannon-Fano form of coding to our 

structured product formulation as this implies that the average code word length used in 

this form of product information coding would be bounded by a measure of extrinsic 

utility to the potential investor of the structured financial product itself, which is 

definitely an intuitively appealing prospect. 

 

Conceptualizing product information transmission as a Markov process 

 

 The Black-Scholes option-pricing model is based on the underlying assumption that 

asset prices evolve according to the geometric diffusion process of a Brownian motion. 

The Brownian motion model has the following fundamental assumptions: 

 

(1). W0=0 

(2). Wt-Ws is a random variable that is normally distributed with mean 0 and variance t-s 

(3). Wt-Ws is independent of Wv-Wu if (s, t) and (u, v) are non-overlapping time 

intervals  
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 Property (3) implies that the Brownian motion is a Markovian process with no long-term 

memory. The switching behavior of asset prices from “high” (Bull state) to “low” (Bear 

state) and vice versa according to Markovian transition rule constitutes a well-researched 

topic in stochastic finance. It has in fact been proved that a steady-state equilibrium exists 

when the state probabilities are equalized for a stationary transition-probability matrix 

(Bhattacharya, 2001). This steady-state equilibrium corresponds to the condition of 

strong efficiency in the financial markets whereby no historical market information can 

result in arbitrage opportunities over any significant length of time.  

 

 By logical extension, considering a structured portfolio with n assets, the best performer 

may be hypothesized to be traceable by a first-order Markov process, whereby the best 

performing asset at time t+1 is dependent on the best performing asset at time t. For 

example, with n = 3, we have the following state-transition matrix: 

 

 

 

 

 Asset 1 Asset 2  Asset 3 

Asset 1  P (1 | 1) P (2 | 1) P (3 | 1) 

Asset 2 P (2 | 1) P (2 | 2) P (3 | 2) 

Asset 3 P (3 | 1) P (3 | 2) P (3 | 3) 

 

 In information theory also, a similar Markov structure is used to improve the encoding of 

a source alphabet. For each state in the Markov system, an appropriate code can be 

obtained from the corresponding transition probabilities of leaving that state. The 

efficiency gain will depend on how variable the probabilities are for each state. However, 

as the order of the Markov process is increased, the gain will tend to be less and less 

while the number of attainable states approach infinity. 

 



 81 

 The strength of the Markov formulation lies in its capacity of handling correlation 

between successive states. If S1, S2 … Sm are the first m states of a stochastic variable, 

what is the probability that the next state will be Si?  This is written as the conditional 

probability p (Si | S1, S2 … Sm). Then, the Shannon measure of information from a state Si 

is given as usual as follows: 

 

                                    I (Si | S1, S2 … Sm) = log2 {p (Si | S1, S2 … Sm)}-1                                (17) 

 

The entropy of a Markov process is then derived as follows: 

 

                                    H (S) = Σ p (S1, S2 … Sm, Si) I (Si | S1, S2 … Sm)                      (18) 

                                                Sm+1 

 

Then the extrinsic utility to an investor from a structured financial product expressed in 

terms of the entropy of a Markov process governing the state-transition of the best 

performing asset over N component risky assets (and cash as the one risk-free asset) 

within the structured portfolio would be given as follows: 

 

                    Ux = H (Portfolio) = Σ p (S1, S2 … Sm, Si) I (Si | S1, S2 … Sm)                 (19) 

                                                     SN+1 

 

  However, to find the entropy of a Markov source alphabet one needs to explicitly derive 

the stationary probabilities of being in each state of the Markov process. But these state 

probabilities may be hard to derive explicitly especially if there are a large number of 

allowable states (e.g. corresponding to a large number of elementary risky assets within a 

structured financial product). Using Gibbs inequality, it can be show that the following 

limit can be imposed for bounding the entropy of the Markov process: 

 

       Σj p (Sj) H (Portfolio | Sj) ≤ H (S*), where H (S*) is termed the adjoint system   (20) 
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 The entropy of the original message symbols given by the zero memory source adjoint 

system with p (Si) = pi bound the entropy of the Markov process. The equality holds if 

and only if p (Sj, Si) = pjpi that is, in terms of the structured portfolio set up, the equality 

holds if and only if the joint probability of the best performer being the pair of assets i 

and j is equal to the product of their individual probabilities (Hamming, 1986).  Thus a 

clear analogical parallel may be drawn between Markovian structure of the coding 

process and performances of financial assets contained within a structured investment 

portfolio. 

 

Conclusion and scope for future research 

 

 In this paper we have basically outlined a novel methodological approach whereby 

expected information measure is used as a measure of utility derivable from a basket of 

commodities. We have illustrated the concepts with an applied finance perspective 

whereby we have used this methodological approach to derive a measure of investor 

utility from a structured financial portfolio consisting of many elementary risky assets 

combined with cash as the risk-free asset thereby giving the product a quasi - capital 

guarantee status. We have also borrowed concepts from mathematical information theory 

and coding to draw analogical parallels with the utility structures evolving out of multi-

asset, structured financial products. In particular, principles of Shannon-Fano coding 

have been applied to the coding of product information for transmission from vendor 

(fund manager) to the potential buyer (investor). Finally we have dwelled upon the very 

similar Markovian structure of coding process and that of asset performances. 

 

 This paper in many ways is a curtain raiser on the different ways in which tools and 

concepts from mathematical information theory can be applied in utility analysis in 

general and to analyzing investor utility preferences in particular. It seeks to extend the 

normal peripheries of utility theory to a new domain – that of information theoretic 

utility. Thus a cardinal measure of utility is proposed in the form of the Shannon-

Boltzmann entropy measure. Being a new methodological approach, the scope of future 

research is boundless especially in exploring the analogical Markovian properties of asset 
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performances and message transmission and devising an efficient coding scheme to 

represent the two-way transfer of utility information from vendor to buyer and vice versa. 

The mathematical kinship between neoclassical utility theory and classical 

thermodynamics is also worth exploring, may be aimed at establishing some higher-

dimensional, theoretical connectivity between the isotherms and the indifference curves!  
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